JP2862414B2 - End plate structure of pressure vessel - Google Patents

End plate structure of pressure vessel

Info

Publication number
JP2862414B2
JP2862414B2 JP25710791A JP25710791A JP2862414B2 JP 2862414 B2 JP2862414 B2 JP 2862414B2 JP 25710791 A JP25710791 A JP 25710791A JP 25710791 A JP25710791 A JP 25710791A JP 2862414 B2 JP2862414 B2 JP 2862414B2
Authority
JP
Japan
Prior art keywords
equation
plate structure
head plate
pressure vessel
end plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25710791A
Other languages
Japanese (ja)
Other versions
JPH0571643A (en
Inventor
智明 伊与久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25710791A priority Critical patent/JP2862414B2/en
Publication of JPH0571643A publication Critical patent/JPH0571643A/en
Application granted granted Critical
Publication of JP2862414B2 publication Critical patent/JP2862414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、圧力容器の鏡板の構造
に関し、特にその高さが最小となるように形成された圧
力容器の鏡板構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure vessel head plate structure, and more particularly to a pressure vessel head plate structure formed to have a minimum height.

【0002】[0002]

【従来の技術】従来、圧力容器の鏡板構造には、図6に
示すような構造が広く用いられる。すなわち、円筒シェ
ルからなる胴部4に対して符号1で示す部分が鏡板構造
であり、この鏡板構造1はトーラス面の一部からなる符
号2で示す部分と球殻の一部からなる符号3で示す部分
の組み合わせからなっている。一般に球殻は、内圧に対
して周方向に圧縮膜力は生じないが、容積効率のすぐれ
た円筒部をできるだけ有効に使って圧力容器の高さを小
さくするためにこのような球殻部3とトーラス面2との
組み合わせが用いられている。トーラス面2と球殻部3
との接合部(接点)5では、トーラス面2および球殻部
3のそれぞれの接線が滑らかにつながっている。同様に
トーラス面2と胴部4も滑らかにつながっている。
2. Description of the Related Art Conventionally, a structure as shown in FIG. 6 is widely used as a head plate structure of a pressure vessel. That is, a portion indicated by reference numeral 1 with respect to the body portion 4 formed of a cylindrical shell has a head plate structure, and the head plate structure 1 has a portion indicated by reference numeral 2 which is a part of a torus surface and a reference numeral 3 which is part of a spherical shell. It consists of a combination of parts indicated by. In general, the spherical shell does not generate a compressive membrane force in the circumferential direction with respect to the internal pressure. However, in order to reduce the height of the pressure vessel by effectively using a cylindrical part having excellent volumetric efficiency, such a spherical shell 3 is used. And the torus surface 2 are used. Torus surface 2 and spherical shell 3
At the junction (contact point) 5, the tangents of the torus surface 2 and the spherical shell 3 are smoothly connected. Similarly, the torus surface 2 and the trunk 4 are smoothly connected.

【0003】上述したような従来の鏡板構造を有する圧
力容器に内圧を加えたときの周方向の応力分布を図7に
示す。図7中で横軸には圧力容器の頂点から図6の矢印
7の方向へ測ったガース長をとってある。また、縦軸に
は応力をとり、図7(a)のグラフはシェルの内表面の
周方向応力、図7(b)のグラフは外表面の周方向応力
を示している。図7からわかるように圧縮応力(−)が
一部生じているが、これは図6のトーラス面2の部分に
生じている。このようにトーラス面2では球殻部3と異
なり内圧に対して圧縮応力を生じるため、この種の従来
の鏡板構造では、この圧縮力に対する座屈強度を考慮す
る必要がある。
FIG. 7 shows a stress distribution in the circumferential direction when an internal pressure is applied to the above-mentioned conventional pressure vessel having a head plate structure. In FIG. 7, the horizontal axis represents the girth length measured from the top of the pressure vessel in the direction of arrow 7 in FIG. The vertical axis represents stress. The graph in FIG. 7A shows the circumferential stress on the inner surface of the shell, and the graph in FIG. 7B shows the circumferential stress on the outer surface. As can be seen from FIG. 7, a part of the compressive stress (−) is generated, but this is generated in the portion of the torus surface 2 in FIG. As described above, since the torus surface 2 generates a compressive stress with respect to the internal pressure unlike the spherical shell portion 3, it is necessary to consider the buckling strength with respect to this compressive force in this kind of conventional head plate structure.

【0004】また、図8はシェル表面の子午線に沿って
等価応力(Misesstress)の大きさ9を示したものであ
る。トーラス面2と球殻部3との接合部5の近傍で高い
応力が生じている。これは接合部5で2つの曲面の曲率
半径が異なるため、変形を連続とするための曲げモーメ
ントが生じることに起因している。実際の設計では、こ
のピーク応力と前述の座屈強度とが考慮されてシェルの
板厚が決まることになる。
FIG. 8 shows the magnitude 9 of the equivalent stress (Misesstress) along the meridian on the shell surface. High stress is generated near the joint 5 between the torus surface 2 and the spherical shell 3. This is due to the fact that the curvature radius of the two curved surfaces at the joint 5 is different, so that a bending moment for making the deformation continuous is generated. In an actual design, the thickness of the shell is determined in consideration of the peak stress and the buckling strength described above.

【0005】このように、球殻部3とトーラス面2との
組み合わせからなる従来の鏡板構造では、トーラス面2
の特性から内圧に対して周方向圧縮応力が生じ座屈の危
険性があるとともに、球殻部3とトーラス面2との接合
部5では曲率半径の不連続から大きな曲げ応力が発生
し、等価応力のピークが存在するため許容応力設計が厳
しくなる。さらにこのピークの近傍に溶接線が存在する
ために、疲労強度設計にも細心の注意が必要である。そ
のため、鏡板構造1を2つの曲面の組み合わせではなく
単一の滑らかな曲面で構成することが考えられる。この
ような例として、特定の縦横比B/Aを有する楕円
([数2]式参照)を回転させて得られる曲面(回転楕
円体)を鏡板に用いれば、周方向応力を引張応力となし
うることが知られている(図9参照)。
As described above, in the conventional head plate structure composed of the combination of the spherical shell 3 and the torus surface 2, the torus surface 2
Due to the characteristics described above, there is a danger of buckling due to a circumferential compressive stress due to the internal pressure, and a large bending stress is generated at the joint 5 between the spherical shell 3 and the torus surface 2 due to the discontinuity of the radius of curvature. The presence of a stress peak makes the allowable stress design strict. Furthermore, since a welding line exists near this peak, great care must be taken in designing fatigue strength. Therefore, it is conceivable that the end plate structure 1 is constituted by a single smooth curved surface instead of a combination of two curved surfaces. In such an example, if a curved surface (spheroid) obtained by rotating an ellipse having a specific aspect ratio B / A (see equation (2)) is used as a head plate, circumferential stress is regarded as tensile stress. Is known (see FIG. 9).

【数2】 (Equation 2)

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
たような特定の縦横比を有する楕円を回転させて得られ
る曲面を圧力容器の鏡板構造に用いた場合、鏡板構造の
高さが大きくなってしまい、コスト面あるいは構造の制
約上望ましくないという問題点がある。本発明は、この
ような問題点の解決をはかろうとするもので、ある微分
方程式の解として求められた曲面すなわち内圧に対して
周方向応力が0となるような単一の滑らかな曲面を、鏡
板構造の形状として用いることにより、曲げモーメント
による高応力,周方向座屈,疲労強度に関して上記鏡板
構造の信頼性が高くなり、かつその高さが最小となるよ
うな、圧力容器の鏡板構造を提供することを目的とす
る。
However, when a curved surface obtained by rotating an ellipse having a specific aspect ratio as described above is used for the head plate structure of the pressure vessel, the height of the head plate structure becomes large. However, there is a problem that it is not desirable due to cost or structural restrictions. The present invention seeks to solve such a problem, and forms a single smooth curved surface such that the circumferential stress becomes 0 with respect to the internal pressure, that is, a surface obtained as a solution of a certain differential equation. By using as the shape of the head plate structure, the reliability of the head plate structure with respect to high stress due to bending moment, circumferential buckling, and fatigue strength is increased, and the height of the head plate structure is minimized. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
め、本発明の圧力容器の鏡板構造は、圧力容器の鏡板が
曲線を回転させて得られる単一の滑らかな曲面をもつよ
うに形成されて、上記曲線が前述の[数1]式で表示さ
れることにより、内圧に対して周方向に圧縮膜力が発生
しない鏡板構造のうちで高さが最小となるように構成し
たこと特徴としている。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the pressure vessel head plate structure of the present invention is formed such that the pressure vessel head plate has a single smooth curved surface obtained by rotating a curve. Then, the curve is represented by the above-mentioned [Equation 1], so that the height is minimized in the end plate structure in which the compressive film force is not generated in the circumferential direction with respect to the internal pressure. And

【0008】[0008]

【作用】上述の本発明の圧力容器の鏡板構造では、鏡板
が前述の[数1]式で表示される曲線を回転させて得ら
れる単一の滑らかな曲面をもつように形成されることに
より、内圧に対して周方向に圧縮膜力が発生せず、か
つ、その高さが最小となる。
In the above-described head plate structure of the pressure vessel of the present invention, the head plate is formed so as to have a single smooth curved surface obtained by rotating the curve represented by the above [Equation 1]. In addition, no compression film force is generated in the circumferential direction with respect to the internal pressure, and the height thereof is minimized.

【0009】[0009]

【実施例】以下、図面により本発明の一実施例としての
圧力容器の鏡板構造について説明すると、図1はその鏡
板の断面形状を示す部分図、図2は図1の形状の導出に
用いた座標系を示す説明図、図3は上記鏡板構造を採用
した圧力容器の正面図、図4は上記圧力容器の応力解析
のためのモデル図、図5は上記応力解析の結果を表すグ
ラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a head plate structure of a pressure vessel according to an embodiment of the present invention; FIG. FIG. 3 is a front view of a pressure vessel employing the end plate structure, FIG. 4 is a model diagram for stress analysis of the pressure vessel, and FIG. 5 is a graph showing a result of the stress analysis. .

【0010】まず、図1に表されるような曲線の導出過
程を以下に示す。導出に用いられた座標系は図2(a)
のように設定され、図中の符号10は曲面を軸対称回転軸
11を含む平面で切ったときの曲線を示している。またr
1は曲線の曲率半径、r2は曲線の法線が回転軸と交わる
点までの距離である。そして上記の座標系では、図2
(a)中の記号を用いると、次の[数3〜5]式で表さ
れる関係が成り立つ。
First, a process of deriving a curve as shown in FIG. 1 will be described below. The coordinate system used for the derivation is shown in FIG.
The reference numeral 10 in the figure indicates a curved surface that is an axis of rotational symmetry.
The curve when cut by a plane including 11 is shown. Also r
1 of curvature of the curve radius, r 2 is the distance to the point where the normal line of the curve intersects the rotation axis. And in the above coordinate system, FIG.
When the symbols in (a) are used, the relationship represented by the following [Equations 3 to 5] holds.

【数3】 (Equation 3)

【数4】 (Equation 4)

【数5】 (Equation 5)

【0011】一方、シェル要素に働く外力および発生す
る膜力は図2(b)のようになり、図2(b)の記号を
用いて釣り合いの方程式を立てると、次の[数6〜8]
式が得られる。(スプリンガー社発行 W.フリューゲ
著「ストレス イン シェルズ」第2版参照)
On the other hand, the external force acting on the shell element and the generated film force are as shown in FIG. 2B. When a balance equation is established using the symbols in FIG. 2B, the following [Equations 6 to 8] are obtained. ]
An expression is obtained. (See "Stress in Shells", 2nd edition, by W. Flüge, published by Springer)

【数6】 (Equation 6)

【数7】 (Equation 7)

【数8】 (Equation 8)

【0012】内圧あるいは外圧を受ける場合、膜力分布
が軸対称となるため、[数7]式は常に満足され、[数
6]式は[数9]式と変形される。
When an internal pressure or an external pressure is applied, the film force distribution becomes axially symmetric. Therefore, the expression (7) is always satisfied, and the expression (6) is transformed into the expression (9).

【数9】 そして[数3,8,9]式より子午線方向膜力Nφは次
の[数10]式のようになる。
(Equation 9) Then, the membrane force N φ in the meridian direction is given by the following [Equation 10] from [Equation 3, 8, 9].

【数10】 C:積分定数 いま[数10]式に[数3,5]式を代入して内圧Pr=P
のみを考えると、Nφは次式のようになる。
[Equation 10] C: Integral constant Now, substituting equation (3,5) into equation (10), internal pressure Pr = P
Considering only the above, N φ is as follows.

【数11】 鏡板構造全体に作用する力は、円筒部の半径をaとする
とπa2Pだから、円筒部との境界([数12]参照)の
位置で[数13]式となる。
[Equation 11] The force acting on the entire end plate structure is πa 2 P, where a is the radius of the cylindrical portion. Therefore, the expression at the position of the boundary with the cylindrical portion (see [Expression 12]) is expressed by [Expression 13].

【数12】 (Equation 12)

【数13】 (Equation 13)

【0013】一方、[数11]式に[数12,14]式を代入
して、[数15]式が得られるが、[数13,15]式により積
分定数Cは0となる。したがって[数11]式は次の[数
16]式のように変形できる。
On the other hand, by substituting [Equation 12 and 14] into [Equation 11], [Equation 15] is obtained, but the integration constant C becomes 0 according to [Equation 13 and 15]. Therefore, [Equation 11] becomes the following [Equation 11]
16].

【数14】r=a[Equation 14] r = a

【数15】 (Equation 15)

【数16】 (Equation 16)

【0014】さらに[数3,5,16]式を[数8]式に代
入して変形すると、[数17]式となる。
Further, when [Equation 3, 5, 16] is substituted into [Equation 8] and transformed, it becomes [Equation 17].

【数17】 θ=0となるためには、上に凸な曲線を対象とすれば
sinφ≧0だから次の[数18]式を満足することが必要
十分である。
[Equation 17] In order to satisfy N θ = 0, if an upwardly convex curve is targeted,
Since sinφ ≧ 0, it is necessary and sufficient to satisfy the following [Equation 18].

【数18】 この[数18]の微分方程式を[数12]式のとき[数14]
式という条件下で解くと、次の[数19]式という解が得
られる。
(Equation 18) When the differential equation of [Equation 18] is expressed by [Equation 12], [Equation 14]
Solving under the condition of the equation yields the following equation (19).

【数19】 (Equation 19)

【0015】なお[数19]式により0≦r≦aである。
そして、[数4]式と[数19]式から次の[数20]の微
分方程式が得られる。
Note that 0 ≦ r ≦ a according to [Equation 19].
Then, the following differential equation of [Equation 20] is obtained from [Equation 4] and [Equation 19].

【数20】 r=0のときZ=0であることより、[数20]式の解は
次の[数21]式のようになる。
(Equation 20) Since r = 0 when Z = 0, the solution of the [Equation 20] becomes the following [Equation 21].

【数21】 (0≦r≦a) [数21]式で表される曲線Z(r)は、頂点r=0では接
線の傾きが0で、円筒シェルとの接合部(r=a)では
傾きが∞となっており、接合部では滑らかにつながって
いる。
[Equation 21] (0 ≦ r ≦ a) In the curve Z (r) represented by the equation (21), the slope of the tangent is 0 at the vertex r = 0, and the slope is ∞ at the joint (r = a) with the cylindrical shell. It is smoothly connected at the joint.

【0016】次に、[数21]式で表される曲線を回転さ
せて得られる曲面で形成された鏡板構造を採用した例に
ついて説明する。図3に示すように、本例では、圧力容
器は円筒シェル胴部13,上部鏡板構造12および下部鏡板
構造14から構成されており、上部鏡板構造12に本発明の
鏡板構造が採用されている。そして上記圧力容器は支持
構造15により基盤の上に固定されている。なお図3中の
点線は周方向応力が引張応力となるようにした楕円回転
体(図9参照)の鏡板構造のなかで、その高さが最小と
なるものを示しており、その最小の縦横比(円筒シェル
の半径と鏡板の高さとの比)は次の[数22]式のように
なる。一方、本発明の鏡板構造の縦横比は図1に示すよ
うに約0.599であるから、その高さは上記の回転楕円体
の鏡板構造に比べ15%程度低くなっている。
Next, an example will be described in which a head plate structure formed by a curved surface obtained by rotating a curve represented by the equation (21) is employed. As shown in FIG. 3, in this example, the pressure vessel is composed of a cylindrical shell body 13, an upper head plate structure 12, and a lower head plate structure 14, and the head plate structure of the present invention is adopted for the upper head plate structure 12. . The pressure vessel is fixed on a base by a support structure 15. The dotted line in FIG. 3 indicates the end plate structure of the ellipsoidal rotator (see FIG. 9) in which the circumferential stress is changed to the tensile stress, the height of which is the minimum, and the minimum length and width thereof are shown. The ratio (ratio between the radius of the cylindrical shell and the height of the head plate) is expressed by the following [Equation 22]. On the other hand, since the aspect ratio of the head plate structure of the present invention is about 0.599 as shown in FIG. 1, its height is about 15% lower than that of the above-mentioned spheroid head plate structure.

【数22】 [Equation 22]

【0017】さて、以上述べたような本発明の圧力容器
の鏡板構造に内圧をかけた場合の応力解析の結果を次に
説明する。解析コードには“BOSOR”(差分法によ
る軸対称シェル構造用応力解析プログラム)を用いた。
図4に示す解析モデル図中、矢印16方向に沿う部材は鏡
板構造を示し、矢印17方向に沿う部材は円筒部を示し、
矢印18方向は図5のグラフの横軸の方向(鏡板構造の頂
点から子午線方向へ測ったガース長の方向)を示してお
り、曲線上の各点がメッシュポイントである。図5にお
いて、(a)のグラフで縦軸に子午線方向(矢印18方
向)の膜力をとり、(b)のグラフでは縦軸に周方向膜
力をとっている。図5(b)のグラフからわかるよう
に、周方向膜力は鏡板の広い範囲にわたって0に近い値
を示している。sinφ>0の条件がくずれる頂点近傍で
は正の値となっているが、内圧に対して座屈が発生する
可能性は極めて低い。このようにして、本発明によれ
ば、内圧に対して周方向に圧縮膜力が生じない鏡板構造
を、従来に比べ小型にすることができるため、製造コス
トを低減できるなどの効果が得られる。
Now, the result of the stress analysis when the internal pressure is applied to the head plate structure of the pressure vessel of the present invention as described above will be described below. "BOSOR" (a stress analysis program for an axisymmetric shell structure by the difference method) was used as the analysis code.
In the analysis model diagram shown in FIG. 4, members along the direction of arrow 16 indicate a head plate structure, members along the direction of arrow 17 indicate cylindrical portions,
The direction of arrow 18 indicates the direction of the horizontal axis of the graph in FIG. 5 (the direction of the girth length measured from the vertex of the end plate structure in the meridian direction), and each point on the curve is a mesh point. In FIG. 5, the vertical axis indicates the membrane force in the direction of the meridian (the direction of arrow 18) in the graph of FIG. 5A, and the vertical axis indicates the circumferential membrane force in the graph of FIG. As can be seen from the graph of FIG. 5B, the circumferential membrane force shows a value close to 0 over a wide range of the head plate. Although it has a positive value near the vertex where the condition of sin φ> 0 is broken, the possibility of buckling with respect to the internal pressure is extremely low. As described above, according to the present invention, the head plate structure that does not generate a compressive membrane force in the circumferential direction with respect to the internal pressure can be reduced in size as compared with the related art, so that effects such as a reduction in manufacturing cost can be obtained. .

【0018】[0018]

【発明の効果】以上詳述したように、本発明の圧力容器
の鏡板構造によれば、内圧に対して周方向に圧縮膜力が
発生しないという条件のもとで、鏡板の高さを最小とす
ることができるので、製造コストを低減できるという効
果が得られる。また、圧力容器の設置スペースが小さく
なるという効果も得られる。
As described above in detail, according to the head plate structure of the pressure vessel of the present invention, the height of the head plate can be minimized under the condition that no compression film force is generated in the circumferential direction with respect to the internal pressure. Therefore, the effect that the manufacturing cost can be reduced can be obtained. Further, the effect that the installation space of the pressure vessel is reduced is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としての圧力容器の鏡板構造
の要部の断面形状を示す部分図である。
FIG. 1 is a partial view showing a cross-sectional shape of a main part of a head plate structure of a pressure vessel as one embodiment of the present invention.

【図2】図1の形状の導出に用いた座標系を示す説明図
である。
FIG. 2 is an explanatory diagram showing a coordinate system used for deriving the shape of FIG. 1;

【図3】図1の鏡板構造を採用した圧力容器の正面図で
ある。
FIG. 3 is a front view of a pressure vessel employing the end plate structure of FIG.

【図4】図1の鏡板構造の応力解析のためのモデル図で
ある。
FIG. 4 is a model diagram for stress analysis of the end plate structure of FIG. 1;

【図5】図4の鏡板構造の応力解析の結果を表すグラフ
である。
FIG. 5 is a graph showing a result of stress analysis of the head plate structure of FIG.

【図6】従来の圧力容器の鏡板構造の断面図である。FIG. 6 is a sectional view of a head plate structure of a conventional pressure vessel.

【図7】従来の圧力容器の鏡板構造の内圧に対する周方
向応力分布図である。
FIG. 7 is a circumferential stress distribution diagram with respect to internal pressure of a head plate structure of a conventional pressure vessel.

【図8】従来の圧力容器の鏡板構造の内圧に対する等価
応力分布図である。
FIG. 8 is an equivalent stress distribution diagram with respect to an internal pressure of a head plate structure of a conventional pressure vessel.

【図9】圧力容器の鏡板構造を回転楕円体で形成したと
きの断面形状図である。
FIG. 9 is a cross-sectional shape diagram when the head plate structure of the pressure vessel is formed of a spheroid.

【符号の説明】[Explanation of symbols]

10 曲線 11 軸対称回転軸 12 上部鏡板構造 13 円筒シェル胴部 14 下部鏡板構造 15 支持構造 16 鏡板構造 17 円筒部 18 鏡板構造の頂点から子午線方向へ測ったガース長方
10 Curve 11 Axisymmetric rotation axis 12 Upper end plate structure 13 Cylindrical shell body 14 Lower end plate structure 15 Support structure 16 End plate structure 17 Cylindrical portion 18 Girth length direction measured from the top of the end plate structure in the meridian direction

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧力容器の鏡板が曲線を回転させて得ら
れる単一の滑らかな曲面をもつように形成されて、上記
曲線が次式で表示されることにより、内圧に対して周方
向に圧縮膜力が発生しない鏡板構造のうちで高さが最小
となるように構成したことを特徴とする、圧力容器の鏡
板構造。 【数1】 (0≦r≦a) ただし r:回転軸からの距離 a:円筒部の半径
1. A head plate of a pressure vessel is formed so as to have a single smooth curved surface obtained by rotating a curve, and the curve is represented by the following equation, so that the pressure plate has a circumferential direction with respect to an internal pressure. An end plate structure for a pressure vessel, wherein the end plate structure has a minimum height among end plate structures that do not generate a compressive membrane force. (Equation 1) (0 ≦ r ≦ a) where r: distance from rotation axis a: radius of cylindrical part
JP25710791A 1991-09-09 1991-09-09 End plate structure of pressure vessel Expired - Lifetime JP2862414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25710791A JP2862414B2 (en) 1991-09-09 1991-09-09 End plate structure of pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25710791A JP2862414B2 (en) 1991-09-09 1991-09-09 End plate structure of pressure vessel

Publications (2)

Publication Number Publication Date
JPH0571643A JPH0571643A (en) 1993-03-23
JP2862414B2 true JP2862414B2 (en) 1999-03-03

Family

ID=17301832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25710791A Expired - Lifetime JP2862414B2 (en) 1991-09-09 1991-09-09 End plate structure of pressure vessel

Country Status (1)

Country Link
JP (1) JP2862414B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297873A (en) * 1999-04-15 2000-10-24 Fuji Koki Corp Motor-operated valve
WO2018079818A1 (en) 2016-10-31 2018-05-03 三菱ケミカル株式会社 Pressure container and container body
CN110837693B (en) * 2019-10-21 2023-05-12 广州广电计量检测股份有限公司 Method for simplifying limited boundary of pressure container

Also Published As

Publication number Publication date
JPH0571643A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
JP5646413B2 (en) Pressure vessel
JP2862414B2 (en) End plate structure of pressure vessel
CN109736973B (en) Storage tank transition ring and propellant storage tank
AU2005288768A1 (en) Gland seal and corresponding assembly
JPS60121333A (en) Helical spring
JPS58106259A (en) Torus-shaped pressure vessel consisting of composite material
JPS587863B2 (en) Bellows with reinforcement ring
CN105631165A (en) Connection design method of multi-egg shaped bionic pressure shell
US5043217A (en) Composite to metal joint for torsional shafts
JPS6236095B2 (en)
SA515370219B1 (en) Beverage can end having an arcuate panel wall and curved transition wall
JP4546655B2 (en) CVJ boots
WO2022126501A1 (en) Plastic spring, pump core, emulsion pump, and press-type packaging container
US8714400B2 (en) Pressure vessel with irregular shape
CN210034116U (en) D-head bolt and aircraft engine
JP7135740B2 (en) steel sheet pile
CN215970961U (en) Latex wheel rim
JP2597357B2 (en) Deformed wire rope
JPS6149103A (en) Turbine rotor blade linking equipment
JPH06106345A (en) Stress reduction welding structure of pressure vessel
CN214007761U (en) Connecting rod upper bearing bush, connecting rod bearing bush and engine
JPS5810027Y2 (en) Composite spring for railway vehicles
SU966386A1 (en) T-piece
JPS5854241A (en) Leaf spring of fiber reinforced plastics
JPH0472134A (en) Aluminum can

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981104