JP2881997B2 - Method for electrolytic dissolution of nickel metal for nickel plating bath - Google Patents

Method for electrolytic dissolution of nickel metal for nickel plating bath

Info

Publication number
JP2881997B2
JP2881997B2 JP20750590A JP20750590A JP2881997B2 JP 2881997 B2 JP2881997 B2 JP 2881997B2 JP 20750590 A JP20750590 A JP 20750590A JP 20750590 A JP20750590 A JP 20750590A JP 2881997 B2 JP2881997 B2 JP 2881997B2
Authority
JP
Japan
Prior art keywords
nickel
plating bath
anode
metal
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20750590A
Other languages
Japanese (ja)
Other versions
JPH0499198A (en
Inventor
利勝 浜野
幸夫 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP20750590A priority Critical patent/JP2881997B2/en
Publication of JPH0499198A publication Critical patent/JPH0499198A/en
Application granted granted Critical
Publication of JP2881997B2 publication Critical patent/JP2881997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属ニッケルの電解溶解方法、詳しくはニ
ッケルメッキ浴中の消耗したニッケル濃度を金属ニッケ
ルの電解溶解により向上させる方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for electrolytically dissolving nickel metal, and more particularly to a method for improving the concentration of nickel consumed in a nickel plating bath by electrolytically dissolving nickel metal.

[従来技術] ニッケルメッキ又はニッケル合金メッキは各種の工業
的メッキに使用されているが、その浴組成は、例えば硫
酸等の酸濃度5〜30g/l,ニッケル濃度30〜80g/l,pH0.5
〜2.0である。当然のことながら、メッキ浴はその使用
につれてニッケルが消耗し、ニッケル濃度が低下するた
め、何らかの方法によりニッケルを補給し、浴中のニッ
ケル濃度を常に所望のレベルに維持する必要がある。
[Prior art] Nickel plating or nickel alloy plating is used for various industrial platings. The bath composition is, for example, an acid concentration of sulfuric acid or the like of 5 to 30 g / l, a nickel concentration of 30 to 80 g / l, and a pH of 0. Five
~ 2.0. As a matter of course, the plating bath is depleted of nickel as it is used, and the nickel concentration decreases. Therefore, it is necessary to replenish nickel by some method and always maintain the nickel concentration in the bath at a desired level.

ニッケルメッキ浴へのニッケルの補給としては、金属
ニッケルを直接これに浸漬し溶解することも考えられる
が、浴の酸濃度は比較的小さく溶解速度が小さいため実
際的ではない。浴中の酸濃度を高めることはその後の酸
濃度の調整の困難さからこれも実用的でない。
As a method of replenishing nickel to the nickel plating bath, it is conceivable that metal nickel is directly immersed in the bath to dissolve it, but it is not practical because the acid concentration of the bath is relatively small and the dissolution rate is low. Increasing the acid concentration in the bath is also impractical due to the difficulty in subsequently adjusting the acid concentration.

メッキ浴の酸濃度を所定レベルに維持したままニッケ
ルを補給する方法として、炭酸ニッケル形態にて浴に添
加することも提案されている。
As a method of replenishing nickel while maintaining the acid concentration of the plating bath at a predetermined level, it has been proposed to add nickel to the bath in the form of nickel carbonate.

更にメッキ浴の酸濃度を変えずにニッケルを補給する
別の手段として電解溶解により金属ニッケルを浴に溶解
する方法も考慮される。
Further, as another means for replenishing nickel without changing the acid concentration of the plating bath, a method of dissolving metallic nickel in the bath by electrolytic dissolution is also considered.

[発明の解決しようとする問題点] しかしながら、前者の方法は、炭酸ニッケルは金属ニ
ッケルに比較して高価であるばかりでなく、入手経路が
限られ常時在庫量が増える等の難点がある。又、後者の
方法は、陽極のニッケルが一部不動態化してしまうた
め、この方法も未だ実用化されていない。
[Problems to be Solved by the Invention] However, the former method has disadvantages such as not only that nickel carbonate is more expensive than metallic nickel, but also a limited availability route and an ever-increasing inventory. Also, the latter method has not yet been put to practical use, because nickel in the anode is partially passivated.

[問題点を解決するための手段] 本発明は、上記の如きニッケルメッキ浴中の消耗する
ニッケルを電解方法により溶解する方法として、陽極の
不動態化等のトラブルを起すことのないニッケル金属電
解溶解方法を提供する。
[Means for Solving the Problems] The present invention relates to a method for dissolving nickel consumed in a nickel plating bath by an electrolysis method as described above. A dissolution method is provided.

上記本発明の目的は、本発明者の研究によると、以下
の本発明により解決しうることが見い出された。
According to the research of the present inventor, it has been found that the above object of the present invention can be solved by the following present invention.

即ち、陽極である亜鉛含有金属ニッケルと陰極を有す
る電解槽に、ニッケル金属が消耗したニッケルメッキ浴
液を供給し、電流密度1〜30A/dm2にて通電することに
よりニッケル濃度を上昇させることを特徴とするニッケ
ルメッキ浴用のニッケル金属電解方法を本発明として提
供する。
That is, a nickel plating bath solution depleted of nickel metal is supplied to an electrolytic cell having a nickel-containing metal nickel as an anode and a cathode, and the nickel concentration is increased by applying a current at a current density of 1 to 30 A / dm 2 . The present invention provides a nickel metal electrolysis method for a nickel plating bath, characterized by the following.

本発明においては、陰極を使用し、溶解すべき金属ニ
ッケルを陽極に使用した電解槽に、ニッケルと亜鉛のニ
ッケル合金のメッキ浴等からとり出した液を供給する。
この際、陽極の金属ニッケルは、不動態化を防止するた
めに亜鉛を含有することが必要であり、亜鉛は好ましく
は0.003〜80重量%、好ましくは0.4〜50重量%含有せし
められる。過度に少ない亜鉛含有はニッケルの溶解速度
を上げられないため好ましくない。金属ニッケルの形状
は、溶解をしやすくするため好ましくは、粒状、板状、
粉状にせしめ、これをチタンなどの耐食性金属のバスケ
ットに入れて使用するのが適切である。ニッケルメッキ
浴からとり出した液は、上記電解槽の陽極と陰極間に好
ましくは10〜40cm/sec、特には20〜40cm/secの流速にて
供給する。この流速を選ぶことにより、陰極上にニッケ
ルが析出した場合にも、陰極上にニッケルは均一に析出
し、かかる均一に析出したニッケルは除去しやすいので
好ましい。
In the present invention, a liquid taken out from a plating bath of a nickel alloy of nickel and zinc or the like is supplied to an electrolytic cell using a cathode and a metal nickel to be dissolved as an anode.
At this time, the metallic nickel of the anode needs to contain zinc in order to prevent passivation, and the zinc is preferably contained in an amount of 0.003 to 80% by weight, preferably 0.4 to 50% by weight. An excessively low zinc content is not preferable because the dissolution rate of nickel cannot be increased. The shape of the metallic nickel is preferably granular, plate-like, or
It is appropriate to pulverize the powder and put it in a basket made of a corrosion-resistant metal such as titanium. The liquid taken out of the nickel plating bath is supplied between the anode and the cathode of the electrolytic cell at a flow rate of preferably 10 to 40 cm / sec, particularly 20 to 40 cm / sec. By selecting this flow rate, even when nickel is deposited on the cathode, nickel is uniformly deposited on the cathode, and such uniformly deposited nickel is easily removed, which is preferable.

上記電解槽は、必要により陽極及び陰極間を隔膜で仕
切ることができる。隔膜は、ニッケルイオンの透過を阻
止するため好ましくは陰イオン交換膜が使用できる。し
かし場合により、未溶解の金属ニッケルの微粒子の透過
を防止するため好ましくは60メッシュ以上より好ましく
は100メッシュ以上の織布又は不織布が使用できる。織
布又は不織布の材料としては、金属炭素質、合成樹脂、
金属などの導電性のものの使用が好ましい。一方陰イオ
ン交換膜としては、強塩基性又は弱塩基性でイオン交換
容量0.2〜4ミリ当量/g乾燥樹脂、厚み20〜1000μのも
のの使用が好ましい。
In the electrolytic cell, the anode and the cathode can be partitioned by a diaphragm as needed. As the diaphragm, an anion exchange membrane can be preferably used in order to prevent permeation of nickel ions. However, in some cases, a woven or nonwoven fabric of preferably 60 mesh or more, more preferably 100 mesh or more can be used to prevent the permeation of undissolved metallic nickel fine particles. As the material of the woven or non-woven fabric, carbonaceous metal, synthetic resin,
It is preferable to use a conductive material such as a metal. On the other hand, it is preferable to use a strong or weakly basic anion exchange membrane having an ion exchange capacity of 0.2 to 4 meq / g dry resin and a thickness of 20 to 1000 μm.

かくして電解槽にはニッケルメッキ浴液が供給され、
1〜30A/dm2、特には2〜10A/dm2にて通電することによ
り、陽極の金属ニッケルは、電気的に溶解され、供給し
たニッケルメッキ浴のpH即ち酸濃度を変えることなく、
浴中の金属ニッケルの濃度は上昇する。
Thus, a nickel plating bath solution is supplied to the electrolytic cell,
1~30A / dm 2, in particular by supplying current at 2~10A / dm 2, anode metallic nickel is electrically dissolved, without changing the pH That acid concentration of the feed nickel plating bath,
The concentration of metallic nickel in the bath increases.

しかしこのようにして長時間運転を継続した場合本発
明者の知見によると、陽極の金属ニッケルが不動態化現
象を起こし、槽電圧が急激に上昇する場合があることが
判明した。
However, when the operation is continued for a long time in this way, according to the knowledge of the present inventors, it has been found that the metal nickel of the anode may cause a passivation phenomenon, and the cell voltage may increase rapidly.

上記現象が生じた場合、本発明者の研究によると導電
方向を逆にせしめ、それまでの陰極を陽極にし、陽極を
陰極にせしめて通電した場合には、極めて有効的に上記
現象が解消しうることが判明した。かかる逆通電によ
り、陽極の金属ニッケルの不動態化は解消する。かかる
逆通電は、逆通電時間/正通電時間が、好ましくは0.1
〜1%、特には0.1〜10%にするのが好ましい。
When the above phenomenon occurs, according to the research of the present inventors, the conduction direction is reversed, the previous cathode is used as an anode, and when the anode is used as a cathode and energized, the above phenomenon is extremely effectively solved. Turned out to be possible. By such a reverse energization, the passivation of the metallic nickel at the anode is eliminated. Such reverse energization is performed by setting the reverse energization time / positive energization time to preferably 0.1
11%, particularly preferably 0.1-10%.

このようにして、本発明によれば、ニッケルメッキ浴
からとり出したニッケル濃度の低下した液は、ニッケル
液のpHを変えることなしに極めて有効にニッケル濃度の
向上が行なわれ、ニッケル濃度が上昇した液はニッケル
メッキ浴に循環使用される。
In this manner, according to the present invention, the nickel-concentrated solution taken out of the nickel plating bath is extremely effectively improved without changing the pH of the nickel solution, and the nickel concentration is increased. The solution is circulated to a nickel plating bath.

[実施例] ニッケルメッキ浴からとり出したH2SO4 0.5N,NiSO4
2.5Nを含む溶液(pH=1.0)中に本発明に従って金属ニ
ッケルを電解溶解した。電解槽の陽極として、チタン製
バスケットに入れた粒状形状の亜鉛含有量0.4重量%の
金属ニッケル100gを使用し、陰極として、糸径3μ、布
密度0.075g/cc,厚み0.4mmの炭素繊維の織布をチタン板
に縫いつけ担持した電極(水素過電圧40mV)を用いた。
[Example] H 2 SO 4 0.5N, NiSO 4 taken out from a nickel plating bath
According to the present invention, nickel metal was electrolytically dissolved in a solution containing 2.5N (pH = 1.0). As the anode of the electrolytic cell, 100 g of granular nickel-containing metal nickel (0.4 g) in a titanium basket was used. An electrode (hydrogen overvoltage 40 mV) in which a woven fabric was sewn and supported on a titanium plate was used.

上記メッキ浴液は、電解槽に対し、20cm/secで供給さ
れ、電流密度(陰極板上)15A/dm2にて通電した。その
結果、陽極でのニッケル溶解は、3.2g/時間の速度で溶
解した、その電流効率はほぼ100%であり、5時間運転
したところ陰極へのニッケルの析出は認められなかっ
た。
The plating bath solution was supplied to the electrolytic cell at a rate of 20 cm / sec, and electricity was supplied at a current density (on the cathode plate) of 15 A / dm 2 . As a result, the dissolution of nickel at the anode was at a rate of 3.2 g / hour, the current efficiency was almost 100%, and after operating for 5 hours, no deposition of nickel on the cathode was observed.

比較例1 実施例1と同様の方法で亜鉛を含有しない純ニッケル
粒子を溶解用として用い直流電流を流した。
Comparative Example 1 In the same manner as in Example 1, a direct current was applied using pure nickel particles containing no zinc for melting.

その結果、電流密度10A/dm2以上ではニッケルが不動
態化し、酸素ガスが発生し、ニッケルが溶解しなくなっ
た。
As a result, at a current density of 10 A / dm 2 or more, nickel was passivated, oxygen gas was generated, and nickel was not dissolved.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陽極である亜鉛含有金属ニッケルと陰極を
有する電解槽に、ニッケル金属が消耗したニッケルメッ
キ浴液を供給し、電流密度1〜30A/dm2にて通電し、ニ
ッケル濃度を上昇させることを特徴とするニッケルメッ
キ浴用ニッケル金属の電解溶解方法。
1. A nickel plating bath solution depleted of nickel metal is supplied to an electrolytic cell having nickel-containing nickel metal as an anode and a cathode, and a current is supplied at a current density of 1 to 30 A / dm 2 to increase the nickel concentration. A method for electrolytically dissolving nickel metal for a nickel plating bath.
【請求項2】消耗したニッケルメッキ浴液が、酸濃度1
〜100g/1かつニッケル濃度1〜100g/1かつpH0〜2であ
る請求項1記載の方法。
2. The exhausted nickel plating bath has an acid concentration of 1
2. The method according to claim 1, wherein the concentration is 1 to 100 g / 1 and the nickel concentration is 1 to 100 g / 1 and the pH is 0 to 2.
【請求項3】陽極である亜鉛含有金属ニッケルが不動態
化現象を起こした場合、それまでの陰極を陽極にし、そ
れまでの陽極を陰極にし、かつそれまでの通電方向と逆
方向に通電せしめることにより不動態化現象を解消する
請求項1または2記載の方法。
3. When the zinc-containing metallic nickel as the anode causes a passivation phenomenon, the previous cathode is used as the anode, the previous anode is used as the cathode, and the current is supplied in the opposite direction to the current application direction. 3. The method according to claim 1, wherein the passivation phenomenon is eliminated.
JP20750590A 1990-08-07 1990-08-07 Method for electrolytic dissolution of nickel metal for nickel plating bath Expired - Fee Related JP2881997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20750590A JP2881997B2 (en) 1990-08-07 1990-08-07 Method for electrolytic dissolution of nickel metal for nickel plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20750590A JP2881997B2 (en) 1990-08-07 1990-08-07 Method for electrolytic dissolution of nickel metal for nickel plating bath

Publications (2)

Publication Number Publication Date
JPH0499198A JPH0499198A (en) 1992-03-31
JP2881997B2 true JP2881997B2 (en) 1999-04-12

Family

ID=16540834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20750590A Expired - Fee Related JP2881997B2 (en) 1990-08-07 1990-08-07 Method for electrolytic dissolution of nickel metal for nickel plating bath

Country Status (1)

Country Link
JP (1) JP2881997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393499B2 (en) 2003-02-21 2008-07-01 Mitsubishi Materials Corporation Ni alloy anode material for Ni electroplating

Also Published As

Publication number Publication date
JPH0499198A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
JP6956144B2 (en) Water electrolysis composite electrode integrated separation plate and water electrolysis stack
CN108172850A (en) A kind of hydrogen-precipitating electrode and its preparation and application
JPS62501219A (en) Methods of manufacturing electrodes and their use in electrochemical processes
JPS59166689A (en) Cathode for electrolytic production of hydrogen
JPH04268099A (en) Method and device for replenishing metal in aqueous electrolytic solution
CN1965107A (en) Method for producing peroxodisulfates in aqueous solution
US5494560A (en) Low-hydrogen overvoltage cathode having activated carbon particles supporting platinum, rhodium, indium, or platinum in a nickel layer formed on a substrate
Anani et al. Dispersion deposition of metal—Particle composites and the evaluation of dispersion deposited nickel—Lanthanum nickelate electrocatalyst for hydrogen evolution
JP2881997B2 (en) Method for electrolytic dissolution of nickel metal for nickel plating bath
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
Chen et al. A study of the current efficiency decrease accompanying short pulse time for pulse plating
JP4593038B2 (en) Method for producing cobalt sulfate solution
JPS6047911B2 (en) Manufacturing method of cathode for hydrogen generation
JPH0432502B2 (en)
US3400056A (en) Electrolytic process for preparing electrochemically active cadmium
JP2520674B2 (en) Method and device for recovering metal supported on carrier
JPH06212471A (en) Method for activating cathode with catalyst
Campbell et al. The electrochemical recovery of metals from effluent and process streams
EP0226291A1 (en) Method for extending service life of a hydrogen-evolution electrode
JPH0413900A (en) Method for electrolytic dissolution of nickel metal for nickel plating bath
JPH06158397A (en) Method for electroplating metal
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP3236682B2 (en) Electrolytic cathode and method for producing the same
JPH1136099A (en) Plating device and plating method thereby
JP2964440B2 (en) Treatment method of iron chloride solution containing nickel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080205

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090205

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees