JP2870994B2 - Fiber reinforced composite and molding method - Google Patents

Fiber reinforced composite and molding method

Info

Publication number
JP2870994B2
JP2870994B2 JP2152165A JP15216590A JP2870994B2 JP 2870994 B2 JP2870994 B2 JP 2870994B2 JP 2152165 A JP2152165 A JP 2152165A JP 15216590 A JP15216590 A JP 15216590A JP 2870994 B2 JP2870994 B2 JP 2870994B2
Authority
JP
Japan
Prior art keywords
fiber
heat
dimensional
fiber material
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2152165A
Other languages
Japanese (ja)
Other versions
JPH0444834A (en
Inventor
昌夫 日聖
康己 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP2152165A priority Critical patent/JP2870994B2/en
Publication of JPH0444834A publication Critical patent/JPH0444834A/en
Application granted granted Critical
Publication of JP2870994B2 publication Critical patent/JP2870994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 航空機・船舶・車両および建築物等の構造部材用とし
て使用される繊維強化複合体の改良された成形方法を提
供する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] An improved method for forming a fiber-reinforced composite used for structural members such as aircraft, ships, vehicles, and buildings is provided.

[従来技術] 上記のような用途分野において使用される繊維強化複
合体は、通常、高強度高弾性率の長繊維からなる織物に
熱硬化性のマトリックスレジンを含浸させ所定の条件下
に初期硬化させた、いわゆる「プリプレグ」を複数枚積
層し加熱加圧硬化させて得られるが、この方法では積層
面に垂直の(厚さ方向の)物性に弱点があること、いっ
ぽう織編技術の進歩により3次元の(厚さ方向に強化成
分をもつ)繊維骨格構造が得られるようになったことな
どの事情から、このような3次元の繊維骨格構造を芯体
として成形型中にセットし、これにマトリックスレジン
を直接に注入して含浸・加熱硬化する方法(RI法)が近
年試みられるようになった。
[Prior art] Fiber reinforced composites used in the above application fields are usually prepared by impregnating a thermosetting matrix resin into a woven fabric composed of long fibers having high strength and high elastic modulus, and initially curing under a predetermined condition. It is obtained by laminating a plurality of so-called “prepregs” and curing by heating and pressurizing. However, this method has weak points in physical properties perpendicular to the laminating surface (in the thickness direction), In view of the fact that a three-dimensional fiber skeleton structure (having a reinforcing component in the thickness direction) can be obtained, such a three-dimensional fiber skeleton structure is set as a core in a molding die. In recent years, a method of directly injecting a matrix resin into a resin and impregnating and curing by heating (RI method) has been attempted.

ここで使用される3次元の繊維骨格構造を「プリフォ
ーム」と通称するが、上記のような含浸成形方法におい
て、成形型中におかれたプリフォームが繊維構造体本来
のドレープ性により、或いは含浸時のレジン注入圧力に
より変形して所期の形態を保持できないことがあり、こ
の結果成形品品位不良が生じやすいことが知られてい
る。
The three-dimensional fiber skeleton structure used herein is generally referred to as a “preform”. In the impregnation molding method as described above, the preform placed in the molding die is formed by the inherent drapability of the fiber structure, or It is known that the desired shape may not be maintained due to deformation due to the resin injection pressure at the time of impregnation, and as a result, poor quality of molded products is likely to occur.

RI成形法において、成形型中にセットされたプリフォ
ームは通常高強度弾性率の繊維素材からなる高密度織編
物であり、本来多少のドレープ性を有している。またレ
ジンは粘性流体であり、流速・流圧をもっているから注
入時にプリフォームが変形し、あるいは部分的に型離れ
を生じることは不可避である。
In the RI molding method, a preform set in a mold is usually a high-density woven or knitted fabric made of a fiber material having a high strength elastic modulus, and originally has some drapability. Further, since the resin is a viscous fluid and has a flow velocity and a flow pressure, it is inevitable that the preform is deformed at the time of injection or the mold is partially separated.

これを軽減するための方法としては繊維素材の高剛性
化、織編組織の改良、レジンの低粘度化および注入条件
の改良などが種々検討され実行されているが、成形品の
大きさ・形状によっては変形トラブルを生じやすいのが
実情である。
Various methods have been studied and implemented to reduce this, such as increasing the rigidity of the fiber material, improving the weaving and knitting structure, lowering the viscosity of the resin, and improving the injection conditions. In some cases, deformation troubles are likely to occur.

上記のようにプリフォームは立体的な繊維構造体であ
るから、構成繊維素材のそれぞれ軸方向の引張外力に対
しては充分な抵抗力をもつが、圧縮方向の外力に対する
形態保持性には乏しく、これが基本的な問題点となって
いる。本発明はプリフォームがもつこのような問題点に
注目し、繊維構造体としての特徴を生かしつつその改善
をはかるものである。
As described above, since the preform is a three-dimensional fiber structure, each of the constituent fiber materials has a sufficient resistance to the tensile external force in the axial direction, but has poor form retention to the external force in the compressive direction. This is a fundamental problem. The present invention pays attention to such problems of the preform, and aims to improve it while utilizing the characteristics as a fiber structure.

[発明が解決しようとする課題] 本発明はRI法のこのような問題点を改良するために、
レジン注入以前のプリフォームに予め適当な構造剛性を
付与することによって変形を防止し、品位良好な複合体
部材の製造を可能にする成形方法を提供しようとするも
のである。
[Problem to be Solved by the Invention] The present invention has been made to solve such a problem of the RI method.
It is an object of the present invention to provide a molding method which prevents deformation by giving an appropriate structural rigidity to a preform before resin injection in advance and enables production of a high-quality composite member.

[課題を解決するための手段] 上記のような問題点を解決するために、 特許請求の範囲の1に記載の発明では、3次元の繊維
骨格材と熱硬化性のマトリックスレジンとを主たる構成
要素とする繊維強化複合体において、3次元の該繊維骨
格材は耐熱性繊維素材と熱可塑性繊維素材とを混繊、混
撚ないし交編織して成り、且つ該熱可塑性繊維素材の熱
変形温度を熱硬化性の該マトリックスレジンの実質的硬
化反応温度よりも高くし、3次元の繊維骨格材を熱可塑
性繊維素材の熱変形温度以上に加熱処理して賦形し、そ
の後に熱硬化性のマトリックスレジンを導入して含浸、
硬化成型している。
Means for Solving the Problems In order to solve the above problems, the invention according to claim 1 mainly includes a three-dimensional fiber skeleton material and a thermosetting matrix resin. In the fiber reinforced composite used as the element, the three-dimensional fiber skeleton material is formed by blending, knitting or weaving a heat-resistant fiber material and a thermoplastic fiber material, and reducing the heat deformation temperature of the thermoplastic fiber material. The thermosetting matrix resin is heated to a temperature higher than the substantial curing reaction temperature, and the three-dimensional fiber skeleton material is subjected to heat treatment at a temperature higher than the heat deformation temperature of the thermoplastic fiber material to form the thermosetting matrix material. Impregnated with resin,
It is cured and molded.

特許請求の範囲の2に記載の発明では、3次元の繊維
骨格材と熱硬化性のマトリックスレジンとを主たる構成
要素とする繊維強化複合体において、3次元の該繊維骨
格材は耐熱性繊維素材と熱可塑性繊維素材とを混繊、混
撚ないし交編織して成り、且つ該熱可塑性繊維素材の熱
変形温度を熱硬化性の該マトリックスレジンの実質的硬
化反応温度よりも高くし、3次元の繊維骨格材を引張張
力を加えて展張しながら熱可塑性繊維素材の熱変形温度
以上に加熱処理して賦形し、その後に熱硬化性のマトリ
ックスレジンを導入して含浸、硬化成型している。
According to the invention described in claim 2, in the fiber reinforced composite having a three-dimensional fiber skeleton material and a thermosetting matrix resin as main components, the three-dimensional fiber skeleton material is a heat-resistant fiber material And a thermoplastic fiber material mixed, twisted or interwoven, and the heat deformation temperature of the thermoplastic fiber material is higher than the substantial curing reaction temperature of the thermosetting matrix resin, and the three-dimensional The fiber skeleton is stretched by applying a tensile force to heat it to a temperature higher than the thermal deformation temperature of the thermoplastic fiber material to shape it. Thereafter, a thermosetting matrix resin is introduced to impregnate and cure.

〔作用〕[Action]

すなわちプリフォームを構成する主素材である耐熱性
繊維素材に、適当な熱変形温度をもつ熱可塑性繊維素材
を混繊、混撚、引揃え等により混合交編織してプリフォ
ームを作り、そのまま加熱処理し、或いは引張張力を加
えて展張しながら加熱処理することにより熱可塑性素材
を融解含浸させプリフォームに好ましい立体形状と形態
保持性を予め付与するのである。このように賦形処理し
たプリフォームを成形中にセットし熱硬化性のマトリッ
クスレジンを注入し、その後加熱して硬化させるが、マ
トリックスレジンの実質的な硬化処理温度が上記の熱可
塑性素材の熱変形温度より低温であるように材料選択す
ることによってさきに賦形したプリフォームの立体形状
が損なわれることなく硬化成形が行われる。
In other words, a preform is prepared by mixing and knitting a thermoplastic fiber material having an appropriate heat distortion temperature with a heat-resistant fiber material, which is the main material constituting the preform, by blending, kneading, and aligning. Alternatively, the thermoplastic material is melted and impregnated by applying heat while being stretched by applying a tensile force, thereby imparting a preform with a preferable three-dimensional shape and shape retention in advance. The preform thus shaped is set during molding, a thermosetting matrix resin is injected, and then heated and cured, but the substantial curing temperature of the matrix resin is reduced by the heat of the thermoplastic material. By selecting the material so that the temperature is lower than the deformation temperature, the hardening molding is performed without impairing the three-dimensional shape of the preform formed earlier.

ここで「混繊維」とは2種以上の繊維素材が単繊維レ
ベルで混合された、いわゆるcomingled yarnの状態であ
り、「混撚」は2種以上の繊維素材が糸条レベルで撚合
わせられたtwineの状態を意味している。ただし耐熱性
繊維素材と熱可塑性繊維素材が長さ方向にほぼ一定の比
率で共在していることが要件であるから、撚数について
は大小を問わない。
Here, "mixed fiber" is a so-called comingdled yarn state in which two or more fiber materials are mixed at a single fiber level, and "mixed twist" is a state in which two or more fiber materials are twisted at a yarn level. It means the state of twine. However, since it is a requirement that the heat-resistant fiber material and the thermoplastic fiber material coexist at a substantially constant ratio in the length direction, the number of twists may be small or large.

このように耐熱性繊維素材と熱可塑性繊維素材を混合
製織したものは、上記したプリプレグの形態ではすでに
数多く提案されている。(たとえば特公平1−30934,特
開平1−111040)しかしながら、これらの場合には熱可
塑性繊維素材自体が溶融浸透してマトリックスレジンの
機能を果たすのであって、本発明が意図するプリフォー
ムの形態保持材とは基本的に異なっていることはいうま
でもない。
As described above, many woven fabrics obtained by mixing and weaving a heat-resistant fiber material and a thermoplastic fiber material have already been proposed in the form of the prepreg. However, in these cases, the thermoplastic fiber material itself melts and permeates to perform the function of the matrix resin. Needless to say, it is basically different from the holding material.

本発明を構成する耐熱性繊維素材とは、すくなくとも
250℃以上の温度で安定な高強度高弾性率の無機または
有機高分子材料からなるマルチフィラメント繊維 を意
味する。たとえば炭素繊維、ガラス繊維、アルミナ繊
維、アラミド繊維などがこれに相当する。また熱可塑性
繊維素材とは繊維形成性の熱可塑性材料からなり、固有
の熱成形温度において可塑流動化しうるマルチフィラメ
ント繊維であればよく、脂肪族ポリアミド、ポリブチレ
ンテレフタレート、ポリエチレンテレフタレートおよび
共重合ポリエステルなどからなる繊維、あるいはポリエ
ーテルイミド、ポリフェニレンサルファイド、ポリエー
テルエーテルケトンなどのいわゆるスーパーエンプラか
らなる繊維がこれにあたる。さらに熱硬化性マトリック
スレジンとしてはエポキシ、不飽和ポリエステル、フェ
ノール樹脂など、繊維プリフォームに含浸したのち適当
な温度・圧力条件下に硬化して均質な成形表面を形成す
るものであればよい。ただし本発明において、熱硬化性
マトリックスレジンの成形温度は熱可塑性繊維素材の熱
変形温度より実質的に低いものを選択する必要がある。
The heat-resistant fiber material constituting the present invention is at least
A multifilament fiber made of an inorganic or organic polymer material having a high strength and a high elastic modulus that is stable at a temperature of 250 ° C or higher. For example, carbon fiber, glass fiber, alumina fiber, aramid fiber and the like correspond to this. The thermoplastic fiber material is a multifilament fiber which is made of a fiber-forming thermoplastic material and can be plasticized and fluidized at a specific thermoforming temperature, such as aliphatic polyamide, polybutylene terephthalate, polyethylene terephthalate, and copolyester. Such fibers include fibers made of so-called super engineering plastics such as polyetherimide, polyphenylene sulfide, and polyetheretherketone. Further, as the thermosetting matrix resin, any resin such as epoxy, unsaturated polyester, phenol resin or the like which can be impregnated into a fiber preform and then cured under appropriate temperature and pressure conditions to form a uniform molding surface can be used. However, in the present invention, it is necessary to select a molding temperature of the thermosetting matrix resin that is substantially lower than a thermal deformation temperature of the thermoplastic fiber material.

上記において繊維素材とマトリックスレジンの構成比
率(Vf)は得られる複合体製品の要求物性によりことな
るが、実質的な骨材である耐熱性繊維素材の比率は15〜
50%volであることが実用面から好ましいとされる。こ
れに対し耐熱性繊維素材に対する熱可塑性繊維素材の混
繊比率は15〜40%wtであることがプリフォームの形態保
持性の面から好ましい。
In the above, the composition ratio (Vf) of the fiber material and the matrix resin depends on the required physical properties of the obtained composite product, but the ratio of the heat-resistant fiber material, which is a substantial aggregate, is 15 to
It is considered that 50% vol is preferable from a practical viewpoint. On the other hand, the mixing ratio of the thermoplastic fiber material to the heat-resistant fiber material is preferably 15 to 40% wt from the viewpoint of shape retention of the preform.

[実施例] ・実施例1 市販のPAN系炭素繊維6K糸と、ポリブチレンテレフタ
レートを引取速度2500メートル/分で溶融紡糸した繊維
600D(この繊維のDSCにより測定した融点は225℃であっ
た)とを合撚して見掛け繊度4400Dのフィラメント糸を
作った。
[Example] Example 1 Commercially available PAN-based carbon fiber 6K yarn and fiber obtained by melt-spinning polybutylene terephthalate at a take-up speed of 2500 m / min.
This fiber was twisted with 600D (melting point of the fiber was 225 ° C as measured by DSC) to produce a filament yarn having an apparent fineness of 4400D.

このフィラメント糸を使用して、特公昭54−38673に
示された方法にもとづいて発明者が作成した手動製織装
置により、経糸・緯糸・垂直糸の3成分からなる立体織
物を調製した。経糸:緯糸:垂直糸の構成比率は25:25:
10とし、各糸の各軸方向のインチあたり打ち込み本数が
それぞれ表1に示す値±1本となるように装置条件を調
節した。このようにして得られた幅約50mm,厚さ約25mm
の立体織物を長さ約200mmに切断したものを供試プリフ
ォーム8とした。
Using this filament yarn, a three-dimensional woven fabric consisting of three components of warp, weft and vertical yarn was prepared by a manual weaving device created by the inventor based on the method shown in JP-B-54-38673. The ratio of warp: weft: vertical yarn is 25:25:
The apparatus conditions were adjusted to 10 so that the number of threads per inch in each axial direction of each thread was ± 1 shown in Table 1. Approximately 50 mm wide and 25 mm thick obtained in this way
The preform 8 was obtained by cutting the three-dimensional fabric of Example 1 into a length of about 200 mm.

この供試プリフォーム8を第1図のような治具11を用
いて繊維各軸方向に引張張力を加えて展張しできるだけ
直方体に近い状態で熱風乾燥機中に置き、265℃で約70
秒間保持した。ポリブチレンテレフタレート成分が融解
し炭素繊維間に浸透したのち取り出して室温冷却した。
The test preform 8 is stretched by applying a tensile force to each fiber in the axial direction using a jig 11 as shown in FIG. 1, placed in a hot-air dryer as close to a rectangular parallelepiped as possible,
Hold for 2 seconds. After the polybutylene terephthalate component melted and penetrated between the carbon fibers, it was taken out and cooled at room temperature.

ここで、第1図の治具11は、直方体の各々の辺を形成
するように組み立てられた複数のロッド12と、直方体の
各々の角部に設けられた孔13を有する。そして、プリフ
ォーム8を治具11の内部に配置し、プリフォーム8の各
々の角度に針金等の線条体14を連結し、この線条体14の
一方の端部を前記孔13に通して張力をかけることによっ
て、プリフォーム8の各々の角部を引張り、プリフォー
ム8を展張する。
Here, the jig 11 in FIG. 1 has a plurality of rods 12 assembled so as to form each side of the rectangular parallelepiped, and holes 13 provided at each corner of the rectangular parallelepiped. Then, the preform 8 is disposed inside the jig 11, a wire 14 such as a wire is connected to each angle of the preform 8, and one end of the wire 14 is passed through the hole 13. By applying tension, the corners of each preform 8 are pulled and the preform 8 is spread.

第2図はRI成形法に使用した成形型の概念図である。
試料室9の内寸法は50mm×25mm×200mmでSS鋼材にクロ
ムメッキ平滑仕上げしてあり、レジン注入口2とベント
口3が設けられている。試料室9内をフロン系離型剤で
処理して上記の展張熱処理した供試プリフォーム8をセ
ットした。成形型1の本体1aと本体1bを合わせて密閉し
た後、ベント口3を真空ポンプ系に接続して型内空気を
排除し、注入口2から表2に示される配合のエポキシレ
ジンを導入して型内に充満させ、その後成形型1をふた
たび熱風乾燥機中にうつして表3のプログラムにより加
熱硬化処理を行った。この樹脂の実質的硬化温度は90〜
120℃である。処理終了後−30℃/hrで徐冷し成形品を取
り出し供試試料[1]とした。
FIG. 2 is a conceptual diagram of a molding die used for the RI molding method.
The sample chamber 9 has an inner dimension of 50 mm × 25 mm × 200 mm, and is made of chrome-plated SS steel material and provided with a resin inlet 2 and a vent 3. The test preform 8 was set in the sample chamber 9 after the inside of the sample chamber 9 was treated with a fluorocarbon release agent and subjected to the above-mentioned stretching heat treatment. After the main body 1a and the main body 1b of the mold 1 are sealed together, the vent port 3 is connected to a vacuum pump system to eliminate air in the mold, and an epoxy resin having the composition shown in Table 2 is introduced from the inlet port 2. After that, the mold was filled in the mold, and then the mold 1 was returned to the hot air drier again and subjected to the heat curing treatment according to the program shown in Table 3. The practical curing temperature of this resin is 90 ~
120 ° C. After completion of the treatment, the molded product was gradually cooled at −30 ° C./hr and taken out to obtain a test sample [1].

・比較例1 市販のPAN系炭素繊維6K糸と、実施例1で用いた方法
・装置を使用して立体織物を調製した。経糸:緯糸:垂
直糸の構成は実施例1と同じになるように装置条件を調
節した。このようにして得た幅約50mm,厚さ約25mmの立
体織物を長さ約200mmに切断したものを供試プリフォー
ム8とした。その供試プリフォーム8を治具により展張
熱処理しないほかは実施例1と全く同様に図2の成形型
1により樹脂注入・加熱硬化処理して供試試料[2]を
つくった。
Comparative Example 1 A three-dimensional fabric was prepared using a commercially available PAN-based carbon fiber 6K yarn and the method and apparatus used in Example 1. The device conditions were adjusted so that the configuration of the warp: weft: vertical yarn was the same as in Example 1. The preform 8 was obtained by cutting the three-dimensional woven fabric thus obtained having a width of about 50 mm and a thickness of about 25 mm into a length of about 200 mm. Except that the test preform 8 was not stretched and heat-treated by a jig, the test sample [2] was produced by resin injection and heat curing using the mold 1 of FIG. 2 in exactly the same manner as in Example 1.

・供試試料[1]および[2]について成形表面にみら
れる炭素繊維成分の平行性・直交性を目視により観察・
比較評価した。
For the test samples [1] and [2], the parallelism and orthogonality of the carbon fiber components observed on the molding surface are visually observed.
Comparative evaluation was performed.

実施例の試料[1]では各表面のプリフォーム織組織
の乱れはほとんどないが、比較例の試料[2]では直方
体の稜線部において構成糸のたるみ・内層への落ち込み
などがみられ、とくに成形型1のレジン注入口2に近い
部位ではレジンの流れに直交する(緯)糸成分に若干の
弧状変形(ボウイング)が観察された。
In the sample [1] of the example, there is almost no disturbance of the preform weave structure on each surface, but in the sample [2] of the comparative example, the component yarns are slackened at the ridge of the rectangular parallelepiped and dropped into the inner layer. At a portion near the resin injection port 2 of the molding die 1, a slight arc-shaped deformation (bowing) was observed in the (weft) yarn component orthogonal to the resin flow.

・供試試料[1]および[2]を成形型1のレジン注入
口2とベント口3位置を結ぶ中心線に沿って(経糸方向
に)切断し、断面の垂直糸ピッチを観察した。表4に示
すように試料[1]では垂直糸のピッチにほとんど変動
がないが、試料[2]では成形型1のレジン注入口2に
近い部位を中心に垂直糸のピッチに明らかに不均一性が
認められた。
The test samples [1] and [2] were cut along the center line connecting the resin injection port 2 and the vent port 3 of the mold 1 (in the warp direction), and the vertical thread pitch of the cross section was observed. As shown in Table 4, the pitch of the vertical yarn in the sample [1] hardly fluctuated, but in the sample [2], the pitch of the vertical yarn was clearly non-uniform around the portion near the resin injection port 2 of the mold 1. Sex was observed.

尚、本実施例では治具11を用いて繊維各軸方向に引張
張力を加えて展張しながら、熱可塑性繊維素材であるポ
リブチレンテレフタレートを耐熱性繊維素材である炭素
繊維間に融解浸透させたが、繊維各軸方向に引張張力を
加えることなく、そのまま熱可塑性繊維素材を耐熱性繊
維素材間に融解浸透させても良い。これによれば、繊維
構造体本来の持つたわみ等の特性による若干の変形はあ
るが、レジン注入圧力による変形は前記実施例同様に防
止することができる。
In the present embodiment, the polybutylene terephthalate, which is a thermoplastic fiber material, was melt-infiltrated between carbon fibers, which are heat-resistant fiber materials, while applying tensile tension in the axial direction of each fiber using the jig 11 and expanding the fibers. However, the thermoplastic fiber material may be melted and infiltrated between the heat-resistant fiber materials without applying tensile tension in the axial direction of each fiber. According to this, although there is a slight deformation due to the inherent characteristics of the fiber structure such as deflection, the deformation due to the resin injection pressure can be prevented as in the above-described embodiment.

即ち、熱可塑性繊維素材を耐熱性繊維素材間に融解浸
透させることにより、3次元の繊維骨格材に予め適当な
構造剛性が付与され、又、熱可塑性繊維素材の熱変形温
度が熱硬化性マトリックスレジンの実質的硬化反応温度
よりも高いので、該マトリックスレジン注入、硬化時に
も熱可塑性繊維素材が熱変形することはなく、3次元の
繊維骨格材の構造剛性は維持されるのである。
That is, by melting and infiltrating the thermoplastic fiber material between the heat-resistant fiber materials, an appropriate structural rigidity is imparted to the three-dimensional fiber skeleton material in advance, and the heat deformation temperature of the thermoplastic fiber material is set to the thermosetting matrix. Since the temperature is higher than the substantial curing reaction temperature of the resin, the thermoplastic fiber material is not thermally deformed even during the injection and curing of the matrix resin, and the structural rigidity of the three-dimensional fiber skeleton material is maintained.

前述した実施例ではこれに加え、治具11を用いて繊維
各軸方向に引張張力を加えて展張しながら、熱可塑性繊
維素材であるポリブチレンテレフタレートを耐熱性繊維
素材である炭素繊維間に融解浸透させることで、この融
解浸透させる以前に起こりうる繊維構造体本来の持つた
わみ等の特性による3次元の繊維骨格材の変形をも防止
する。
In the above-described embodiment, in addition to the above, the polybutylene terephthalate, which is a thermoplastic fiber material, is melted between carbon fibers, which is a heat-resistant fiber material, while applying tensile tension in each fiber direction using a jig 11 and expanding the fiber. The infiltration also prevents the deformation of the three-dimensional fiber skeleton material due to the inherent characteristics of the fiber structure, such as deflection, which can occur before the melt infiltration.

[効果] 以上のように特許請求の範囲の1に記載の発明によれ
ば、熱可塑性繊維素材を耐熱性繊維素材間に溶解浸透さ
せることにより、3次元の繊維骨格材に予め適当な構造
剛性が付与され、又、熱可塑性繊維素材の熱変形温度が
熱硬化性マトリックスレジンの実質的硬化反応温度より
も高いので、該マトリックスレジン注入、硬化時にも熱
可塑性繊維素材が熱変形することはなく、3次元の繊維
骨格材の構造剛性は維持される。よって、3次元の繊維
骨格材における、熱硬化性マトリックスレジン注入圧力
による変形、及びその後の熱硬化時の変形を防止するこ
とができる。
[Effects] As described above, according to the first aspect of the present invention, the thermoplastic fiber material is dissolved and infiltrated between the heat-resistant fiber materials, whereby the structural rigidity suitable for the three-dimensional fiber skeleton material is previously obtained. Is added, and the thermal deformation temperature of the thermoplastic fiber material is higher than the substantial curing reaction temperature of the thermosetting matrix resin, so the thermoplastic resin material is not thermally deformed during the matrix resin injection and curing. The structural rigidity of the three-dimensional fiber skeleton is maintained. Therefore, it is possible to prevent deformation of the three-dimensional fiber skeleton material due to the thermosetting matrix resin injection pressure and deformation during subsequent thermosetting.

又、特許請求の範囲の2に記載の発明によれば、上記
した特許請求の範囲の1に記載の効果に加え、繊維構造
体本来の持つたわみ等の特性による3次元の繊維骨格材
の変形を防止することができる。
According to the second aspect of the present invention, in addition to the effects of the first aspect, deformation of the three-dimensional fiber skeleton material due to the inherent characteristics of the fiber structure such as flexure. Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明の概略図である。 1a成形型本体(2ツ割り) 1b成形型本体(2ツ割り) 2……レジン注入口、3……ベント口 8……プリフォーム 11……展張処理用治具、12……ロッド 13……孔、14……線状体 1 and 2 are schematic diagrams of the present invention. 1a Mold main body (split) 1b Mold main body (split) 2 ... Resin injection port, 3 ... Vent port 8 ... Preform 11 ... Expansion processing jig, 12 ... Rod 13 ... ... holes, 14 ... linear bodies

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3次元の繊維骨格材と熱硬化性のマトリッ
クスレジンとを主たる構成要素とする繊維強化複合体に
おいて、 3次元の該繊維骨格材は耐熱性繊維素材と熱可塑性繊維
素材とを混織、混撚ないし交編織して成り、 且つ該熱可塑性繊維素材の熱変形温度は熱硬化性の該マ
トリックスレジンの実質的硬化反応温度より高く、 3次元の繊維骨格材は熱可塑性繊維素材の熱変形温度以
上に加熱処理して賦形され、その後に熱硬化性のマトリ
ックスレジンを導入して含浸、硬化成型されることを特
徴とする繊維強化複合体。
1. A fiber reinforced composite comprising a three-dimensional fiber skeleton material and a thermosetting matrix resin as main components, wherein the three-dimensional fiber skeleton material comprises a heat-resistant fiber material and a thermoplastic fiber material. The thermoplastic fiber material has a heat deformation temperature higher than a substantial curing reaction temperature of the thermosetting matrix resin, and the three-dimensional fiber skeleton is a thermoplastic fiber material. A fiber-reinforced composite, which is shaped by heat treatment at a temperature not lower than the heat distortion temperature, and thereafter, is impregnated with a thermosetting matrix resin, and is cured and molded.
【請求項2】3次元の繊維骨格材と熱硬化性のマトリッ
クスレジンとを主たる構成要素とする繊維強化複合体に
おいて、 3次元の該繊維骨格材は耐熱性繊維素材と熱可塑性繊維
素材とを混織、混撚ないし交編織して成り、 且つ該熱可塑性繊維素材の熱変形温度は熱硬化性の該マ
トリックスジンの実質的硬化反応温度よりも高く、 3次元の繊維骨格材は引張張力を加えて展張しながら熱
可塑性繊維素材の熱変形温度以上に加熱処理して賦形さ
れ、その後に熱硬化性のマトリックスレジンを導入して
含浸、硬化成型されることを特徴とする請求項1に記載
の繊維強化複合体。
2. A fiber reinforced composite comprising a three-dimensional fiber skeleton and a thermosetting matrix resin as main components, wherein the three-dimensional fiber skeleton comprises a heat-resistant fiber material and a thermoplastic fiber material. The thermoplastic fiber material has a heat deformation temperature higher than a substantial curing reaction temperature of the thermosetting matrix gin, and the three-dimensional fiber skeleton is subjected to tensile tension. 2. The method according to claim 1, wherein the heat treatment is performed by heating at a temperature higher than the heat deformation temperature of the thermoplastic fiber material while being stretched, followed by shaping, followed by impregnation by introducing a thermosetting matrix resin. Fiber reinforced composite.
JP2152165A 1990-06-11 1990-06-11 Fiber reinforced composite and molding method Expired - Lifetime JP2870994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152165A JP2870994B2 (en) 1990-06-11 1990-06-11 Fiber reinforced composite and molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152165A JP2870994B2 (en) 1990-06-11 1990-06-11 Fiber reinforced composite and molding method

Publications (2)

Publication Number Publication Date
JPH0444834A JPH0444834A (en) 1992-02-14
JP2870994B2 true JP2870994B2 (en) 1999-03-17

Family

ID=15534448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152165A Expired - Lifetime JP2870994B2 (en) 1990-06-11 1990-06-11 Fiber reinforced composite and molding method

Country Status (1)

Country Link
JP (1) JP2870994B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424017A (en) * 1993-04-12 1995-06-13 Hinduja; Murli L. Method for forming fiber-reinforced articles

Also Published As

Publication number Publication date
JPH0444834A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US4913937A (en) Composite articles using meltable resin holding threads
KR100554969B1 (en) Fiber material partially impregnated with a resin
US11141949B2 (en) Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs
CA2879058C (en) A stitched unidirectional or multi-axial reinforcement and a method of producing the same
JP2007518608A (en) Stabilizable preform precursor and stabilized preform for composite materials, and method for stabilizing and reducing bulk of a preform
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
KR102492502B1 (en) A method for producing a dry preform produced by knitting, a method for producing a product made of a composite material from the preform
JP2870994B2 (en) Fiber reinforced composite and molding method
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
KR100580226B1 (en) fiber reinforced polymer pipe forming equipment for grouting and its manufacture method
KR102311409B1 (en) Method and apparatus for impregnating resin
FI97114C (en) Planar porous composite structure and method for its manufacture
Friedrich Commingled yarns and their use for composites
JP2004034592A (en) Method for manufacturing fiber reinforced composite material and fiber structure
JP3150354B2 (en) Method for producing voidless fiber reinforced plastic in pultrusion method
JPH02105830A (en) Production of carbon fibber braid
Stolyarov et al. Commingled composites
KR102439573B1 (en) Manufacturing method of carbon fiber-reinforced Acrylonitrile-Butadiene-Styrene composite by LFT process and long-fiber reinforced Acrylonitrile-Butadiene-Styrene composite manufactured thereby
JP3060581B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin
JP2605384B2 (en) Thermoplastic composite sheet for molding and molded article thereof
BR112021017379B1 (en) A SEW-IN MULTIAXIAL REINFORCEMENT
CN117363009A (en) Carbon fiber unidirectional cloth reinforced resin matrix composite material and preparation method thereof
JPH03254928A (en) Manufacture of netlike molding
JPH045544B2 (en)
JPH01133721A (en) Manufacture of carbon fiber reinforced thermoplastic resin molded product