JP2880041B2 - Edge detection method - Google Patents

Edge detection method

Info

Publication number
JP2880041B2
JP2880041B2 JP10028493A JP10028493A JP2880041B2 JP 2880041 B2 JP2880041 B2 JP 2880041B2 JP 10028493 A JP10028493 A JP 10028493A JP 10028493 A JP10028493 A JP 10028493A JP 2880041 B2 JP2880041 B2 JP 2880041B2
Authority
JP
Japan
Prior art keywords
edge
difference
sum
coordinates
luminance signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10028493A
Other languages
Japanese (ja)
Other versions
JPH06288712A (en
Inventor
秀二 渡
治仁 尾篭
勉 大木
文則 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10028493A priority Critical patent/JP2880041B2/en
Publication of JPH06288712A publication Critical patent/JPH06288712A/en
Application granted granted Critical
Publication of JP2880041B2 publication Critical patent/JP2880041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、画像入力装置にて撮影
された1次元画像から対象物のエッジを検出するための
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an edge of an object from a one-dimensional image captured by an image input device.

【0002】[0002]

【従来の技術】従来、撮影画像から対象物の形状、寸法
等を計測するべく、画像入力装置として1次元CCDカ
メラを用い、これを揺動させて連続的に撮影を行い、画
像処理する装置が例えば特開昭61−209305号公
報に開示されている。
2. Description of the Related Art Conventionally, a one-dimensional CCD camera is used as an image input device in order to measure the shape and dimensions of a target object from a photographed image, and the image is continuously processed by swinging the camera to perform image processing. Is disclosed, for example, in JP-A-61-209305.

【0003】このような装置にあっては、まず撮影画像
の明るさから対象物のエッジを検出して形状を認識する
と共にエッジ間の距離を演算して各寸法を求めるように
していた。例えば、加熱炉から粗圧延工程に向かう赤熱
状態の鋼材を対象物とした場合、画像処理装置に取り込
まれた赤外線映像データの隣接する画素間の出力(輝度
レベル)の差分を初期座標から最終座標まで演算し、こ
の差分が最大となる点を鋼材のスタートエッジとし、最
小となる点(負の値)をエンドエッジとしていた。
In such an apparatus, first, an edge of an object is detected from the brightness of a photographed image to recognize a shape, and a distance between edges is calculated to obtain each dimension. For example, when a target is a red-hot steel material going from a heating furnace to a rough rolling step, a difference in output (brightness level) between adjacent pixels of infrared image data taken into the image processing device is calculated from initial coordinates to final coordinates. The point at which this difference is maximum is defined as the start edge of the steel material, and the point at which the difference is minimum (negative value) is defined as the end edge.

【0004】しかしながら、鋼材端部の温度が低い場
合、鋼材とその周囲との温度差が小さく、エッジ部分の
発光輝度レベルの立ち上がりが緩やかになることからエ
ッジ位置の特定が難しいと云う問題があった。特に、近
年のCCDカメラの発達により取り込み画像の分解能が
高まっていることから、互いに隣接する前後1つづつの
画素の輝度レベルの差を見るだけではエッジ位置の特定
は一層困難であった。
However, when the temperature at the end of the steel material is low, the temperature difference between the steel material and its surroundings is small, and the rise of the light emission luminance level at the edge portion becomes slow, so that it is difficult to specify the edge position. Was. In particular, since the resolution of a captured image has been increased due to the recent development of CCD cameras, it has been more difficult to specify the edge position only by looking at the difference in luminance level between adjacent pixels one after the other.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような従
来技術の問題点に鑑みなされたものであり、その主な目
的は、対象物のエッジとその周囲との輝度レベルの差が
小さい場合でも対象物のエッジ位置を容易に特定するこ
とが可能なエッジ検出方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and its main object is to reduce the difference in luminance level between the edge of an object and its surroundings. However, an object of the present invention is to provide an edge detection method capable of easily specifying an edge position of an object.

【0006】[0006]

【課題を解決するための手段】このような目的は、本発
明によれば、対象物を含む1次元画像から前記対象物の
エッジを検出する方法であって、走査方向に沿う各点の
前後所定幅の輝度信号レベルの和または積分値を求める
と共に前記前側所定幅の輝度信号レベルの和または積分
値と前記後側所定幅の輝度信号レベルの和または積分値
との差を求め、前記差が最大となる点を前記対象物のエ
ッジ位置とすることを特徴とするエッジ検出方法を提供
することにより達成される。
According to the present invention, there is provided a method for detecting an edge of an object from a one-dimensional image including the object, the method comprising the steps of: Calculating a sum or an integral value of the luminance signal levels of the predetermined width and obtaining a difference between the sum or the integral value of the luminance signal levels of the front predetermined width and the sum or the integral value of the luminance signal levels of the rear predetermined width; This is achieved by providing an edge detection method characterized in that a point at which is maximum is defined as an edge position of the object.

【0007】[0007]

【作用】このように、互いに隣接する画素間の単純な差
分ではなく、或る画素の前後の所定幅(n個の画素)の
輝度信号レベルの和を求めた後、前側の輝度信号レベル
の和と後側の輝度信号レベルの和との差を求め、その値
が最大となる点を対象物のエッジ位置とすることでエッ
ジの特定が容易になる。
As described above, instead of a simple difference between adjacent pixels, a sum of luminance signal levels of a predetermined width (n pixels) before and after a certain pixel is obtained, and then the sum of luminance signal levels on the front side is calculated. The difference between the sum and the sum of the luminance signal levels on the rear side is obtained, and the point having the maximum value is determined as the edge position of the object, whereby the edge can be easily specified.

【0008】このとき、対象物の輝度レベルとその周囲
の輝度レベルとの差が大きければnは小さくて良く、上
記各輝度レベルの差が大きければその差に応じてnを大
きくすることにより、処理速度が不必要に遅くなること
もない。
At this time, if the difference between the luminance level of the object and the surrounding luminance level is large, n may be small, and if the difference between the above-mentioned luminance levels is large, n is increased in accordance with the difference. The processing speed is not unnecessarily reduced.

【0009】[0009]

【実施例】以下、本発明の好適実施例を添付の図面につ
いて詳しく説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a preferred embodiment of the present invention.

【0010】図1は、本発明が適用された画像入力装置
及び画像処理装置の構成を示す斜視図である。図1に示
される搬送コンベア1上を加熱炉から粗圧延工程に向か
う赤熱状態の厚板スラブ2が搬送されるようになってお
り、この厚板スラブ2の寸法を求めるために、厚板スラ
ブ2を所定位置にて停止し、搬送ロール1の上方にて所
定の高さに配置された画像入力装置としてのカメラ装置
3により撮影し、その厚板スラブ2の画像信号を画像処
理装置4に送り、該画像処理装置4にて画像処理を行う
ようにしている。
FIG. 1 is a perspective view showing the configuration of an image input apparatus and an image processing apparatus to which the present invention is applied. A thick red slab 2 is transported from a heating furnace to a rough rolling step on a conveyor 1 shown in FIG. 1. In order to determine the dimensions of the thick slab 2, 2 is stopped at a predetermined position, photographed by a camera device 3 as an image input device disposed at a predetermined height above the transport roll 1, and an image signal of the thick slab 2 is transmitted to an image processing device 4. Then, the image processing device 4 performs image processing.

【0011】カメラ装置3は、厚板スラブ2からの熱の
影響を回避するべく、厚板スラブ2の上方に設けられた
計測室内にて例えば厚板スラブ2から21m離れた高さ
に配置されており、図示されない架台により支持された
駆動モータ5と、その駆動軸に固着された揺動板6に一
体的に取り付けられた光学系部材としてのカメラ本体7
及びレンズユニット8とからなる。カメラ本体7の検出
部には図の実線で示される範囲を計測可能な1次元CC
Dが設けられており、レンズユニット8には、長焦点
(例えば焦点距離170mm)にて初期調節を行う際に
その調節を容易に行い得るように例えばズームレンズが
用いられている。実際には4096画素の1次元CCD
を用いて、分解能が1画素当たり1.0mmとなるよう
に設定されている。
The camera device 3 is disposed, for example, at a height of 21 m away from the thick slab 2 in a measurement room provided above the thick slab 2 in order to avoid the influence of heat from the thick slab 2. And a camera body 7 as an optical system member integrally attached to a drive motor 5 supported by a frame (not shown) and a swing plate 6 fixed to the drive shaft.
And a lens unit 8. One-dimensional CC that can measure the range indicated by the solid line in the figure
D is provided, and a zoom lens, for example, is used as the lens unit 8 so that the initial adjustment can be easily performed at a long focus (for example, a focal length of 170 mm). Actually, a one-dimensional CCD with 4096 pixels
Is set so that the resolution is 1.0 mm per pixel.

【0012】そして、駆動モータ5により揺動盤6を回
動することにより、カメラ本体7及びレンズユニット8
が図の矢印Aに示される向きに揺動し、その揺動方向に
所定のピッチ毎に厚板スラブ2の所定方向の画像を入力
する。このとき、撮影画界は想像線のようになる。ま
た、図示は省略するが、図1に示すスキャニングの方向
と直交する方向の長さを計測するべく、1次元CCDの
計測方向及び揺動方向をそれぞれ図示したものとは直交
させたカメラ装置も設けられている。
When the swinging plate 6 is rotated by the drive motor 5, the camera body 7 and the lens unit 8 are rotated.
Swings in the direction indicated by arrow A in the figure, and inputs an image of the thick plate slab 2 in a predetermined direction at a predetermined pitch in the direction of the swing. At this time, the photographic field looks like an imaginary line. Although not shown, a camera device in which the measurement direction and the swing direction of the one-dimensional CCD are orthogonal to those illustrated in order to measure the length in the direction orthogonal to the scanning direction illustrated in FIG. Is provided.

【0013】尚、実際には分解能を確保するために複数
台の1次元CCDを組み合わせて使用し、各CCDにて
上記領域を分割してスキャニングしても良い。
In practice, a plurality of one-dimensional CCDs may be used in combination to secure the resolution, and the above-mentioned area may be divided and scanned by each CCD.

【0014】次に、厚板スラブ2のエッジ位置の検出処
理の手順を説明する。
Next, the procedure for detecting the edge position of the thick plate slab 2 will be described.

【0015】本実施例では、x方向の画素数を例えば4
096個ずつとし、座標(x,y)を(0,0)−(4
095,499)として説明する(図2)。処理の概要
としては、図1及び図2に於けるy方向座標を固定して
座標(0,Y)から座標(4095,Y)まで、或る座
標(X,Y)について、その座標(X,Y)を含むx方
向前側n個(所定幅)の座標の輝度レベルの和PF
(X,Y)を求め、続いてその座標(X,Y)を含むx
方向後側n個の座標の輝度レベルの和PR(X,Y)を
求め、これらPF(X,Y)とPR(X,Y)との差D
(X,Y)を求める。同様な処理を座標(0,Y)から
座標(4095,Y)まで行い、差D(X,Y)の絶対
値のうちの極大値を各々y座標=Yに於ける厚板スラブ
2のエッジと判断する。尚、実際には座標(0,Y)か
ら座標(4095,Y)まで全て上記処理を行う必要は
ない。
In this embodiment, the number of pixels in the x direction is set to, for example, four.
096, and the coordinates (x, y) are (0, 0)-(4
095, 499) (FIG. 2). As an outline of the processing, the coordinates (X, Y) from coordinates (0, Y) to coordinates (4095, Y) are fixed and the coordinates (X , Y), the sum PF of the brightness levels of the n (predetermined width) coordinates on the front side in the x direction including
(X, Y) is obtained, and then x including its coordinates (X, Y)
The sum PR (X, Y) of the luminance levels of the n coordinates on the rear side in the direction is obtained, and the difference D between these PF (X, Y) and PR (X, Y) is obtained.
(X, Y) is obtained. A similar process is performed from the coordinates (0, Y) to the coordinates (4095, Y), and the local maximum value among the absolute values of the difference D (X, Y) is set to the edge of the thick plate slab 2 at the y coordinate = Y. Judge. Note that it is not actually necessary to perform the above-described processing from the coordinates (0, Y) to the coordinates (4095, Y).

【0016】以下に、本実施例に於ける処理手順を図3
のフローチャート沿って説明する。まず画像を画像処理
装置4に取り込んだら(ステップ1)、まず厚板スラブ
2の平均輝度レベルに応じて後記する演算画素数nを決
定する(ステップ2)。
The processing procedure in this embodiment will be described below with reference to FIG.
Will be described along the flowchart of FIG. First, when an image is taken into the image processing device 4 (step 1), first, the number n of calculation pixels described later is determined according to the average luminance level of the thick slab 2 (step 2).

【0017】ここで、本実施例では鋼材の平均輝度レベ
ルが256階長の70以上(800℃以上)である場合
には演算画素数nを4、鋼材の平均輝度レベルが70未
満(800℃未満)である場合にはnを10としてい
る。しかしながら、実際には鋼材の色や環境に応じて演
算画素数nの値を変えて良いことは云うまでもない。ま
た、CCDによるスキャニングを行う場合、その出力用
アンプを複数用いることが多いが、各アンプに個体差が
あることからその出力値が変化することとなる。例えば
アンプを2つ用いる場合、奇数番目の画素と偶数番目の
画素とで使用するアンプを分けており、即ち奇数番目の
画素と偶数番目の画素とで出力値が変化することとな
る。そこで、演算画素数nをアンプの数若しくはその倍
数とすることでアンプによる検出誤差を排除することが
でき、より正確な検出を行うことができる。
Here, in this embodiment, when the average luminance level of the steel material is 70 or more (800 ° C. or more) of 256 stories, the number n of operation pixels is 4, and the average luminance level of the steel material is less than 70 (800 ° C.). ), N is set to 10. However, it goes without saying that the value of the number n of operation pixels may actually be changed according to the color and environment of the steel material. In the case of performing scanning by a CCD, a plurality of output amplifiers are often used, but the output value changes because each amplifier has an individual difference. For example, when two amplifiers are used, the amplifiers used for the odd-numbered pixels and the even-numbered pixels are separated, that is, the output values change between the odd-numbered pixels and the even-numbered pixels. Therefore, by setting the number n of operation pixels to the number of amplifiers or a multiple thereof, a detection error due to the amplifier can be eliminated, and more accurate detection can be performed.

【0018】次に、変数Y=1として(ステップ3)、
座標(0,Y)からXの値をプラス方向にシフトさせ
て、上記PF(X,Y)、PR(X,Y)、D(X,
Y)を行って一方のエッジ(スタートエッジ)を求め
(ステップ4)、次に(4095,Y)からXの値をマ
イナス方向にシフトさせて、上記PF(X,Y)、PR
(X,Y)、D(X,Y)を求める処理を行って他方の
エッジ(エンドエッジ)を求める。このとき、スタート
エッジ、エンドエッジはD(X,Y)が最大となる点で
ある。
Next, assuming that the variable Y = 1 (step 3),
By shifting the value of X from the coordinates (0, Y) in the plus direction, the PF (X, Y), PR (X, Y), D (X,
Y) to obtain one edge (start edge) (step 4), and then shift the value of X from (4095, Y) in the negative direction to obtain the PF (X, Y), PR
The processing for obtaining (X, Y) and D (X, Y) is performed to obtain the other edge (end edge). At this time, the start edge and the end edge are points where D (X, Y) becomes maximum.

【0019】図4に示すように、最大となるD(X,
Y)からシフト方向の200画素先で演算を打ち切るこ
とで処理速度が向上する。この200画素は変更可能な
設定値である。これを式で示すと、
As shown in FIG. 4, D (X,
The processing speed is improved by terminating the operation 200 pixels ahead in the shift direction from Y). These 200 pixels are set values that can be changed. This can be expressed by an equation:

【0020】[0020]

【数1】 (Equation 1)

【0021】の演算を座標(0,Y)から座標(409
5,Y)方向へXの値をプラス方向にシフトさせて行
い、その中のD(X,Y)の最大値から、一方のエッジ
を求め、
The calculation of (409) is performed from coordinates (0, Y) to coordinates (409).
The value of X is shifted in the plus direction in the (5, Y) direction, and one edge is obtained from the maximum value of D (X, Y) therein.

【0022】[0022]

【数2】 (Equation 2)

【0023】の演算を座標(4095,Y)から座標
(0,Y)方向へXの値をマイナス方向にシフトさせて
行い、その中のD(X,Y)の最大値から、他方のエッ
ジを求める。次に、y座標を1つシフトさせて(ステッ
プ6)、座標(0,Y+1)から座標(4095,Y+
1)まで同様な処理を行う。このようにして、y座標=
0から499まで上記処理を繰り返し(ステップ4〜ス
テップ7)、y方向に沿う厚板スラブ2のエッジを求め
る。
Is calculated by shifting the value of X in the minus direction from the coordinates (4095, Y) to the coordinates (0, Y), and calculating the other edge from the maximum value of D (X, Y). Ask for. Next, the y coordinate is shifted by one (step 6), and the coordinate (0, Y + 1) is shifted to the coordinate (4095, Y +
The same processing is performed up to 1). Thus, the y coordinate =
The above processing is repeated from 0 to 499 (steps 4 to 7), and the edge of the thick slab 2 along the y direction is obtained.

【0024】y方向に沿う厚板スラブ2のエッジが全て
求まったらX座標とy座標とを交換して、X方向に沿う
厚板スラブ2のエッジ全て求め(ステップ8〜ステップ
12)、ステップ13、14にて厚板スラブ2のX方向
及びy方向長さを演算し、その結果を表示し(ステップ
15)、記憶して処理を終了する。
When all edges of the thick plate slab 2 along the y direction are obtained, the X coordinate and the y coordinate are exchanged, and all edges of the thick plate slab 2 along the X direction are obtained (steps 8 to 12), and step 13 , 14 calculate the lengths of the thick plate slab 2 in the X and y directions, display the results (step 15), store them, and end the process.

【0025】尚、本実施例では画像入力装置にCCDカ
メラを用い、デジタル処理を行ったが、通常のアナログ
カメラを用い、n個の画素を所定幅と置き換えて輝度信
号を積算するような構成としても良いことは云うまでも
ない。
In this embodiment, digital processing is performed by using a CCD camera as an image input device. However, a normal analog camera is used to replace n pixels with a predetermined width and integrate luminance signals. Needless to say, this is also good.

【0026】[0026]

【発明の効果】以上説明したように本発明によるエッジ
検出方法によれば、互いに隣接する画素間の単純な差分
ではなく、互いに隣接する画素間の単純な差分ではな
く、或る画素の前後の所定幅(n個の画素)の輝度信号
レベルの和を求めた後、前側の輝度信号レベルの和と後
側の輝度信号レベルの和との差を求め、その値が最大と
なる点を対象物のエッジ位置とすることで、対象物のエ
ッジとその周囲との輝度信号レベルの差が小さい場合で
も対象物のエッジ位置を容易に、かつ確実に検出するこ
とができ、対象物の認識形状、各測定寸法などの信頼性
が向上する。
As described above, according to the edge detection method according to the present invention, not a simple difference between adjacent pixels but a simple difference between adjacent pixels, but a difference before and after a certain pixel. After calculating the sum of the luminance signal levels of a predetermined width (n pixels), the difference between the sum of the front luminance signal level and the sum of the rear luminance signal levels is calculated, and the point having the maximum value is determined. By setting the edge position of the object, the edge position of the object can be easily and reliably detected even when the difference between the luminance signal level of the edge of the object and its surroundings is small, and the recognition shape of the object And the reliability of each measured dimension is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用された画像入力装置及び画像処理
装置の構成を示す斜視図である。
FIG. 1 is a perspective view illustrating a configuration of an image input device and an image processing device to which the present invention has been applied.

【図2】図1の厚板スラブの平面図である。FIG. 2 is a plan view of the thick slab of FIG. 1;

【図3】図1の厚板スラブのエッジを検出する手順を示
すフローチャートである。
FIG. 3 is a flowchart showing a procedure for detecting an edge of the thick plate slab of FIG. 1;

【図4】演算結果を示す説明図である。FIG. 4 is an explanatory diagram showing calculation results.

【符号の説明】[Explanation of symbols]

1 搬送ロール 2 厚板スラブ 3 カメラ装置 4 画像処理装置 5 駆動モータ 6 揺動板 7 カメラ本体 8 レンズユニット DESCRIPTION OF SYMBOLS 1 Conveyance roll 2 Thick plate slab 3 Camera device 4 Image processing device 5 Drive motor 6 Rocking plate 7 Camera body 8 Lens unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 文則 北九州市戸畑区大字中原46−59 新日本 製鐵株式会社 機械・プラント事業部内 (56)参考文献 特開 昭56−4003(JP,A) 特開 昭60−6806(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Fuminori Nakano 46-59, Nakahara, Tobata-ku, Kitakyushu Nippon Steel Corporation Machinery & Plant Division (56) References JP-A-56-4003 (JP, A) JP, A 60-6806 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 11/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対象物を含む1次元画像から前記対象
物のエッジを検出する方法であって、 走査方向に沿う各点の前後所定幅の輝度信号レベルの和
または積分値を求めると共に前記前側所定幅の輝度信号
レベルの和または積分値と前記後側所定幅の輝度信号レ
ベルの和または積分値との差を求め、前記差が最大とな
る点を前記対象物のエッジ位置とすることを特徴とする
エッジ検出方法。
1. A method for detecting an edge of an object from a one-dimensional image including the object, comprising: obtaining a sum or an integral value of luminance signal levels of a predetermined width before and after each point along a scanning direction; A difference between the sum or integral value of the luminance signal level of the predetermined width and the sum or integral value of the luminance signal level of the rear predetermined width is determined, and a point where the difference is maximum is set as an edge position of the object. Edge detection method to be featured.
【請求項2】 前記対象物の平均の輝度信号レベルに
応じて前記所定幅を変化させることを特徴とする請求項
1に記載のエッジ検出方法。
2. The edge detection method according to claim 1, wherein the predetermined width is changed according to an average luminance signal level of the object.
JP10028493A 1993-04-02 1993-04-02 Edge detection method Expired - Fee Related JP2880041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10028493A JP2880041B2 (en) 1993-04-02 1993-04-02 Edge detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10028493A JP2880041B2 (en) 1993-04-02 1993-04-02 Edge detection method

Publications (2)

Publication Number Publication Date
JPH06288712A JPH06288712A (en) 1994-10-18
JP2880041B2 true JP2880041B2 (en) 1999-04-05

Family

ID=14269899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10028493A Expired - Fee Related JP2880041B2 (en) 1993-04-02 1993-04-02 Edge detection method

Country Status (1)

Country Link
JP (1) JP2880041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5899678B2 (en) * 2011-06-28 2016-04-06 日産自動車株式会社 Road surface unevenness detection apparatus and road surface unevenness detection method

Also Published As

Publication number Publication date
JPH06288712A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
EP1343332B1 (en) Stereoscopic image characteristics examination system
US6023056A (en) Scene-based autofocus method
JP2000011157A (en) Image pickup device
JP2880041B2 (en) Edge detection method
JPH0745504A (en) Focusing position detecting method
JPS6114508A (en) Shape measuring instrument
JPH0969973A (en) Position adjusting method for solid-state image pickup element
JPH05187825A (en) Method and apparatus for measuring shape of steel bar of irregular shape
EP1676238B1 (en) A method for measuring dimensions by means of a digital camera
JPH1065940A (en) Image pickup device
JPH08285550A (en) Instrument for measuring-steel plate displacement
JP3548213B2 (en) Multipoint ranging device and camera
JP4435525B2 (en) Stereo image processing device
JPH06294616A (en) Edge position correcting method
RU2280838C2 (en) Method of contact-free measurement of objects having defocused borders onto image
JP3350706B2 (en) Sensitivity correction method
JPH05172535A (en) Peak-point detecting method and calibration method
JP3252574B2 (en) Image processing device
JPH03220515A (en) Focus position detection system
JPH08226805A (en) Method for focusing imaging device and non-contact measuring device utilizing the method
JPH07306038A (en) Distance measuring instrument
JPH10326348A (en) Appearance inspection device
JP3201902B2 (en) Target angle measuring device
JP2730682B2 (en) Image processing device
JP2900495B2 (en) Image reading method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119

LAPS Cancellation because of no payment of annual fees