JP2873934B2 - Rotary viscometer - Google Patents

Rotary viscometer

Info

Publication number
JP2873934B2
JP2873934B2 JP8106621A JP10662196A JP2873934B2 JP 2873934 B2 JP2873934 B2 JP 2873934B2 JP 8106621 A JP8106621 A JP 8106621A JP 10662196 A JP10662196 A JP 10662196A JP 2873934 B2 JP2873934 B2 JP 2873934B2
Authority
JP
Japan
Prior art keywords
rotating shaft
holding mechanism
superconducting
shaft
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8106621A
Other languages
Japanese (ja)
Other versions
JPH09292300A (en
Inventor
秀明 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8106621A priority Critical patent/JP2873934B2/en
Publication of JPH09292300A publication Critical patent/JPH09292300A/en
Application granted granted Critical
Publication of JP2873934B2 publication Critical patent/JP2873934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超伝導磁気軸受けを用
いた回転型粘性真空計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary viscometer using a superconducting magnetic bearing.

【0002】[0002]

【従来の技術】従来の回転型粘性真空計について説明す
る。
2. Description of the Related Art A conventional rotary viscometer will be described.

【0003】図5は、従来の回転型粘性真空計の一例を
示すもので、測定ヘッドの一部を破断して示し、その制
御系をブロック図で示したものである。この図におい
て、1は測定ヘッド、2は例えば直径4.5mmの磁性
ステンレス鋼球の回転体であり、自然回転の減衰率を測
定気体の圧力に変換するトランスデューサである。3は
この回転体2を収容する非磁性ステンレス鋼製の例えば
外径8.5mmのパイプ状の回転体室、4a,4bは上
下に対向して配設された永久磁石で、回転体2を磁気懸
垂させるためのものである。5a,5bは前記回転体2
の垂直方向の位置ずれ補正用コイル、6は制御器、7a
〜7dは前記回転体2の水平方向の位置ずれ補正用コイ
ル(7c,7dは図5では見えない)、8a〜8dは回
転磁界を生ずる駆動コイル、9は温度センサ、10a,
10bは前記回転体2の磁化ベクトルの回転を検出する
検出コイル、11は前記駆動コイル8a〜8dに回転磁
界を生じさせるための三相交流電源、12〜15は変成
器、16は積分器17は各コイルからの出力を受け演
算,制御を行うコンピュータである。
FIG. 5 shows an example of a conventional rotary viscous vacuum gauge, in which a part of a measuring head is cut away and its control system is shown in a block diagram. In this figure, reference numeral 1 denotes a measuring head, and 2 denotes a rotating body of a magnetic stainless steel ball having a diameter of, for example, 4.5 mm, which is a transducer for converting an attenuation rate of natural rotation into a pressure of a measuring gas. Reference numeral 3 denotes a non-magnetic stainless steel pipe-shaped rotating body chamber which accommodates the rotating body 2 and has, for example, an outer diameter of 8.5 mm. Reference numerals 4a and 4b denote permanent magnets which are disposed vertically facing each other. It is for magnetic suspension. 5a and 5b are the rotating bodies 2
, A vertical misalignment correction coil, 6 is a controller, 7a
7d are coils for correcting the displacement of the rotating body 2 in the horizontal direction (7c and 7d are not visible in FIG. 5), 8a to 8d are driving coils for generating a rotating magnetic field, 9 is a temperature sensor, 10a,
10b is a detection coil for detecting the rotation of the magnetization vector of the rotating body 2, 11 is a three-phase AC power supply for generating a rotating magnetic field in the drive coils 8a to 8d, 12 to 15 are transformers, and 16 is an integrator 17 Is a computer that receives the output from each coil and performs calculation and control.

【0004】その動作を簡単に説明すると、磁気浮上さ
せた回転体2を駆動コイル8a,8bに回転磁界で約4
00r.p.sまで加速した後に駆動を停止し、回転数
が被測定気体の粘性抵抗で減衰する割合を検出する。一
方、コンピュータ17の機能は測定ヘッド1が検知する
回転の周期から減衰率を検出し、これを基にコンピュー
タ17で予め入力した気体の粘性係数から圧力に換算し
て表示する。
[0004] The operation thereof will be briefly described. The magnetically levitated rotating body 2 is applied to the driving coils 8a and 8b by a rotating magnetic field for about 4 hours.
00r. p. After acceleration to s, the driving is stopped, and the rate at which the number of revolutions attenuates due to the viscous resistance of the gas to be measured is detected. On the other hand, the function of the computer 17 detects the attenuation rate from the rotation cycle detected by the measuring head 1 and converts the viscosity coefficient of the gas, which is input in advance by the computer 17, into pressure and displays it.

【0005】回転体2付近の温度を検出するため、温度
センサ9が回転体室3に固定され、ここから温度信号υ
を発生し、これを変成器12に入力する。ここで電圧V
T を生じ、これをコンピュータ17に入力する。なお、
温度センサ9に代え、コイル7a,7bや8a〜8dの
内の1個を用いることもできる。すなわち、その抵抗値
Rの温度依存性により生じた電圧が変成器13から信号
T として取り出すこととなる。
[0005] In order to detect the temperature near the rotating body 2, a temperature sensor 9 is fixed to the rotating body chamber 3, from which a temperature signal υ is output.
Which is input to the transformer 12. Where the voltage V
T is generated and input to the computer 17. In addition,
Instead of the temperature sensor 9, one of the coils 7a, 7b and 8a to 8d may be used. In other words, so that the voltage generated by the temperature dependence of the resistance value R is taken out as a signal V T from the transformer 13.

【0006】一方、三相交流電源11の投入時間τに応
じた信号VI が生じ、これに比例した電圧VP が変成器
14から発生する。さらに積分器16を通してコンピュ
ータ17に入力する。
On the other hand, cause the signal V I in accordance with the on time of the three-phase AC power source 11 tau, the voltage V P which is proportional thereto is generated from the transformer 14. The data is further input to a computer 17 through an integrator 16.

【0007】また、変成器11からも投入時間τに応じ
た電圧Vd を得るからこれも積分器16を経てコンピュ
ータ17に入力する。これら2系統の入力を併せてコン
ピュータ17の圧力表示値の温度補正を行う。
Further, it is also entered into the computer 17 through the integrator 16 because even obtain a voltage V d corresponding to the on time τ from transformer 11. The temperature correction of the pressure display value of the computer 17 is performed by combining these two inputs.

【0008】図6は、従来の回転型粘性真空計の他の例
の要部を示すもので、回転軸浮上保持機構の部分のみを
示してある。この図において、21はリング状の永久磁
石で上,下面に着磁されている。22は超伝導物質で作
られた円板、23はこの円板22に取り付けられた非磁
性体の円板、24は非磁性体の軸で、これには非磁性体
の羽根25が取り付けられている。26は前記円板22
の周辺に等間隔に設けられた穴、27は発光装置、28
は受光装置で発光装置27から出た光が穴26を通って
受光装置28に入射する位置に対向して設けられる。2
9は前記受光装置28への光入射回数をカウントするパ
ルスカウンタである。また、軸24の上端は自由端とな
っている。
FIG. 6 shows a main part of another example of a conventional rotary viscous vacuum gauge, and shows only a portion of a rotary shaft floating holding mechanism. In this figure, reference numeral 21 denotes a ring-shaped permanent magnet which is magnetized on the upper and lower surfaces. Reference numeral 22 denotes a disk made of a superconducting material, reference numeral 23 denotes a non-magnetic disk attached to the disk 22, reference numeral 24 denotes a non-magnetic shaft to which a non-magnetic blade 25 is attached. ing. 26 is the disk 22
Holes are provided at equal intervals around the light emitting device;
Is provided opposite to a position where light emitted from the light emitting device 27 is incident on the light receiving device 28 through the hole 26 in the light receiving device. 2
Reference numeral 9 denotes a pulse counter for counting the number of light incidents on the light receiving device 28. The upper end of the shaft 24 is a free end.

【0009】その動作は、上下に配置された永久磁石2
1が固定されているので、超伝導物質で作られた円板2
2はマイスナー効果で浮上し、非接触で保持される。そ
して、適宜の手段で軸24を加速した後に駆動を停止
し、パルスカウンタ29のパルス数から回転数の減衰す
る割合を検出し、図5の従来例と同様にして真空度を測
定する。
The operation is performed by the permanent magnets 2 arranged vertically.
Disk 1 made of superconducting material because 1 is fixed
2 floats due to the Meissner effect and is held in a non-contact manner. Then, the drive is stopped after accelerating the shaft 24 by appropriate means, the rate of decrease in the number of revolutions is detected from the number of pulses of the pulse counter 29, and the degree of vacuum is measured in the same manner as in the conventional example of FIG.

【0010】図6の従来例は、超伝導物質の円板22の
上に浮かした永久磁石21に垂直に羽根25の軸24を
取り付けた非接触の回転軸保持機構を用いたものであ
る。
The conventional example shown in FIG. 6 uses a non-contact rotating shaft holding mechanism in which a shaft 24 of a blade 25 is vertically mounted on a permanent magnet 21 floating on a disk 22 of a superconducting material.

【0011】[0011]

【発明が解決しようとする課題】上述した図5,図6の
従来例の回転型粘性真空計における回転軸浮上保持機構
は、回転体2や羽根25の質点の安定浮上保持のみに注
目し、垂直線から回転軸が外れて脈動や才差運動を伴う
乱れた回転が起きないという保証がなく、また、その具
体的な予防措置を備えていないという問題点があった。
The rotary shaft floating and holding mechanism in the conventional rotary viscometer of FIGS. 5 and 6 described above focuses only on the stable floating and holding of the masses of the rotating body 2 and the blades 25. There is no assurance that the rotation axis will be displaced from the vertical and no turbulent rotation accompanied by pulsation or precession will occur, and no specific precautionary measures have been taken.

【0012】本発明は上記問題点を解決するためになさ
れたもので、その目的は、超伝導磁気浮上保持機構を用
いることにより安定して回転軸の保持ができる回転軸浮
上保持機構およびそれを用いた回転型粘性真空計を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotating shaft levitation holding mechanism capable of stably holding a rotating shaft by using a superconducting magnetic levitation holding mechanism, and to provide the same. An object of the present invention is to provide a rotary viscometer used.

【0013】[0013]

【課題を解決するための手段】本発明にかかる回転型粘
性真空計は、自転を伴う回転対称の試料を磁気浮上して
保持する回転軸浮上保持機構を備えており、前記回転軸
浮上保持機構として、垂直に保つべき回転軸の上下両端
に非接触超伝導軸受から成る超伝導磁気浮上保持機構を
用い、前記非接触超伝導軸受は、垂直部及び孔のない
平部を有する凹所を有し、該凹所に前記回転軸の両端の
夫々を受け入れるようにしたものである。
A rotary viscous vacuum gauge according to the present invention includes a rotary shaft floating holding mechanism for magnetically levitating and holding a rotationally symmetric sample with rotation. A superconducting magnetic levitation holding mechanism composed of non-contact superconducting bearings is used at the upper and lower ends of a rotating shaft to be kept vertical, and the non-contact superconducting bearing has a vertical portion and a horizontal portion without holes. And a recess having a recess for receiving each of both ends of the rotating shaft.

【0014】[0014]

【作用】本発明の上,下端が超伝導磁気軸受けで保持さ
れているので、回転軸が脈動したり、才差運動をするよ
うなことがない。
Since the upper and lower ends of the present invention are held by superconducting magnetic bearings, there is no pulsation of the rotating shaft or precession.

【0015】[0015]

【実施例】図1(a),(b)は、本発明の一実施例を
示す回転型粘性真空計の回転軸浮上保持機構の部分を示
した正面図と試料の平面図である。この図において、3
1は垂直回転軸で、試料32Aを軸対称に支持してお
り、上,下端はN極,S極の着磁が施されている。試料
32Aは、図1(b)の平面図に示されるように風車型
をしている。33,34は上下の非接触超伝導軸受で、
垂直回転軸31の上下をマイスナー効果により非接触で
支持する。すなわち、垂直回転軸31の上端,下端はN
極,S極に着磁しておく。それには垂直回転軸31その
ものを磁性体で作って着磁するか、垂直回転軸31の上
端,下端に永久磁石を取り付けるかする。非接触超伝導
軸受33が超伝導状態になるとマイスナー効果で垂直回
転軸31は上端,下端が反発力を受け、非接触で保持さ
れる。35は平歯車で垂直回転軸31に固着されてい
る。36は駆動歯車で、電動機37の出力軸に取り付け
られる。起動時に電動機37で駆動歯車36を駆動し、
これと噛合う平歯車35を駆動し、所定の回転を垂直回
転軸31に与えた時点で、電動機37を点線矢印のよう
に移動して平歯車35から駆動歯車36を切り離す。あ
とは従来の回転型粘性真空計と同様にして真空度を測定
する。このように垂直回転軸31は上,下端で非接触で
支持されているので、才差運動や乱調が生じなくなる。
1 (a) and 1 (b) are a front view and a plan view of a sample showing a portion of a rotary shaft floating holding mechanism of a rotary viscous vacuum gauge showing an embodiment of the present invention. In this figure, 3
Reference numeral 1 denotes a vertical rotation shaft which supports the sample 32A in an axially symmetric manner, and whose upper and lower ends are N-pole and S-pole magnetized. The sample 32A has a windmill shape as shown in the plan view of FIG. 33 and 34 are upper and lower non-contact superconducting bearings,
The upper and lower portions of the vertical rotation shaft 31 are supported in a non-contact manner by the Meissner effect. That is, the upper and lower ends of the vertical rotation shaft 31 are N
Pole and S pole are magnetized. For this purpose, the vertical rotating shaft 31 itself is made of a magnetic material and magnetized, or permanent magnets are attached to the upper and lower ends of the vertical rotating shaft 31. When the non-contact superconducting bearing 33 enters the superconducting state, the upper and lower ends of the vertical rotating shaft 31 receive repulsive forces due to the Meissner effect, and are held in a non-contact manner. Reference numeral 35 denotes a spur gear fixed to the vertical rotation shaft 31. A drive gear 36 is attached to an output shaft of the electric motor 37. At the time of starting, the drive gear 36 is driven by the electric motor 37,
When the spur gear 35 meshing with the spur gear 35 is driven and given rotation is given to the vertical rotation shaft 31, the electric motor 37 is moved as indicated by a dotted arrow to separate the drive gear 36 from the spur gear 35. Thereafter, the degree of vacuum is measured in the same manner as in a conventional rotary viscometer. As described above, since the vertical rotation shaft 31 is supported at the upper and lower ends in a non-contact manner, precession movement and irregularity do not occur.

【0016】図2は、本発明の他の実施例を示す正面図
である。この実施例では試料32Bが球体をなしている
ところが、図1の実施例と異なる。他は図1と同様であ
る。ただし、初期の駆動を行う電動機37等は省略して
いる。
FIG. 2 is a front view showing another embodiment of the present invention. This embodiment is different from the embodiment of FIG. 1 in that the sample 32B forms a sphere. Others are the same as FIG. However, the motor 37 and the like for performing initial driving are omitted.

【0017】図3(a),(b)は、本発明のさらに他
の実施例を示す正面図と駆動コイルの平面図である。こ
の実施例では試料32Cは断面が楕円形を成している。
図3(b)は起動用コイルの平面図で、図3(a)では
省略している。このように、38aと38b、39aと
39bの2対の起動用コイルを有する。
FIGS. 3 (a) and 3 (b) are a front view and a plan view of a drive coil showing still another embodiment of the present invention. In this embodiment, the sample 32C has an elliptical cross section.
FIG. 3B is a plan view of the starting coil, and is omitted in FIG. 3A. As described above, two pairs of starting coils 38a and 38b and 39a and 39b are provided.

【0018】図4(a),(b)は、本発明のさらに他
の実施例を示す正面図と平面図である。この実施例で
は、試料32Dが水車型をしているところが、図1の実
施例と異なる。他は図1と同様である。ただし、初期の
駆動を行う電動機37等は省略している。
FIGS. 4A and 4B are a front view and a plan view showing still another embodiment of the present invention. This embodiment is different from the embodiment of FIG. 1 in that the sample 32D has a water wheel shape. Others are the same as FIG. However, the motor 37 and the like for performing initial driving are omitted.

【0019】なお、上記した図1,図2,図4の実施例
の場合に、試料32A,32B,32Dに各図示のよう
に着磁しておき、図3(b)のように起動用コイルを用
いて初期の駆動を電動機37を用いずに行うことができ
る。また、40は磁極の近傍により回転数を検出するた
めのピックアップコイルである。
In the case of the embodiment shown in FIGS. 1, 2 and 4, the samples 32A, 32B and 32D are magnetized as shown in FIG. The initial drive can be performed using the coil without using the electric motor 37. Reference numeral 40 denotes a pickup coil for detecting the number of rotations in the vicinity of the magnetic pole.

【0020】[0020]

【発明の効果】本発明にかかる回転型粘性真空計は、回
転体を磁気浮上させて保持する回転軸浮上保持機構とし
て、垂直に保つべき回転軸の上下両端に、非接触超伝導
軸受から成る超伝導磁気浮上保持機構を備え、前記非接
触超伝導軸受は、垂直部及び孔のない水平部を有する凹
所を有し、該凹所に前記回転軸の両端の夫々を受け入れ
るようにしたものであるので、回転軸が脈動せず、才差
運動が起きない利点があり、正確な測定が期待できる。
The rotary viscometer according to the present invention has a non-contact superconducting mechanism as a rotating shaft floating holding mechanism for magnetically levitating and holding a rotating body at both upper and lower ends of a rotating shaft to be kept vertical.
Comprising a superconducting magnetic levitation holding mechanism consisting of bearing, the non-contact
The superconducting bearing has a concave part with a vertical part and a horizontal part without holes.
Receiving each of the two ends of the rotating shaft in the recess.
With such a configuration, there is an advantage that the rotation axis does not pulsate and precession does not occur, and accurate measurement can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる回転型粘性真空計における回転
軸浮上保持機構の一実施例を示す正面図および平面図で
ある。
FIGS. 1A and 1B are a front view and a plan view showing an embodiment of a rotary shaft floating holding mechanism in a rotary viscous vacuum gauge according to the present invention.

【図2】同じく本発明の他の実施例を示す正面図であ
る。
FIG. 2 is a front view showing another embodiment of the present invention.

【図3】同じく本発明の他の実施例を示す正面図と駆動
コイルの平面図である。
FIG. 3 is a front view and a plan view of a drive coil showing another embodiment of the present invention.

【図4】同じく本発明の他の実施例を示す正面図および
平面図である。
FIG. 4 is a front view and a plan view showing another embodiment of the present invention.

【図5】従来の回転型粘性真空計の一例を示す測定ヘッ
ドの一部を破断して示し、制御系をブロック図で示した
図である。
FIG. 5 is a block diagram illustrating a control system in which a part of a measurement head showing an example of a conventional rotary viscometer is cut away.

【図6】従来の回転型粘性真空系の他の例の要部を示す
図である。
FIG. 6 is a diagram showing a main part of another example of the conventional rotary viscous vacuum system.

【符号の説明】[Explanation of symbols]

31 垂直回転軸 32A 試料 32B 試料 32C 試料 32D 試料 33 非接触超伝導軸受 34 非接触超伝導軸受 35 平歯車 36 駆動歯車 37 電動機 31 Vertical rotating shaft 32A Sample 32B Sample 32C Sample 32D Sample 33 Non-contact superconducting bearing 34 Non-contact superconducting bearing 35 Spur gear 36 Drive gear 37 Electric motor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 自転を伴う回転対称の試料を磁気浮上
して保持する回転軸浮上保持機構を備えた回転型粘性真
空計において、 前記回転軸浮上保持機構として、垂直に保つべき回転軸
の上下両端に非接触超伝導軸受から成る超伝導磁気浮上
保持機構を用い、 前記非接触超伝導軸受は、垂直部及び孔のない水平部を
有する凹所を有し、該凹所に前記回転軸の両端の夫々を
受け入れるようにしたことを特徴とする回転型粘性真空
計。
1. A rotary viscous vacuum gauge provided with a rotating shaft floating holding mechanism for magnetically levitating and holding a rotationally symmetric sample accompanied by rotation, wherein the rotating shaft floating holding mechanism includes a rotating shaft that is to be kept vertically. Using a superconducting magnetic levitation holding mechanism consisting of a non-contact superconducting bearing at both ends, the non-contact superconducting bearing has a concave portion having a vertical portion and a horizontal portion without holes, and the concave portion has A rotary viscometer that accepts both ends.
JP8106621A 1996-04-26 1996-04-26 Rotary viscometer Expired - Lifetime JP2873934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8106621A JP2873934B2 (en) 1996-04-26 1996-04-26 Rotary viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8106621A JP2873934B2 (en) 1996-04-26 1996-04-26 Rotary viscometer

Publications (2)

Publication Number Publication Date
JPH09292300A JPH09292300A (en) 1997-11-11
JP2873934B2 true JP2873934B2 (en) 1999-03-24

Family

ID=14438193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8106621A Expired - Lifetime JP2873934B2 (en) 1996-04-26 1996-04-26 Rotary viscometer

Country Status (1)

Country Link
JP (1) JP2873934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384537B1 (en) 2013-02-13 2014-04-17 한국표준과학연구원 Electromagnetic levitation vacuum measuring apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050107A1 (en) * 2000-01-06 2001-07-12 The Johns Hopkins University Damped paddle wheel for plasma chamber shock tube

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110232A (en) * 1987-10-23 1989-04-26 Mitsubishi Electric Corp Viscosity vacuum gauge
JPH01247822A (en) * 1988-03-29 1989-10-03 Nippon Telegr & Teleph Corp <Ntt> Support construction for rotary shaft
JPH0416654A (en) * 1990-05-10 1992-01-21 Sato Kogyo Co Ltd Hollow pillar member of precast concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384537B1 (en) 2013-02-13 2014-04-17 한국표준과학연구원 Electromagnetic levitation vacuum measuring apparatus

Also Published As

Publication number Publication date
JPH09292300A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
JPH08505826A (en) Direct torque control moment gyroscope
US9013133B2 (en) Method and apparatus for stepper motor stall detection
Bornemann et al. Low friction in a flywheel system pith passive superconducting magnetic bearings
JP2873934B2 (en) Rotary viscometer
JP3083242B2 (en) Vibration evaluation method of rotating body in static field
US7812562B2 (en) Method and apparatus for high speed stepper motor stall detection
CN116840680B (en) Magnetic suspension molecular pump motor performance detection method and application thereof
US4493643A (en) Dental handpiece having non-contact rotational speed detection device
Fremerey High vacuum gas friction manometer
US4235092A (en) Low friction bearing running torque measuring apparatus
CN110824190A (en) Device and method for measuring ion wind speed
Fuhrmans et al. Determination of vortex friction in a rotating type II superconductor with a self-compensating torsion balance
KR101182537B1 (en) Noncontact type of balancing machine using hall sensor
JP3421951B2 (en) Gas friction gauge with gas friction sensor rotating about a fixed axis of rotation
CN113465684A (en) Non-contact type moving body state detection device
US4084428A (en) Torque reaction motor performance evaluation
Redgrave et al. Some comments on the stability of spinning-rotor gauges
JP2004320990A (en) Method and apparatus for measuring motor
Powell et al. Optimisation of magnetic speed sensors
Hu et al. A fiber optic sensor measurement system for a levitated sphere-shaped superconducting rotor
Otani et al. High field torque magnetometer for superconducting magnets
JP4022622B2 (en) Torque detector for rotational viscometer
JPH07113591B2 (en) Swing frame type dynamometer
SU815529A1 (en) Torque converter
US4355541A (en) Magnetic gyroscope

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term