JP2878391B2 - Air conditioner wind direction changing louver - Google Patents

Air conditioner wind direction changing louver

Info

Publication number
JP2878391B2
JP2878391B2 JP2130330A JP13033090A JP2878391B2 JP 2878391 B2 JP2878391 B2 JP 2878391B2 JP 2130330 A JP2130330 A JP 2130330A JP 13033090 A JP13033090 A JP 13033090A JP 2878391 B2 JP2878391 B2 JP 2878391B2
Authority
JP
Japan
Prior art keywords
coating
water
porous sintered
louver
wind direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2130330A
Other languages
Japanese (ja)
Other versions
JPH0428953A (en
Inventor
徳治 小川
正保 古里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP2130330A priority Critical patent/JP2878391B2/en
Publication of JPH0428953A publication Critical patent/JPH0428953A/en
Application granted granted Critical
Publication of JP2878391B2 publication Critical patent/JP2878391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

この発明は、冷房する空気調和機の空気吹出し口部の
風向変更ルーバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a louver for changing a wind direction of an air outlet of an air conditioner to be cooled.

【従来の技術】[Prior art]

空気調和機の空気吹出し口部は、低温空気を吹出させ
て冷房している時、風向変更ルーバも冷却されているた
め、そこに吹出し口部での空気の巻込みによる周囲の暖
かい湿った空気が触れると結露し、その露が付着し、つ
いにはこれが表面張力により水滴となって落下するとい
う問題がある。この問題を解決するため、例えば実公昭
59−14667号、或いは実開昭61−130824号等の公報に開
示されているような空気吹出し口部の表面に繊維を植毛
して結露水を保有し落下を防止することが提案されてい
る。
When the air outlet of the air conditioner is being cooled by blowing low-temperature air, the louvers that change the direction of the air are also cooled. When touched, there is a problem that dew forms and the dew adheres, and finally, the dew drops as water drops due to surface tension. To solve this problem, for example,
It has been proposed that fibers are implanted on the surface of an air outlet as disclosed in Japanese Unexamined Patent Publication No. 59-14667 or Japanese Utility Model Application Laid-Open No. 61-130824 to retain dew water and prevent falling. .

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、これらの繊維植毛法は、植毛部材にナ
イロン樹脂、アクリル樹脂、ポリエステル樹脂等の非常
に高価な短繊維を使用しなければならないこと、及び植
毛する場合、接着剤をスプレーや刷毛塗りで塗布した
り、熱可塑性樹脂をコーティングした後、その硬化前に
植毛部材を接着する必要があり、行程が繁雑で、特殊高
度な施行技術を必要とし、且つ植毛したルーバに埃が付
着しやすい等の問題点を有していた。
However, these fiber flocking methods require the use of very expensive short fibers such as nylon resin, acrylic resin, and polyester resin for the flocking member, and when flocking, apply an adhesive by spraying or brushing. After coating with a thermoplastic resin, it is necessary to adhere the flocked member before curing, which makes the process complicated, requires special advanced enforcement technology, and makes it easy for dust to adhere to the flocked louver. Had problems.

【問題点を解決するための手段】 本発明者らはかかる現状に鑑み、安価で容易にできる
結露防止の被覆方法を鋭意研究した結果、親水性樹脂を
用いて多孔質の焼結状被膜で被覆することによって目的
を達成できることを見出し、本発明を完成した。 即ちこの発明は、ルーバの表面を空孔率が8〜80%で
水滴吸収時間が300秒以下である親水性樹脂の多孔質焼
結状被膜で全面または一部を被覆したことを特徴とする
空気調和機の空気吹出し口部の風向変更ルーバを提供す
るものである。 この発明において、風向変更ルーバとは、空気調和機
本体の吹出し口部あるいは、ダクトを通じて取付けた低
温空気の吹出し口部に位置し、風向きを調整する上下風
向変更羽根のことをいう。 この発明で用いられる親水性樹脂の多孔質焼結状被膜
とは、連続空孔で表面が水に親和性のある構造を持ち、
多孔質の空孔の中に水を吸収し、また発散させる性能を
有する親水性樹脂被膜のことをいう。 用いられる親水性樹脂としては、ポリスチレン、ポリ
酢酸ビニル、ポリ塩化ビニル、ポリオレフィン、ポリメ
タクリル酸メチル、アクリロニトリル系樹脂であり、吸
水性能の低い樹脂は、別途、親水化処理を行って用い
る。好ましくは、例えば特公昭63−7211号公報に示され
るアクリロニトリル系樹脂やポリオレフィンである。こ
のうちポリオレフィンとしては、高密度ポリエチレン、
低密度ポリエチレン、直鎖低密度ポリエチレン、ポリプ
ロピレン、オレフィンと極性ビニルモノマーとの共重合
体、ポリオレフィンを不飽和カルボン酸またはこれの無
水物でグラフト変性処理したもの等、及びこれらを2種
以上組合わせたものの粉末状態のものを用い、これを親
水化して用いる。粉末状態にする原料としては、上記各
種ポリオレフィンの重合体やペレットの粉砕品が使用さ
れる。粉末の粒径は、多孔質焼結状被膜の空孔径を決め
る因子となるので重要であり、平均粒径が10〜1000μ、
好ましくは50〜700μ、特に好ましくは70〜350μの範囲
がよい。粒径が大きい場合は、多孔質焼結状被膜の空孔
径が大きくなり、平滑性に劣り外観が悪くなり、粒径が
小さい場合は、作業環境が悪くなり好ましくない。 親水化する方法としては、特開昭57−167330号公報に
記載されているポリオレフィン粉末をスルフォン化する
方法、特開平1−65142号公報、特開平1−242639号公
報に記載のポリオレフィン粉末にHLB価が1.5〜12である
多価アルコール・脂肪酸エステルまたはポリエーテルポ
リオールを配合する方法などが採用される。 親水性は、多孔質焼結状被膜表面に水滴を滴下した時
の吸収時間で表され、時間が短いほど親水性の性能が高
いことを示す。多孔質焼結状被膜表面に約0.3ccの水滴
を滴下し焼結状被膜表面内に吸収されるまでの時間(以
下、水滴吸収時間と称する)が300秒以下であることが
望ましい。好ましくは、240秒以下、更に好ましくは180
秒以下である。 この発明で親水性樹脂の多孔質焼結状被膜でルーバの
全面または一部を被覆する方法は、親水性樹脂粉末を用
い、公知の粉体塗装加工技術である流動浸漬法、静電
法、溶射法等により行うことができる。特に流動浸漬塗
装法は、複雑な形状にも容易に塗装が可能であり好まし
い被覆方法である。尚、親水性樹脂の多孔質焼結状被膜
でルーバの全面または一部を被覆したとき、被膜が該風
向変更ルーバに密着していることが肝要であり、そのた
め予め風向変更ルーバに熱可塑性樹脂をコーティング
し、その上に親水性樹脂の多孔質焼結状被膜で全面また
は一部被覆(いわゆる、2層コーティング)してもよ
い。 このような流動浸漬塗装法は、例えば金属製の風向変
更ルーバを予め親水性樹脂の融点より20℃以上、好まし
くは140〜400℃、更に好ましくは200〜350℃に加熱し
(前加熱)、これを流動槽中で流動している親水性樹脂
の粉末中に浸漬して粉末を付着させ、多孔質な焼結状被
膜を生成することができる。 この場合、金属製の風向変更ルーバの熱容量が十分で
あればこのまま冷却してもよいし、粉末が十分な多孔質
の焼結状被膜に至らない場合は、更に100〜350℃、好ま
しくは150〜300℃の雰囲気温度で後加熱を行うのがよ
い。 多孔質焼結状被膜の空孔径は、1〜500μ、好ましく
は5〜300μの範囲が推奨される。また、空孔率は8〜8
0%、好ましくは20〜70%で、多孔質焼結状被膜の厚み
は0.1〜5mm、好ましくは0.2〜3mmの範囲で使用される。
[Means for Solving the Problems] In view of the present situation, the present inventors have conducted intensive studies on a coating method for preventing dew condensation that can be inexpensively and easily. As a result, a porous sintered coating using a hydrophilic resin is obtained. It has been found that the object can be achieved by coating, and the present invention has been completed. That is, the present invention is characterized in that the surface of the louver is entirely or partially coated with a porous sintered coating of a hydrophilic resin having a porosity of 8 to 80% and a water droplet absorption time of 300 seconds or less. An object of the present invention is to provide a louver for changing a wind direction at an air outlet of an air conditioner. In the present invention, the wind direction changing louver is a vertical wind direction changing blade that is located at the outlet of the air conditioner body or at the outlet of the low-temperature air attached through a duct and adjusts the wind direction. The porous sintered coating of the hydrophilic resin used in the present invention has a structure in which the surface is continuous with pores and has an affinity for water,
It refers to a hydrophilic resin coating that has the ability to absorb and diffuse water into porous pores. Examples of the hydrophilic resin used include polystyrene, polyvinyl acetate, polyvinyl chloride, polyolefin, polymethyl methacrylate, and acrylonitrile-based resin. A resin having low water absorption performance is subjected to a separate hydrophilic treatment. Preferred are, for example, acrylonitrile resins and polyolefins disclosed in JP-B-63-7211. Of these, high-density polyethylene,
Low-density polyethylene, linear low-density polyethylene, polypropylene, copolymers of olefins and polar vinyl monomers, polyolefins graft-modified with unsaturated carboxylic acids or anhydrides, and combinations of two or more of these However, a powdered material is used, which is hydrophilized. As a raw material to be in a powder state, pulverized products of polymers and pellets of the above-mentioned various polyolefins are used. The particle size of the powder is important because it is a factor that determines the pore size of the porous sintered coating, and the average particle size is 10 to 1000 μ,
The range is preferably from 50 to 700 µ, and particularly preferably from 70 to 350 µ. When the particle size is large, the pore size of the porous sintered coating is large, the smoothness is poor, and the appearance is poor. When the particle size is small, the working environment is poor, which is not preferable. As a method for hydrophilizing, a method for sulfonating a polyolefin powder described in JP-A-57-167330, JP-A-1-65142, and HLB to a polyolefin powder described in JP-A-1-242639. A method of blending a polyhydric alcohol / fatty acid ester or polyether polyol having a value of 1.5 to 12 is employed. The hydrophilicity is represented by an absorption time when a water droplet is dropped on the surface of the porous sintered coating, and the shorter the time, the higher the hydrophilicity performance. It is desirable that the time required for a water droplet of about 0.3 cc to be dropped on the surface of the porous sintered coating and absorbed into the surface of the sintered coating (hereinafter referred to as a water droplet absorption time) is 300 seconds or less. Preferably not more than 240 seconds, more preferably 180
Seconds or less. In the present invention, the method of coating the entire surface or a part of the louver with the porous sintered coating of the hydrophilic resin uses a hydrophilic resin powder, and is a known powder coating processing technique such as a fluid immersion method, an electrostatic method, It can be performed by a thermal spraying method or the like. In particular, the fluid immersion coating method is a preferable coating method because it can easily coat a complicated shape. When the entire surface or a part of the louver is coated with the porous sintered coating of the hydrophilic resin, it is important that the coating is in close contact with the wind direction changing louver. And then entirely or partially covered with a porous sintered film of a hydrophilic resin (so-called two-layer coating). In such a flow dipping coating method, for example, a wind direction changing louver made of metal is previously heated to 20 ° C. or more, preferably 140 to 400 ° C., more preferably 200 to 350 ° C. from the melting point of the hydrophilic resin (preheating), This can be immersed in the powder of the hydrophilic resin flowing in the fluidized tank to adhere the powder, thereby producing a porous sintered coating. In this case, if the heat capacity of the metal wind direction changing louver is sufficient, it may be cooled as it is, or if the powder does not reach a sufficient porous sintered coating, it is further 100 to 350 ° C., preferably 150 ° C. Post-heating is preferably performed at an ambient temperature of up to 300 ° C. The pore diameter of the porous sintered coating is recommended to be in the range of 1 to 500 µ, preferably 5 to 300 µ. The porosity is 8 to 8
0%, preferably 20 to 70%, and the thickness of the porous sintered coating is used in the range of 0.1 to 5 mm, preferably 0.2 to 3 mm.

【実 施 例】【Example】

以下、本発明を実施例でもって具体的に説明する。 尚、本発明で言う空孔率、熱伝導率、保水量は下記の
方法によって求められる。 空孔率(%)=(ρ−ρ)×102×1/ρ 上記式に於いて ρ=親水性樹脂の密度 ρ=多孔質焼結状被膜の見掛け密度 熱伝導率(W/mk)は、京都電子工業(製)迅速熱伝導
率計QTM−D3型により測定。 保水量は、多孔質焼結状被膜を水中に浸漬し、取出し
た後1分間放置し余分な水を滴下して、水中に浸漬する
前後の重量を測定して求める。 保水量(g)= =(浸漬した後の重量)−(浸漬する前の重量) 実施例 1 低密度ポリエチレンのペレットを機械粉砕し、平均粒
径250μの粉末100重量部にヘキサグリセロールモノステ
アレート0.35重量部を高速ミキサーにて85℃に加温しつ
つ混合、親水化し、親水性ポリエチレン粉末を得た。こ
の粉末を流動槽中で流動させ、この中に310℃に加熱し
た厚さ1.6mm、大きさ50×1315mmのアルミニウム製風向
変更ルーバ(第1図に示すもの)を10秒間浸漬した後、
自然冷却し、全面を多孔質焼結状被膜で被覆した。被覆
した多孔質焼結状被膜は、厚さ0.8mm、水滴吸収時間3
秒、空孔率50%、熱伝導率0.89W/mk、保水量45gであっ
た。 この全面を多孔質焼結状被膜で被覆した風向変更ルー
バを、23℃で湿度80%の雰囲気に設置し、風向変更ルー
バの片面に5℃の冷却パイプを当て反対面の結露開始時
間、結露水の滴下を評価した結果、結露開示時間が30分
で結露水は多孔質焼結状被膜の空孔の中に吸収され水滴
の落下が認められなかった。 実施例 2 実施例1で用いたものと同一のアルミニウム製風向変
更ルーバに、予めポリエチレンの発泡塗装を流動浸漬塗
装法で実施し、ポリエチレンがまだ溶融状態のときに、
実施例1で用いた親水性ポリエチレン粉末の流動する流
動槽中に15秒間浸漬し、次いで180℃の加熱炉に3分間
入れた後、自然冷却し、2層コーティングで外面全面を
多孔質焼結状被膜で被覆した。発泡塗装被膜は、厚さ0.
8mmで、被覆した多孔質焼結状被膜は、厚さ0.4mm、水滴
吸収時間3秒、空孔率50%、熱伝導率0.31W/mk、保水量
25gであった。 この風向変更ルーバを23℃で湿度80%の雰囲気に設置
し、風向変更ルーバの片面に5℃の冷却パイプを当て反
対面の結露開始時間、結露水の滴下を評価した結果、結
露開始時間が45分で結露水は多孔質焼結状被膜の空孔の
中に吸収され水滴の落下が認められなかった。発泡塗装
被膜の上に多孔質焼結状被膜で被覆することにより被膜
の密着性が良く、熱伝導性が大幅に低下し結露しにくく
なっていることが確認された。 実施例 3 実施例2に於いて、2層コーティングで外面全面をコ
ーティングする代わりに、風向変更ルーバの一部(第4
図)を多孔質焼結状被膜で被覆した。被覆した多孔質焼
結状被膜は、厚さ0.4mmで、水滴吸収時間3秒、保水量1
0gのものであった。この風向変更ルーバを、実施例2と
同様に結露開始時間、結露水の滴下を評価した結果、発
泡塗装被膜上の結露開始時間が30分で、約1時間経過す
ると結露水が流れ結露水は多孔質焼結状被膜の空孔の中
に吸収され水滴の落下が防止され、水滴の落下が認めら
れなかった。 実施例 4 実施例1の親水性ポリエチレン粉末の代わりに、ポリ
プロピレンを粉砕し、平均粒径500μの粉末100重量部に
ソルビタンモノラウレート3重量部を高速ミキサーにて
90℃に加温しつつ混合、親水化して得た親水性ポリプロ
ピレン粉末を用い実施例1と同一条件で全面を多孔質焼
結状被膜で被覆した。被覆した多孔質焼結状被膜は、厚
さ0.6mm、水滴吸収時間2秒、空孔率40%、熱伝導率0.1
2W/mk、保水量38gであった。この風向変更ルーバを実施
例1と同様に結露開始時間、結露水の滴下を評価した結
果、結露開始時間が25分で結露水は多孔質焼結状被膜の
空孔の中に吸収され水滴の落下が認められなかった。 比較例 1 実施例1の親水性ポリエチレン粉末の代わりに、流動
浸漬塗装用粉末ポリエチレンを用いた以外、実施例1と
同一条件で加熱し、アルミニウム製風向変更ルーバを10
秒間浸漬した後、次いで180℃の加熱炉に3分間入れ、
自然冷却し、全面を平滑な被膜で被覆した。被膜は厚み
が0.8mmで、空孔率0%、熱伝導率3.5W/mkであった。 実施例1と同様に結露開始時間、結露水の滴下を評価
した結果、結露開始時間が3分で、結露水は被膜に吸収
されず、30分後には水滴となって落下が認められた。 比較例 2 実施例1で使用する低密度ポリエチレン粉末を、親水
化せずに使用し、実施例1と同一条件で全面を多孔質焼
結状被膜で被覆した。被覆した多孔質焼結状被膜は、厚
さ0.8mm、空孔率50%、熱伝導率0.89W/mk、水滴吸収時
間は300秒以上で保水量も0gであった。実施例1と同様
に結露開始時間、結露水の滴下を評価した結果、結露開
始時間が15分で、結露水は被膜に吸収されず、60分後に
は水滴となって落下が認められた。
Hereinafter, the present invention will be described specifically with reference to Examples. The porosity, thermal conductivity and water retention referred to in the present invention can be determined by the following methods. Porosity (%) = (ρ 0 −ρ 1 ) × 10 2 × 1 / ρ 0 In the above formula, ρ 0 = density of hydrophilic resin ρ 1 = apparent density of porous sintered coating Thermal conductivity (W / mk) is measured with Kyoto Electronics Manufacturing Co., Ltd. rapid thermal conductivity meter QTM-D3. The amount of water retention is determined by immersing the porous sintered coating in water, taking it out, leaving it to stand for 1 minute, dropping excess water, and measuring the weight before and after immersion in water. Water retention (g) = = (weight after immersion)-(weight before immersion) Example 1 A low-density polyethylene pellet was mechanically pulverized, and hexaglycerol monostearate was added to 100 parts by weight of a powder having an average particle diameter of 250μ. 0.35 parts by weight was mixed and hydrophilized while heating to 85 ° C. with a high-speed mixer to obtain a hydrophilic polyethylene powder. The powder was fluidized in a fluidized vessel, and a 1.6 mm thick, 50 × 1315 mm aluminum wind direction changing louver (shown in FIG. 1) heated to 310 ° C. was immersed in the fluidized vessel for 10 seconds.
After cooling naturally, the entire surface was covered with a porous sintered coating. The coated porous sintered coating has a thickness of 0.8 mm and a water droplet absorption time of 3
Seconds, porosity was 50%, thermal conductivity was 0.89 W / mk, and water retention was 45 g. A wind direction changing louver whose entire surface is covered with a porous sintered coating is placed in an atmosphere at 23 ° C and a humidity of 80%, and a cooling pipe of 5 ° C is applied to one side of the wind direction changing louver, and the dew condensation start time and the dew condensation on the other side are changed. As a result of evaluating the dripping of water, the dew condensation disclosure time was 30 minutes, and the dew water was absorbed into the pores of the porous sintered coating, and no drop of water droplets was observed. Example 2 The same aluminum wind direction changing louver as used in Example 1 was previously subjected to a foam coating of polyethylene by a fluid immersion coating method, and when the polyethylene was still in a molten state,
It was immersed for 15 seconds in a flowing vessel of the hydrophilic polyethylene powder used in Example 1 and then placed in a heating furnace at 180 ° C. for 3 minutes, then cooled naturally, and the entire outer surface was porous sintered by two-layer coating. Covered with a film-like coating. The foam coating is 0.
8mm, coated porous sintered coating is 0.4mm thick, water absorption time 3sec, porosity 50%, thermal conductivity 0.31W / mk, water retention
It was 25 g. This wind direction changing louver was installed in an atmosphere of 23% and humidity of 80%, and a cooling pipe of 5 ° C was applied to one side of the wind direction changing louver to evaluate the dew condensation start time and dew condensation water dripping on the other side. After 45 minutes, the dew water was absorbed into the pores of the porous sintered coating and no drop of water droplets was observed. It was confirmed that by coating the foamed coating with a porous sintered coating, the adhesion of the coating was good, the thermal conductivity was significantly reduced, and the dew condensation was hard to occur. Example 3 In Example 2, instead of coating the entire outer surface with a two-layer coating, a part of the louver (4th
Figure) was coated with a porous sintered coating. The coated porous sintered coating is 0.4mm thick, water absorption time 3 seconds, water retention 1
It was 0 g. This wind direction changing louver was evaluated for dew condensation start time and dew condensation water dripping in the same manner as in Example 2. As a result, the dew condensation start time on the foam coating film was 30 minutes. The water droplets were absorbed into the pores of the porous sintered coating to prevent the water droplets from dropping, and no water droplets were dropped. Example 4 Instead of the hydrophilic polyethylene powder of Example 1, polypropylene was pulverized, and 3 parts by weight of sorbitan monolaurate was added to 100 parts by weight of a powder having an average particle diameter of 500 μ with a high-speed mixer.
Using a hydrophilic polypropylene powder obtained by mixing and hydrophilizing while heating to 90 ° C., the entire surface was coated with a porous sintered coating under the same conditions as in Example 1. The coated porous sintered coating has a thickness of 0.6 mm, a water droplet absorption time of 2 seconds, a porosity of 40%, and a thermal conductivity of 0.1.
2W / mk, water retention 38g. This wind direction changing louver was evaluated for dew condensation start time and dew drop in the same manner as in Example 1. As a result, the dew start time was 25 minutes and the dew water was absorbed into the pores of the porous sintered coating and the No fall was observed. Comparative Example 1 An aluminum wind direction changing louver was heated under the same conditions as in Example 1 except that the hydrophilic polyethylene powder of Example 1 was replaced with powdered polyethylene for fluidized immersion coating.
After immersion for 2 seconds, then put in a heating furnace at 180 ° C for 3 minutes,
It cooled naturally and covered the whole surface with the smooth film. The coating had a thickness of 0.8 mm, a porosity of 0%, and a thermal conductivity of 3.5 W / mk. As a result of evaluating dew condensation start time and dew dropping water in the same manner as in Example 1, dew condensation start time was 3 minutes, dew water was not absorbed by the coating film, and after 30 minutes, water drops were observed as drops. Comparative Example 2 The low-density polyethylene powder used in Example 1 was used without hydrophilization, and the entire surface was covered with a porous sintered coating under the same conditions as in Example 1. The coated porous sintered film had a thickness of 0.8 mm, a porosity of 50%, a thermal conductivity of 0.89 W / mk, a water droplet absorption time of 300 seconds or more, and a water retention of 0 g. As a result of evaluating the dew condensation start time and the dropping of dew condensation water in the same manner as in Example 1, the dew condensation start time was 15 minutes, the dew water was not absorbed by the coating film, and after 60 minutes it was recognized as a water drop and dropped.

【発明の効果】【The invention's effect】

本発明によれば、空気調和機の空気吹出し口部の風向
変更ルーバ表面に親水性樹脂の多孔質焼結状被膜で全面
または一部を被覆することにより、該ルーバ表面の熱伝
導性が大幅に低下し、冷房時に結露しにくくなるととも
に結露しても露が多孔質の空孔の中に吸収され且つ、そ
のものの水の保有量が大きいので水滴の落下が防止され
るという効果を有する。
According to the present invention, the heat conductivity of the louver surface is significantly increased by coating the entire surface or a part of the surface of the louver at the air outlet of the air conditioner with the porous sintered coating of a hydrophilic resin. In this case, the dew is hardly formed during cooling, and even if the dew is formed, the dew is absorbed into the porous pores, and the large amount of water is retained, so that the drop of water is prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は一般的な空気調和機の風向変更ルーバの一例を
示す斜視図、第2図は第1図のI−I線による親水性樹
脂の多孔質焼結状被膜で全面被覆した実施例の拡大断面
図、第3図は第1図のI−I線による2層コーティング
の全面被覆した実施例の拡大断面図、第4図は第1図の
I−I線による2層コーティングの一部を被覆した実施
例の拡大断面図、第5図は第1図のI−I線による参考
例である従来品の植毛による拡大断面図である。 1……風向変更ルーバ、2……軸部 3……親水性樹脂の多孔質焼結状被膜 4……熱可塑性樹脂のコーティング被膜 5……植毛部材、6……接着剤
FIG. 1 is a perspective view showing an example of a wind direction changing louver of a general air conditioner, and FIG. 2 is an embodiment in which a porous sintered film of a hydrophilic resin is entirely covered by a line II in FIG. FIG. 3 is an enlarged sectional view of the embodiment in which the two-layer coating is entirely covered by the II line in FIG. 1, and FIG. 4 is an example of the two-layer coating by the II line in FIG. FIG. 5 is an enlarged cross-sectional view of a conventional product, which is a reference example taken along the line II of FIG. 1, with flocking. DESCRIPTION OF SYMBOLS 1 ... Louver for changing wind direction 2 ... Shaft part 3 ... Porous sintered coating of hydrophilic resin 4 ... Coating coating of thermoplastic resin 5 ... Flocked member 6, Adhesive

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F24F 13/14 F24F 1/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) F24F 13/14 F24F 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ルーバの表面を空孔率が8〜80%で水滴吸
収時間が300秒以下である親水性樹脂の多孔質焼結状被
膜で全面または一部を被覆したことを特徴とする空気調
和機の空気吹出し口部の風向変更ルーバ。
1. The louver is characterized in that the surface of the louver is entirely or partially covered with a porous sintered coating of a hydrophilic resin having a porosity of 8 to 80% and a water droplet absorption time of 300 seconds or less. A louver that changes the air direction at the air outlet of the air conditioner.
JP2130330A 1990-05-22 1990-05-22 Air conditioner wind direction changing louver Expired - Fee Related JP2878391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2130330A JP2878391B2 (en) 1990-05-22 1990-05-22 Air conditioner wind direction changing louver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2130330A JP2878391B2 (en) 1990-05-22 1990-05-22 Air conditioner wind direction changing louver

Publications (2)

Publication Number Publication Date
JPH0428953A JPH0428953A (en) 1992-01-31
JP2878391B2 true JP2878391B2 (en) 1999-04-05

Family

ID=15031783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2130330A Expired - Fee Related JP2878391B2 (en) 1990-05-22 1990-05-22 Air conditioner wind direction changing louver

Country Status (1)

Country Link
JP (1) JP2878391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385632A4 (en) * 2015-12-03 2018-12-26 Mitsubishi Electric Corporation Indoor unit of air conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095138A (en) * 2001-09-27 2003-04-03 Shigeru Co Ltd Steering beam for vehicle
JP5169526B2 (en) * 2008-06-23 2013-03-27 パナソニック株式会社 Humidification device and sauna device using it
JP5401862B2 (en) * 2008-07-31 2014-01-29 パナソニック株式会社 Liquid refinement device and sauna device using the same
AU2011288918C1 (en) 2010-08-11 2017-03-02 Close Comfort Pty Ltd Localised personal air conditioning
EP2847518A4 (en) * 2012-04-02 2016-03-23 Dantherm Cooling As Air inlet
CN103453648B (en) * 2013-06-03 2015-11-25 海尔集团公司 The method that air-conditioner air supply device is anti-condensation
WO2015035737A1 (en) * 2013-09-16 2015-03-19 广东美的制冷设备有限公司 Air conditioner having an adjustable-volume air output and a method for adjusting air output

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385632A4 (en) * 2015-12-03 2018-12-26 Mitsubishi Electric Corporation Indoor unit of air conditioner

Also Published As

Publication number Publication date
JPH0428953A (en) 1992-01-31

Similar Documents

Publication Publication Date Title
JP2878391B2 (en) Air conditioner wind direction changing louver
US4548779A (en) Rotational molding multilayered articles
US3565665A (en) Solvent vapor fusion method
US5047436A (en) Method of improving foam fire resistance through the introduction of inorganic particles thereinto
CN101583676A (en) Coating composition, coating method, heat exchanger and air conditioner
US5968642A (en) Article having a water-repellent fluororesin surface, and method for manufacturing the same
US8171750B2 (en) Air conditioner and coating composition
US4536420A (en) Process and composition for producing permanently water wettable surfaces
JPH08501600A (en) Extrudable thermoplastic plastic granules
US4181773A (en) Process for rendering surfaces permanently water wettable and novel products thus-produced
JPH1017699A (en) Moisture and water-absorbing molding and its production
EP0460963B1 (en) Expandable powder coating composition
JPS60242019A (en) Molding skin material
JP2002263566A (en) Coated metal plate excellent in moisture absorption/ release property
JP2012024713A (en) Method for forming antifouling coating film and antifouling member
JPS63295652A (en) Hydrophilic porous material
JPH03281240A (en) Metal member covered with hydrophilic porous body and preparation thereof
JPH01242639A (en) Hydrophilic sinter and its production
JP2006205159A (en) Coating applicator
US4962132A (en) Method of improving foam fire resistance through the introduction of inorganic particles thereinto
JPH06182943A (en) Tubular body
JP2013099709A (en) Heat exchanger coating method, and heat exchanger
WO2023189213A1 (en) Method for producing foamable polyamide-based resin particles, method for producing polyamide-based resin foamed particles, and polyamide-based resin foamed particles
JP6949265B1 (en) Coating composition for heat exchanger
JPH0340320B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees