JP2870407B2 - Remote tsunami forecast support system - Google Patents

Remote tsunami forecast support system

Info

Publication number
JP2870407B2
JP2870407B2 JP10770494A JP10770494A JP2870407B2 JP 2870407 B2 JP2870407 B2 JP 2870407B2 JP 10770494 A JP10770494 A JP 10770494A JP 10770494 A JP10770494 A JP 10770494A JP 2870407 B2 JP2870407 B2 JP 2870407B2
Authority
JP
Japan
Prior art keywords
tsunami
signal
arrival
time
distant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10770494A
Other languages
Japanese (ja)
Other versions
JPH07294325A (en
Inventor
功 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10770494A priority Critical patent/JP2870407B2/en
Publication of JPH07294325A publication Critical patent/JPH07294325A/en
Application granted granted Critical
Publication of JP2870407B2 publication Critical patent/JP2870407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、海中に設置する遠地津
波予報支援装置に係り、特に遠地でおきた地震波を伴う
断層運動に起因する地殻変動並びに海底火山爆発や海底
地滑りのような海水の急激な体積変化を伴う地殻活動に
伴う水中伝搬音響信号を利用して震源地、発振時刻を求
め、これにより特定地域への津波到達時刻を予測する機
能を備えた遠地津波予報支援装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distant tsunami forecasting support system installed under the sea, and particularly to a distant tsunami forecasting earthquake-related device.
The epicenter and oscillation time are obtained using underwater propagation acoustic signals associated with crustal movements caused by fault movement and crustal activity involving rapid changes in the volume of seawater such as submarine volcanic explosions and submarine landslides. The present invention relates to a distant tsunami forecasting support device having a function of predicting the arrival time of a tsunami.

【0002】[0002]

【従来の技術】従来の津波警報は、例えば「海洋物理II
I 」(海洋科学基礎講座3.295頁、東海大学出版会、19
81年)に紹介されているように、陸上にて観測された地
震波形の情報のみを利用し、津波の発生の有無を津波予
報図によって決定し、予報を行う方式である。
2. Description of the Related Art Conventional tsunami warnings include, for example, "Ocean Physics II".
I "(Marine Science Basic Course 3.295 pages, Tokai University Press, 19
(1981), this method uses only the information on the seismic waveforms observed on land to determine whether or not a tsunami has occurred using a tsunami forecast map, and then makes a forecast.

【0003】具体的には、従来の津波予報方式は、陸上
に多数設置された地震計(711 〜71n )と、震源地
推定器72と、津波判定器73と、津波到来時刻推定器
74とで基本的に構成され、次のようにして津波予報を
行っている(図7)。
[0003] Specifically, the conventional tsunami forecasting method comprises a large number of seismometers (71 1 to 71 n ) installed on land, an epicenter estimator 72, a tsunami determiner 73, and a tsunami arrival time estimator. The tsunami forecast is basically performed as follows (FIG. 7).

【0004】即ち、震源にて発生し、地中を伝搬してき
た地震波を陸上に多数設置された地震計(711 〜71
n )で計測し、その到達時刻、振幅を記録する。各地震
計からの到達時刻情報を利用し、震源地推定器72によ
り震源地を推定する。津波判定器73により震源が海底
下にあるか否かを判断し、各地震計に記録された振幅と
震央距離(震源地と各地震計の距離)を図8のような津
波予報図にプロットし、その近似曲線によって予想され
る津波の規模を推定する。津波の有無が判定された場
合、津波到来時刻推定器74にて重要港湾等予測したい
地域の津波到達時刻を算出し津波予報を発する。
That is, a large number of seismographs (71 1 to 71) installed on land are used to transmit seismic waves generated at the epicenter and transmitted underground.
n ) and record the arrival time and amplitude. Using the arrival time information from each seismograph, the epicenter is estimated by the epicenter estimator 72. The tsunami determiner 73 determines whether the epicenter is below the sea floor, and plots the amplitude and epicentral distance (distance between the epicenter and each seismograph) recorded on each seismograph on a tsunami forecast map as shown in Fig. 8. Then, the magnitude of the tsunami expected by the approximate curve is estimated. When the presence or absence of a tsunami is determined, a tsunami arrival time estimator 74 calculates a tsunami arrival time in an area to be predicted, such as an important port, and issues a tsunami forecast.

【0005】[0005]

【発明が解決しようとする課題】ところで、津波は、地
震波を伴う断層運動に起因する大規模な海底地殻変動に
よって生じる海面の上下運動が伝搬するものであるが、
海底火山爆発や海底地滑りといった主に海水の急激な体
積変化に起因し発生するものもある。この中で、地震発
生域が観測点から遠く離れている場合や、海水の体積変
化に起因する津波の場合、津波の被害に比して観測され
た地震波振幅が小さい場合がある。
By the way, the tsunami propagates the vertical movement of the sea surface caused by large-scale seafloor crustal deformation caused by fault movement accompanied by seismic waves.
Some occur mainly due to rapid changes in seawater volume, such as submarine volcanic explosions and submarine landslides. Among them, in the case where the earthquake occurrence area is far away from the observation point or in the case of a tsunami caused by a change in the volume of seawater, the amplitude of the observed seismic wave may be smaller than the damage caused by the tsunami.

【0006】従って、陸上観測点の地震計による従来の
津波予報方式では、地震動のエネルギーにはなりにくい
海底地滑りや、地震動の減衰が大きい遠地にて発生した
海底地殻変動による地震波信号が検知できず、津波の警
報も出せないという問題があった。
Therefore, the conventional tsunami forecasting method using a seismometer at a land-based observation point cannot detect a seismic wave signal due to a seafloor landslide hardly becoming energy of a seismic motion or a seafloor crustal deformation generated at a distant place where the seismic motion is greatly attenuated. However, there was a problem that a tsunami warning could not be issued.

【0007】また、各観測点への信号到来時刻の差が小
さくなるハワイやチリ等の遠地にて生じた地殻活動に起
因する津波に対する警報を出す場合、地震波到来方向が
どの観測点で観測したものも同じように観測されてしま
い、震源地推定能力が低く震源地の推定誤差が大きいま
たは推定不可能になるという問題もあった。
[0007] Further, when issuing a warning for a tsunami caused by crustal activity generated in distant places such as Hawaii and Chile, where the difference in signal arrival time at each observation point is small, which observation point was used to determine the arrival direction of the seismic wave. There was also a problem that the epicenter estimation ability was low and the estimation error of the epicenter was large or impossible to estimate.

【0008】本発明の目的は、これらの問題を解決する
ために、水中伝搬音響信号を用いて震源決定を行い、更
に津波の伝搬速度が伝搬経路の平均水深と重力加速度の
みに依存することを利用し、任意の沿岸地域における津
波到達時刻を算出できる遠地津波予報支援装置を提供す
ることにある。
An object of the present invention is to solve these problems by making an epicenter determination using underwater propagation acoustic signals, and furthermore, making the tsunami propagation velocity dependent only on the average water depth and gravitational acceleration of the propagation path. It is an object of the present invention to provide a distant tsunami forecasting support device that can calculate a tsunami arrival time in an arbitrary coastal area using the system.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明の遠地津波予報支援装置は次の如き構成を有
する。即ち、本発明の遠地津波予報支援装置は、遠地で
生起した地震波を伴う地殻変動や海底火山爆発などの海
水の急激な体積変化を伴う地殻活動に伴って発生する水
中伝搬音響信号の受信に基づいて特定地域に対する津波
の到来の予報を支援するセンサ海中設置型の遠地津波予
報支援装置であって、直交2軸の各軸に平行に配置した
所定距離離隔する対ハイドロフォンのそれぞれの1つを
前記直交2軸の原点位置に占位せしめる共有ハイドロフ
ォンとなし、前記対ハイドロフォンのそれぞれで水中伝
搬音響信号を受信する手段と; 受信した音響信号から
信号の到来方向を算出する手段と; 受信した音響信号
から信号の到来時刻を測定する手段と; 前記3つの手
段を1組とする複数の組手段により算出された到来方向
の交点を求めて前記交点を信号発生源(震源)として
定する手段と; を備えることを特徴とするものであ
る。
Means for Solving the Problems In order to achieve the above object, a remote tsunami forecasting support apparatus of the present invention has the following configuration. In other words, far-field tsunami forecast support apparatus of the present invention is, in the far-field
Oceans such as crustal deformation accompanied by seismic waves and submarine volcanic explosions
Water generated by crustal activity with rapid volume change of water
Tsunami for specific area based on reception of medium propagation acoustic signal
Tsunami Forecasting of Underwater Mounted Sensor for Supporting Forecasting
The information support device, wherein each one of the pair of hydrophones arranged in parallel to each of two orthogonal axes is separated by a predetermined distance.
A shared hydraulic that occupies the origin of the two orthogonal axes.
Means for receiving an underwater propagation sound signal with each of the hydrophones ; means for calculating the direction of arrival of the signal from the received sound signal; means for measuring the time of arrival of the signal from the received sound signal When; in that it comprises: means for estimation <br/> constant the intersection seeking intersection of direction of arrival calculated by the plurality of pairs means that a set of the three means signal source as (hypocenter) It is a feature.

【0010】そして、推定された信号発生源が海底付近
にあるか内陸部にあるかを判定し、海底付近にあるとき
は津波の到来を告知する警報を発する手段を備える。
Then, it is determined whether the estimated signal generation source is near the seabed or inland, and when it is near the seabed,
Is equipped with a means for issuing an alarm notifying the arrival of a tsunami .

【0011】また、推定された信号発生源と信号測定時
刻から、前記地殻活動に伴って生起する水中伝搬音響信
号の信号発生時刻(発振時刻)を推定する手段と; 信
号発生源と信号発生時刻及び予め内蔵している海域の水
深データから特定位置の津波予想到達時刻を算出し、
波の到来を告知する警報を発する手段と; を備える。
Further, based on the estimated signal source and the signal measurement time , the underwater propagation acoustic signal generated due to the crustal activity.
Signal generating time and means for estimating the (oscillation time) of No.; calculating a tsunami predicted arrival time at a specific position from the depth data of the sea with a built-signal source and the signal generation time and advance, Tsu
Means for issuing an alarm notifying the arrival of a wave .

【0012】[0012]

【作用】次に、前記の如く構成される本発明の作用を説
明する。水中音響信号は、地震波信号に比較して遠地
からの信号が減衰しにくい、海底近傍の特に海水の急
激な体積変化を誘発するような地殻活動の様相を反映し
やすい、伝搬速度が地殻を伝搬する地震波(5〜10
km/s)に比較して小さいため(1.5km/s)各
観測点の到達時刻差が大きく、信号到来方位の決定精度
が高い、という特徴を有する。
Next, the operation of the present invention configured as described above will be described. Underwater acoustic signals are less likely to attenuate signals from distant places than seismic signals, tend to reflect crustal activity in the vicinity of the sea floor, especially inducing rapid volume changes in seawater, and propagation speed propagates through the crust Earthquake wave (5-10
km / s) (1.5 km / s), the arrival time difference of each observation point is large, and the accuracy of determining the signal arrival direction is high.

【0013】そこで、本発明は、離隔配置した対ハイド
ロフォンの2対のうちのそれぞれの1つを、原点に配置
する共有ハイドロフォンとして直交配置してなる音響セ
ンサの複数個を水中に配置し、それぞれの音響センサの
受信信号から到来方位及び到来時刻を求めて震源の推定
が行えるようにしてある。
Accordingly, the present invention provides a method in which one of the two pairs of spaced apart hydrophones is placed at the origin.
A plurality of orthogonally arranged acoustic sensors are arranged underwater as shared hydrophones, and the direction of arrival and the time of arrival can be obtained from the received signals of each acoustic sensor to estimate the epicenter.

【0014】その結果、震源が海底付近にあるか内陸部
にあるかを判断でき、適切な警報が行える。また、監視
海域の水深データを備えることにより津波予想到達時刻
を算出でき、従来予報できなかった、または、精度の低
かった遠地津波のより正確な予報が行えることになる。
As a result, it can be determined whether the epicenter is near the sea floor or inland, and an appropriate alarm can be issued. Also, by providing the water depth data of the monitored sea area, the predicted tsunami arrival time can be calculated, and a more accurate forecast of a distant tsunami that could not be predicted conventionally or has low accuracy can be performed.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係る遠地津波予報支
援装置を示す。図1に示すように本実施例の装置は、音
響信号方位・時刻検出器(111 〜11n )と、震源地
推定器12と、発振時刻推定器13と、津波到来時刻推
定器14とで基本的に構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a distant tsunami forecasting support device according to one embodiment of the present invention. As shown in FIG. 1, the apparatus of this embodiment includes an acoustic signal direction / time detector (11 1 to 11 n ), an epicenter estimator 12, an oscillation time estimator 13, and a tsunami arrival time estimator 14. It is basically composed of

【0016】音響信号方位・時刻検出器(111 〜11
n )は、図2に示すように、音響センサ部21と、位相
処理部22と、到来方向演算部23と、時刻測定部24
と、到来時刻測定部25とで基本的に構成され、例えば
沿岸に沿った水中に配置される。
Sound signal azimuth / time detector (11 1 to 11)
n ), as shown in FIG. 2, an acoustic sensor unit 21, a phase processing unit 22, an arrival direction calculation unit 23, and a time measurement unit 24.
And an arrival time measuring unit 25, and are arranged, for example, underwater along the coast.

【0017】音響センサ部21は、所定距離離隔する対
ハイドロフォンを直交2軸の各軸に平行に配置して構成
され、各対ハイドロフォンが海中において波動信号を受
信するが、具体的には例えば図3のようになっている。
なお、音響センサ部21として円形で示すのは、音響信
号方位・時刻検出器(111 〜11n )の筐体が円筒状
であり、その中に音響センサ部21をはじめとして各構
成要素が組み込まれることをイメージしたものである。
The acoustic sensor section 21 is configured by arranging a pair of hydrophones separated by a predetermined distance in parallel with each of two orthogonal axes, and each hydrophone receives a wave signal in the sea. For example, it is as shown in FIG.
Incidentally, it indicated by circular as an acoustic sensor 21, a housing cylindrical acoustic signal azimuth-time detector (11 1 ~11 n), each component including the acoustic sensor unit 21 therein It is intended to be incorporated.

【0018】図3において、この音響センサ部21は、
31,32,33の3個のハイドロフォンで基本的に構
成されることを示している。即ち、3個のハイドロフォ
ンの中の(31,32)(31,33)は各々所定距離
離隔する対ハイドロフォンであり、この2組の対ハイド
ロフォンが、ハイドロフォン31を中心に互いに配列方
向が直交するように設置される。そして、対ハイドロフ
ォン(31,32)がx軸に、同(31,33)がy軸
に各々対応する。これら対ハイドロフォンにおける各々
のハイドロフォンの受信信号には時間差が生じる。
In FIG. 3, the acoustic sensor section 21
It is shown that it is basically composed of three hydrophones 31, 32 and 33. That is, (31, 32) and (31, 33) of the three hydrophones are paired hydrophones that are separated from each other by a predetermined distance. Are installed so as to be orthogonal. The hydrophones (31, 32) correspond to the x axis, and the hydrophones (31, 33) correspond to the y axis. There is a time difference between the received signals of these hydrophones with respect to the hydrophones.

【0019】そこで、位相処理部22では対ハイドロフ
ォン(31,32)の受信信号から到達時間差τx を、
対ハイドロフォン(31,33)の受信信号から到達時
間差τy を各々算出し、到来方向演算部23に与える。
ここに、各対ハイドロフォンにおける到達時間差は、伝
搬速度Vの波動信号が図4に示すようにx軸から角度θ
の方向で、対ハイドロフォンの間隔をdとすると、数式
1で表される。
Therefore, the phase processing unit 22 calculates the arrival time difference τ x from the received signal of the hydrophone (31, 32),
The arrival time differences τ y are calculated from the reception signals of the hydrophones (31, 33), respectively, and provided to the arrival direction calculation unit 23.
Here, the arrival time difference between each hydrophone is represented by the angle θ from the x-axis as shown in FIG.
In the direction of, if the distance between the hydrophones is d, it is expressed by Equation 1.

【0020】[0020]

【数1】τx =(d・cosθ)/V τy =(d・sinθ)/VΤ x = (d · cos θ) / V τ y = (d · sin θ) / V

【0021】到来方向演算部23では、水平面内到来方
向θを数式2によって算出し、到来時刻測定部25に与
える。
The arrival direction calculation unit 23 calculates the arrival direction θ in the horizontal plane by the following equation (2), and gives it to the arrival time measurement unit 25.

【0022】[0022]

【数2】θ=tan-1(τy /τx## EQU2 ## θ = tan −1y / τ x )

【0023】そして、到来時刻測定部25では、常時時
刻のカウントを行っている時刻測定部24の時刻データ
のうち信号到達が認識された場合その時の時刻を記録す
る。
The arrival time measuring section 25 records the time at which the arrival of the signal is recognized among the time data of the time measuring section 24 which constantly counts the time.

【0024】図1に戻って震源地推定器12では、以上
のように複数の音響信号方位・時刻検出器11にて推定
された到来方向をもとに震源を推定する。具体的には図
5に示すように、音響信号方位・時刻検出器(111
11n )にて算出された方位線51〜同54を結んだ地
点を震源地55と推定する。これにより震源が海洋にあ
るか内陸部にあるかを判断できる。
Returning to FIG. 1, the epicenter estimator 12 estimates the epicenter based on the directions of arrival estimated by the plurality of acoustic signal direction / time detectors 11 as described above. Specifically, as shown in FIG. 5, the sound signal azimuth and time detectors (11 1 to 11 1 )
The point connecting the azimuth lines 51 to 54 calculated in 11 n ) is estimated as the epicenter 55. This makes it possible to determine whether the epicenter is in the ocean or inland.

【0025】発振時刻推定器13では、震源地55と音
響信号方位・時刻検出器(111 〜11n )それぞれと
の間の距離Δn (n=1,2,…,n:以下同じ)を求
め、予め音響信号方位・時刻検出器11n にて測定され
た到来時刻Tn より発振時刻を数式3より算出する。
[0025] In the oscillation time estimator 13, epicenter 55 and the acoustic signal azimuth-time detector (11 1 to 11 n) distance delta n between each (n = 1,2, ..., n : hereinafter the same) The oscillation time is calculated from Equation 3 based on the arrival time T n previously measured by the acoustic signal direction / time detector 11 n .

【0026】[0026]

【数3】T0 ={Σ(Tn −Δn /V)}/nT 0 = {(T n −Δ n / V)} / n

【0027】次に、津波到来時刻推定器14は、図6に
示す構成により、以上のように推定された震源地55と
発振時刻T0 をもとに任意の各地の津波到来時刻を推定
する。
Next, the tsunami arrival time estimator 14 having the configuration shown in FIG. 6, to estimate the tsunami arrival time of any local based estimated epicenter 55 the oscillation time T 0 as described above .

【0028】即ち、図6において、津波伝搬経路平均水
深算出部64は、推定地点座標入力部61に入力される
津波到来時刻を求めたい地点の座標と、震源地座標入力
部62に震源地推定器から自動的に入力される震源地座
標と、水深データ記録部63からの水深データとにより
各推定地点座標までの平均水深を求める。
That is, in FIG. 6, the tsunami propagation path average water depth calculation unit 64 calculates the tsunami arrival time, which is input to the estimated point coordinate input unit 61, and the epicenter location estimation unit 62 which inputs the tsunami arrival time. The average water depth up to the coordinates of each estimated point is obtained from the epicenter coordinates automatically input from the vessel and the water depth data from the water depth data recording unit 63.

【0029】周知のように、この平均水深をhとする
と、重力加速度をgとして、津波平均伝搬速度Vn は数
式4で表されるので、予想津波到来時刻算出部65に
て、推定地点の津波到達時刻を数式5により算出すれ
ば、警報を与えることができる。
[0029] As is well known, the average water depth is h, the acceleration of gravity as g, since the tsunami average propagation velocity V n is expressed by Equation 4, at the expected tsunami arrival time calculating unit 65, the estimated location If the tsunami arrival time is calculated by Expression 5, a warning can be given.

【0030】[0030]

【数4】Vn =√(gh)V n = √ (gh)

【0031】[0031]

【数5】Tn =T0 +Δn /Vn T n = T 0 + Δ n / V n

【0032】[0032]

【発明の効果】以上説明したように、本発明の津波予報
支援装置では、地震波に比較して伝搬速度が遅く、海底
近傍で発生した地殻活動に対して敏感な音響信号を用い
て、到来方向、到来時刻を複数のセンサで測定すること
により震源決定を行い、津波予想到達時刻を算出できる
ようにしたので、従来予報できなかった又は精度の低か
った津波の、より正確な予報を行うことができる。
As described above, the tsunami forecasting support apparatus of the present invention uses an acoustic signal that has a slower propagation speed than seismic waves and is sensitive to crustal activity that has occurred near the sea floor, and uses a sound arrival direction. The tsunami was estimated by measuring the arrival time with multiple sensors, and the estimated tsunami arrival time was calculated, so that more accurate forecasts of tsunamis that could not be predicted before or had low accuracy were made possible. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る遠地津波予報支援装置
の構成ブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a remote tsunami forecasting support apparatus according to an embodiment of the present invention.

【図2】音響信号方位・時刻検出器の構成ブロック図で
ある。
FIG. 2 is a configuration block diagram of an acoustic signal direction / time detector.

【図3】音響センサ部を構成するハイドロフォンの配列
を示す図である。
FIG. 3 is a diagram showing an arrangement of hydrophones constituting an acoustic sensor unit.

【図4】波動信号の到来方向と音響センサ部の位置関係
図である。
FIG. 4 is a diagram illustrating a positional relationship between an arrival direction of a wave signal and an acoustic sensor unit.

【図5】震源地推定器による震源決定要領を示す概略図
である。
FIG. 5 is a schematic diagram showing an epicenter determination procedure by an epicenter estimator.

【図6】津波到来時刻推定器の構成ブロック図である。FIG. 6 is a configuration block diagram of a tsunami arrival time estimator.

【図7】従来の津波予報方式のブロック図である。FIG. 7 is a block diagram of a conventional tsunami forecast method.

【図8】従来の津波予報に用いられている津波予報図で
ある。
FIG. 8 is a tsunami forecast diagram used for a conventional tsunami forecast.

【符号の説明】[Explanation of symbols]

11 音響信号方位・時刻検出器 12 震源地推定器 13 発振時刻推定器 14 津波到来時刻推定器 21 音響センサ部 22 位相処理部 23 到来方向演算部 24 時刻測定部 25 到来時刻測定部 31〜33 ハイドロフォン 61 推定地点座標入力部 62 震源地座標入力部 63 水深データ記録部 64 津波伝搬経路平均水深算出部 65 予想津波到達時刻算出部 71 地震計 72 震源地推定器 73 津波判定器 74 津波到来時刻推定器 θ 信号の到来方向 DESCRIPTION OF SYMBOLS 11 Acoustic signal direction and time detector 12 Epicenter estimator 13 Oscillation time estimator 14 Tsunami arrival time estimator 21 Acoustic sensor unit 22 Phase processing unit 23 Arrival direction calculation unit 24 Time measurement unit 25 Arrival time measurement unit 31-33 Hydro Phone 61 Estimated point coordinate input section 62 Epicenter coordinate input section 63 Water depth data recording section 64 Tsunami propagation path average water depth calculation section 65 Predicted tsunami arrival time calculation section 71 Seismograph 72 Epicenter estimator 73 Tsunami determiner 74 Tsunami arrival time estimation Device θ signal arrival direction

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 遠地で生起した地震波を伴う地殻変動や
海底火山爆発などの海水の急激な体積変化を伴う地殻活
動に伴って発生する水中伝搬音響信号の受信に基づいて
特定地域に対する津波の到来の予報を支援するセンサ海
中設置型の遠地津波予報支援装置であって、直交2軸の
各軸に平行に配置した所定距離離隔する対ハイドロフォ
ンのそれぞれの1つを前記直交2軸の原点位置に占位せ
しめる共有ハイドロフォンとなし、前記対ハイドロフォ
ンのそれぞれで水中伝搬音響信号を受信する手段と;
受信した信号から信号の到来方向を算出する手段と;
受信した音響信号から信号の到来時刻を測定する手段
と; 前記3つの手段を1組とする複数の組手段により
算出された到来方向の交点を求めて前記交点を信号発生
源(震源)として推定する手段と; を備えることを特
徴とする遠地津波予報支援装置。
1. Crustal deformation accompanied by seismic waves generated at a distance
Crustal activity with rapid volume change of seawater such as submarine volcanic explosion
Based on the reception of underwater acoustic signal generated by motion
A sensor sea that supports forecasting of tsunami arrivals in specific areas
A distant tsunami forecasting support device of a middle installation type, wherein one of each pair of hydrophones arranged in parallel to each of the two orthogonal axes and separated by a predetermined distance is occupied at the origin position of the two orthogonal axes.
With or without the shared hydrophone
Means for receiving an underwater propagating acoustic signal at each of the
Means for calculating the direction of arrival of the signal from the received signal;
Means for measuring the arrival time of the received signal from the acoustic signal; estimating the intersections obtain the intersection of direction of arrival calculated by the plurality of pairs means that a set of the three means signal source as (hypocenter) Means for performing a distant tsunami forecasting support apparatus, comprising:
【請求項2】 前記推定された信号発生源が海底付近に
あるか内陸部にあるかを判定し、海底付近にあるときは
津波の到来を告知する警報を発する手段; を備えるこ
とを特徴とする請求項1に記載の遠地津波予報支援装
置。
Wherein determining whether the estimated signal source is in the inland or near the sea floor, when in the vicinity of the seabed
The distant tsunami forecast support apparatus according to claim 1, further comprising: means for issuing an alarm notifying the arrival of a tsunami.
【請求項3】 前記推定された信号発生源と信号測定時
刻から前記地殻活動に伴って生起する水中伝搬音響信号
信号発生時刻(発振時刻)を推定する手段と; 信号
発生源と信号発生時刻及び予め内蔵している海域の水深
データから特定位置の津波予想到達時刻を算出し、津波
の到来を告知する警報を発する手段と; を備えること
を特徴とする請求項1に記載の遠地津波予報支援装置。
3. A water propagation acoustic signal occurring along with the crustal activity from said estimated signal source and the signal measurement time
Means for estimating the signal generation time (oscillation time) of the tsunami; calculating the estimated arrival time of the tsunami at a specific position from the signal generation source, the signal generation time, and the built-in water depth data of the tsunami;
Means for issuing an alarm notifying the arrival of the distant tsunami forecasting support device according to claim 1, characterized by comprising:
JP10770494A 1994-04-22 1994-04-22 Remote tsunami forecast support system Expired - Lifetime JP2870407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10770494A JP2870407B2 (en) 1994-04-22 1994-04-22 Remote tsunami forecast support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10770494A JP2870407B2 (en) 1994-04-22 1994-04-22 Remote tsunami forecast support system

Publications (2)

Publication Number Publication Date
JPH07294325A JPH07294325A (en) 1995-11-10
JP2870407B2 true JP2870407B2 (en) 1999-03-17

Family

ID=14465835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10770494A Expired - Lifetime JP2870407B2 (en) 1994-04-22 1994-04-22 Remote tsunami forecast support system

Country Status (1)

Country Link
JP (1) JP2870407B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220486B2 (en) * 2004-03-30 2009-02-04 株式会社東芝 Earthquake Tsunami Prediction Monitoring System and Earthquake Tsunami Prediction Monitoring Method
JP6198218B2 (en) * 2012-09-25 2017-09-20 公益財団法人鉄道総合技術研究所 Tsunami evacuation measures for railway operations

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461566A (en) * 1977-10-26 1979-05-17 Hitachi Ltd Underwater locating device for diver
JPS57104948A (en) * 1980-12-23 1982-06-30 Olympus Optical Co Ltd Multi-sheet copying electrophotographic method
JPS6095376A (en) * 1983-10-31 1985-05-28 Fujitsu Ltd Tidal wave forecasting device
JPS63206620A (en) * 1987-02-24 1988-08-25 J R C Totsuki Kk Triaxial sensor for measuring hydro-acoustic intensity

Also Published As

Publication number Publication date
JPH07294325A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
CA2707036C (en) Seismic sensor devices
Kato et al. Real-time observation of tsunami by RTK-GPS
NO340006B1 (en) Procedure for interpolating and extrapolating seismic recordings
Zhao et al. Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit
MX2011008293A (en) Particle motion sensor-based streamer positioning system.
Suzuki et al. Seismicity near the hypocenter of the 2011 off the Pacific coast of Tohoku earthquake deduced by using ocean bottom seismographic data
WO2015187312A1 (en) Magnetic field measurement via streamer cables
Chen et al. Automated GNSS and teleseismic earthquake inversion (AutoQuake Inversion) for tsunami early warning: retrospective and real-time results
US20040073373A1 (en) Inertial augmentation of seismic streamer positioning
Inazu et al. Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis
Slack et al. P wave detection thresholds, Pn velocity estimates, and T wave location uncertainty from oceanic hydrophones
RU2436134C1 (en) Method for rapid investigation of atmosphere, earth&#39;s surface and ocean
CN112904428B (en) Ocean shallow stratum profile detection system and method
CN109632258A (en) A kind of internal wave of ocean acoustic detection method that the transmitting-receiving based on vector sensor is isolated
JP2870407B2 (en) Remote tsunami forecast support system
Gokhberg et al. Ionospheric response to submarine earthquake of March 11, 2011, in Japan according to GPS observations
Occhipinti et al. Tsunami detection by GPS
US8634270B2 (en) Determining sea conditions in marine seismic spreads
Webb et al. Very low frequency ambient noise at the seafloor under the Beaufort Sea icecap
Papoulia et al. Microseismicity and active deformation of Messinia, SW Greece
JP2518531B2 (en) Underwater acoustic signal detector
RU2484504C1 (en) Bottom station
US20130077435A1 (en) Methods and apparatus for streamer positioning during marine seismic exploration
Poplavskiy et al. Recordings of long‐period fluctuations associated with the passage of three distinct tsunamis at broadband seismometers made at the International Monitoring System (IMS) Hydroacoustic T‐station H06 (Socorro Island, Mexico)
LeVeque et al. Developing a warning system for inbound tsunamis from the Cascadia subduction zone