JPH06106345A - Stress reduction welding structure of pressure vessel - Google Patents
Stress reduction welding structure of pressure vesselInfo
- Publication number
- JPH06106345A JPH06106345A JP28070892A JP28070892A JPH06106345A JP H06106345 A JPH06106345 A JP H06106345A JP 28070892 A JP28070892 A JP 28070892A JP 28070892 A JP28070892 A JP 28070892A JP H06106345 A JPH06106345 A JP H06106345A
- Authority
- JP
- Japan
- Prior art keywords
- shell
- pressure vessel
- toroidal
- cylindrical shell
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は圧力容器の応力低減溶接
構造に関する。FIELD OF THE INVENTION The present invention relates to a stress-reduced welded structure for a pressure vessel.
【0002】[0002]
【従来の技術】圧力容器としては、従来、例えば、図5
側面図に示すように、工作性,容積効率及び耐圧性の総
合観点から、円筒シエル01の両端をそれぞれトロイダ
ル(TOROIDAL)シエル02及び球シエル03で
形成された鏡板構造で塞がれたものが、広く採用されて
いる。2. Description of the Related Art As a pressure vessel, a conventional pressure vessel, for example, FIG.
As shown in the side view, from the overall viewpoint of workability, volumetric efficiency, and pressure resistance, both ends of the cylindrical shell 01 are closed by the end plate structure formed by the toroidal shell 02 and the spherical shell 03, respectively. , Widely adopted.
【0003】しかしながら、このような構造では、圧力
容器が内圧pを受けると曲率の不連続となる各シエルの
溶接部に曲げ応力が発生し、これが膜応力と重なり合い
高い応力が局部的に存在するので、下記のような欠点が
ある。 (1) 設計基準等により設計する場合、許容応力に対する
要求寸法が大きくなる。 (2) 疲労強度に対する要求寸法が大きくなる。 (3) 面倒な表面加工や検査が要求される。However, in such a structure, when the pressure vessel receives the internal pressure p, a bending stress is generated in the welded portion of each shell having a discontinuity of curvature, which overlaps with the film stress and a high stress locally exists. Therefore, it has the following drawbacks. (1) When designing according to design standards, the required size for allowable stress increases. (2) The required size for fatigue strength increases. (3) Troublesome surface processing and inspection are required.
【0004】[0004]
【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、両端の鏡板構造におけ
る各シエルの溶接部にそれぞれ局部的な曲げ応力が発生
しにくい、したがって各シエルの板厚を減少することが
できるとともに、面倒な表面加工や検査が不要な経済性
に優れた圧力容器の応力低減溶接構造を提供することを
目的とする。SUMMARY OF THE INVENTION The present invention has been proposed in view of such circumstances, and local bending stress is unlikely to be generated in the welded portions of each shell in the end plate structure at both ends. An object of the present invention is to provide a stress-reduced welded structure for a pressure vessel which can reduce the thickness of shell and which is economical and requires no complicated surface processing or inspection.
【0005】[0005]
【課題を解決するための手段】そのために、本発明は円
筒シエルの両端がそれぞれトロイダルシエルと球シエル
で形成された鏡板構造で塞がれた圧力容器において、上
記円筒シエルと上記各トロイダルシエルとをそれぞれ接
続する外合わせ溶接部と、上記各トロイダルシエルと上
記各球シエルとをそれぞれ接続する外合わせ溶接部とを
具えたことを特徴とする。Therefore, according to the present invention, in a pressure vessel in which both ends of a cylindrical shell are closed by an end plate structure formed of a toroidal shell and a spherical shell, respectively, the cylindrical shell and the toroidal shell are And an external welding portion for connecting the toroidal shells and the ball shells, respectively.
【0006】[0006]
【作用】このような構成によれば、円筒シエルと各トロ
イダルシエルとをそれぞれ接続する外合わせ溶接部と、
上記各トロイダルシエルと各球シエルとをそれぞれ接続
する外合わせ溶接部とを設けることにより、各シエルの
曲率が不連続となる各溶接部に生ずる曲げモーメントと
逆方向の曲げモーメントをそれぞれ上記各溶接部に発生
せしめているので、下記の作用が行われる。 (1) 溶接部に発生する曲げ応力が減少し、板厚増加の防
止が可能となる。 (2) 溶接部の疲労強度が向上し、板厚増加の防止が可能
となるとともに、面倒な表面加工や検査が不要となる。According to this structure, an externally welded portion connecting the cylindrical shell and each toroidal shell,
By providing an external welding portion that connects each of the toroidal shells and each of the ball shells, the bending moment generated in each welding portion in which the curvature of each shell is discontinuous and the bending moment in the opposite direction are respectively applied to each welding portion. Since it is generated in the part, the following action is performed. (1) Bending stress generated in the welded part is reduced, and it is possible to prevent an increase in plate thickness. (2) The fatigue strength of the welded part is improved, and it is possible to prevent an increase in plate thickness, and it becomes unnecessary to perform troublesome surface processing and inspection.
【0007】[0007]
【実施例】本発明の一実施例を図面について説明する
と、まず、図1側面図及び部分拡大縦断面図において、
1は半径a、板厚t1 で内圧pを受ける円筒シエル、2
は円筒シエル1の前後端にそれぞれ外合わせ溶接部3に
より溶着されるとともに円筒シエル1の板厚t1 より厚
い板厚t2 を有する前後1対のトロイダルシエルであ
る。4はそれぞれ前端部のトロイダルシエル2の前端,
後端部のトロイダルシエル2の後端に外合わせ溶接部5
により溶着されるとともに、トロイダルシエル2の板厚
t2 より薄い板厚t3 を有する前後1対の球シエル、6
はそれぞれトロイダルシエル2と球シエル4とが協働し
て形成する前後1対の鏡板構造、7は円筒シエル1,各
トロイダルシエル2及び各球シエル4が協働して形成す
る圧力容器である。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. First, in the side view of FIG.
1 is a cylindrical shell having a radius a and a plate thickness t 1 and receiving an internal pressure p, 2
Is a toroidal shell of 1 pair of front and rear with a thick plate thickness t 2 than the plate thickness t 1 of the cylindrical shell 1 while being welded by the respective outer alignment welds 3 to the front and rear ends of the cylindrical shell 1. 4 is the front end of the toroidal shell 2 at the front end,
Externally welded part 5 to the rear end of the toroidal shell 2 at the rear end
Together are welded by, before and after a pair of spherical shell having a thin plate thickness t 3 than the thickness t 2 of the toroidal shell 2, 6
Is a pair of front and rear end plate structures formed by the toroidal shell 2 and the ball shell 4 in cooperation with each other, and 7 is a pressure vessel formed by the cylindrical shell 1, each toroidal shell 2 and each ball shell 4 in cooperation with each other. .
【0008】このような構造において、図2部分縦断面
図に示すように、圧力容器に内圧pが作用すると、円筒
シエル1の端部、すなわち、外合わせ溶接部3に内表面
で引張り、外表面で圧縮となる曲げモーメントM2 が生
じ、この大きさは目違い量e、面内力PのときM2 =P
e/2となる。一方、図3側面図に示すようにトロイダ
ルシエル2から円筒シエル1に作用するせん断力Q0 と
曲げモーメントM0 を考えると、E.マイスナー,
S.P.テイモシエンコの近似理論より半径a/板厚t
1 が30より大きいときは、曲げモーメントを伝達して
いるトロイダルシエル2の部分は、円筒シエル1の一部
として取扱えるので、円筒シエル1とトロイダルシエル
2の間に極端な板厚差がない場合、せん断力Q0 により
外合わせ溶接部3の両側で同じ大きさの回転を生ずるた
め曲げモーメントM0 はほぼゼロと見なせる。In such a structure, as shown in the vertical sectional view of FIG. 2, when the internal pressure p acts on the pressure vessel, the end portion of the cylindrical shell 1, that is, the external welding portion 3 is pulled by the inner surface, A bending moment M 2 that causes compression on the surface is generated, and this magnitude is M 2 = P when the misalignment amount e and the in-plane force P
It becomes e / 2. On the other hand, considering the shearing force Q 0 and the bending moment M 0 acting on the cylindrical shell 1 from the toroidal shell 2 as shown in the side view of FIG. Meissner,
S. P. According to Teimo Schienko's approximation theory, radius a / plate thickness t
When 1 is larger than 30, the portion of the toroidal shell 2 transmitting the bending moment can be handled as a part of the cylindrical shell 1, so there is no extreme difference in plate thickness between the cylindrical shell 1 and the toroidal shell 2. In this case, since the shearing force Q 0 causes the same amount of rotation on both sides of the externally welded welded portion 3, the bending moment M 0 can be regarded as almost zero.
【0009】したがって、円筒シエル1の端部には、せ
ん断力Q0 による曲げモーメントM1 のみが生じてい
る。これは、円筒シエル1の外表面で引張り、内表面で
圧縮となり、図2の目違い量eにより生ずる曲げモーメ
ントM2 に対して逆方向のモーメントであるので、円筒
シエル1とトロイダルシエル2の溶接部を外合わせ溶接
部3とすることにより、図4線図に示すように、せん断
力Q0 により曲げモーメントM1 を減少させることがで
き、外合わせ溶接部3に生ずる曲げ応力を低減すること
ができる。Therefore, only the bending moment M 1 due to the shearing force Q 0 is generated at the end of the cylindrical shell 1. This is a moment that is pulled on the outer surface of the cylindrical shell 1 and compressed on the inner surface, and is a moment in the direction opposite to the bending moment M 2 generated by the misalignment amount e in FIG. 2, so that the cylindrical shell 1 and the toroidal shell 2 have By forming the welded portion as the externally welded portion 3, the bending moment M 1 can be reduced by the shearing force Q 0 as shown in the diagram of FIG. 4, and the bending stress generated in the externally welded portion 3 can be reduced. be able to.
【0010】さらに、具体的に応力の低下率を検討する
と、図1に示すように内圧p,半径a,円筒シエル1の
板厚t1 のとき、球シエル4とトロイダルシエル2の部
分が長軸/短軸=2の楕円シエルと見なせる場合、円筒
シエル1の端部での母線方向の表面応力の最大値は式
(1) で示される。 (σx )max =(ap)(2t)-1+3ap{t〔3(1−ν2 )〕0.5 }-1 ζπ4-1=2.172ap(2t)-1…………(1) ここで、ν=0.3(ポワソン比),ζ(x)=e-xs
inx これは表面応力が内圧pによる母線方向の膜応力ap
(2t)-1の2.172倍に達していることを示す。こ
こで本発明の目違い量eによる曲げ応力を考慮すると、
これは、目違いから離れることによる減衰係数を1/3
として、 (1/3)×〔(ap)/2〕×(e/2)×(6/t2 )=(e/t)×〔 (ap)/(2t)〕…………(2) ここで、例えば、t1 =37mm,e=10mmとすると、 (e/t)×〔(ap)/(2t)〕=0.270ap/(2t)………(3) これを式(1) から減ずると、 (σx )max −〔(0.270ap)/(2t)〕=1.902ap/(2t )………(4) すなわち、表面応力の最大値(σx )max は(1) 式のそ
れの88%までに低下する。Furthermore, when the rate of decrease in stress is examined specifically, as shown in FIG. 1, when the internal pressure p, the radius a, and the plate thickness t 1 of the cylindrical shell 1, the portions of the spherical shell 4 and the toroidal shell 2 are long. When it can be regarded as an elliptical shell with axis / minor axis = 2, the maximum value of the surface stress in the generatrix direction at the end of the cylindrical shell 1 is calculated by the formula
It is indicated by (1). (Σ x ) max = (ap) (2t) -1 + 3ap {t [3 (1-ν 2 )] 0.5 } -1 ζπ4 -1 = 2.172ap (2t) -1 (1) Here Where ν = 0.3 (Poisson's ratio), ζ (x) = e −x s
inx This is the film stress ap in the generatrix direction where the surface stress is due to the internal pressure p.
It shows that it has reached 2.172 times of (2t) −1 . Here, considering the bending stress due to the misalignment amount e of the present invention,
This is 1/3 of the damping coefficient by moving away from the misalignment.
As (1/3) × [(ap) / 2] × (e / 2) × (6 / t 2 ) = (e / t) × [(ap) / (2t)] .... (2 ) Here, for example, assuming that t 1 = 37 mm and e = 10 mm, (e / t) × [(ap) / (2t)] = 0.270ap / (2t) ... (3) (Σ x ) max − [(0.270ap) / (2t)] = 1.902ap / (2t) ... (4) That is, the maximum value of surface stress (σ x ) max is It drops to 88% of that of equation (1).
【0011】同様の作用は、曲率の違いはあっても、ト
ロイダルシエル2と球シエル4との接合部である外合わ
せ溶接部5についても成立する。The same action is also established for the external welded portion 5 which is the joint between the toroidal shell 2 and the spherical shell 4 although the curvatures are different.
【0012】このような、実施例の構造によれば、円筒
シエルと各トロイダルシエルとをそれぞれ接続する外合
わせ溶接部と、上記各トロイダルシエルと各球シエルと
をそれぞれ接続する外合わせ溶接部とを設けることによ
り、各シエルの曲率が不連続となる各溶接部に生ずる曲
げモーメントと逆方向の曲げモーメントをそれぞれ上記
各溶接部に発生せしめているので、下記効果が奏せられ
る。 (1) 溶接部に発生する曲げ応力が減少し、板厚増加の防
止が可能となり、したがって経済性が向上する。 (2) 溶接部の疲労強度が向上し、板厚増加の防止が可能
となるとともに、面倒な表面加工や検査が不要となり、
したがって経済性及び信頼性が向上する。According to the structure of the embodiment as described above, an external welding portion for connecting the cylindrical shell and each toroidal shell, and an external welding portion for connecting each of the toroidal shell and each ball shell are provided. By providing the bending moments in the opposite directions to the bending moments generated in the welded portions in which the curvatures of the shells are discontinuous, the following effects can be obtained. (1) The bending stress generated in the welded part is reduced, and it becomes possible to prevent an increase in plate thickness, thus improving the economical efficiency. (2) The fatigue strength of the welded part is improved, it is possible to prevent the increase in plate thickness, and it becomes unnecessary to perform troublesome surface processing and inspection.
Therefore, economic efficiency and reliability are improved.
【0013】[0013]
【発明の効果】要するに本発明によれば、円筒シエルの
両端がそれぞれトロイダルシエルと球シエルで形成され
た鏡板構造で塞がれた圧力容器において、上記円筒シエ
ルと上記各トロイダルシエルとをそれぞれ接続する外合
わせ溶接部と、上記各トロイダルシエルと上記各球シエ
ルとをそれぞれ接続する外合わせ溶接部とを具えたこと
により、両端の鏡板構造における各シエルの溶接部にそ
れぞれ局部的な曲げ応力が発生しにくい、したがって各
シエルの板厚を減少することができるとともに、面倒な
表面加工や検査が不要な経済性に優れた圧力容器の応力
低減溶接構造を得るから、本発明は産業上極めて有益な
ものである。In summary, according to the present invention, in the pressure vessel in which both ends of the cylindrical shell are closed by the end plate structure formed of the toroidal shell and the spherical shell, the cylindrical shell and the toroidal shell are connected to each other. By including the externally welded portion, and the externally welded portion that connects the toroidal shell and the ball shell, respectively, local bending stress is applied to the welded portion of each shell in the end plate structure at both ends. The present invention is extremely useful industrially because it is difficult to generate, and therefore, the plate thickness of each shell can be reduced, and a stress-reduced welded structure of a pressure vessel that is excellent in cost and does not require complicated surface processing or inspection is obtained. It is something.
【図1】本発明の一実施例を示す側面図及び部分拡大縦
断面図である。FIG. 1 is a side view and a partially enlarged vertical sectional view showing an embodiment of the present invention.
【図2】図1の外合わせ溶接部3に面内力が存在すると
きの曲げモーメントを示す部分拡大縦断面図である。2 is a partially enlarged vertical sectional view showing a bending moment when an in-plane force is present in the externally welded portion 3 of FIG.
【図3】図1のトロイダルシエル2から円筒シエル1に
作用するせん断力と曲げモーメントを示す部分側面図で
ある。FIG. 3 is a partial side view showing a shearing force and a bending moment acting on the cylindrical shell 1 from the toroidal shell 2 of FIG.
【図4】図1の円筒シエル1の母線に沿っての曲げモー
メントを示す線図である。FIG. 4 is a diagram showing bending moment along a generatrix of the cylindrical shell 1 of FIG. 1.
【図5】公知の圧力容器を示す側面図である。FIG. 5 is a side view showing a known pressure vessel.
1 円筒シエル 2 トロイダルシエル 3 外合わせ溶接部 4 球シエル 5 外合わせ溶接部 6 鏡板構造 7 圧力容器 a 半径 e 目違い量 M0 曲げモーメント M1 曲げモーメント M2 曲げモーメント P 面内力 p 内圧 Q0 せん断力 t1 板厚 t2 板厚 t3 板厚1 Cylindrical shell 2 Toroidal shell 3 Externally welded part 4 Ball shell 5 Externally welded part 6 End plate structure 7 Pressure vessel a Radius e Difference amount M 0 Bending moment M 1 Bending moment M 2 Bending moment P In-plane force p Internal pressure Q 0 Shearing force t 1 thickness t 2 thickness t 3 thickness
Claims (1)
シエルと球シエルで形成された鏡板構造で塞がれた圧力
容器において、上記円筒シエルと上記各トロイダルシエ
ルとをそれぞれ接続する外合わせ溶接部と、上記各トロ
イダルシエルと上記各球シエルとをそれぞれ接続する外
合わせ溶接部とを具えたことを特徴とする圧力容器の応
力低減溶接構造。1. A pressure vessel in which both ends of a cylindrical shell are closed by an end plate structure formed of a toroidal shell and a spherical shell, respectively, and an external welding portion for connecting the cylindrical shell and the toroidal shell, respectively. A stress-reducing welding structure for a pressure vessel, comprising: an externally welded portion that connects each of the toroidal shells and each of the ball shells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28070892A JPH06106345A (en) | 1992-09-25 | 1992-09-25 | Stress reduction welding structure of pressure vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28070892A JPH06106345A (en) | 1992-09-25 | 1992-09-25 | Stress reduction welding structure of pressure vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06106345A true JPH06106345A (en) | 1994-04-19 |
Family
ID=17628846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28070892A Withdrawn JPH06106345A (en) | 1992-09-25 | 1992-09-25 | Stress reduction welding structure of pressure vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06106345A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012011411A (en) * | 2010-06-30 | 2012-01-19 | Ihi Corp | Method of manufacturing support structure for tower or vessel, and support structure for tower or vessel |
JP2013113414A (en) * | 2011-11-30 | 2013-06-10 | Nippon Steel & Sumikin Engineering Co Ltd | Pressure vessel |
-
1992
- 1992-09-25 JP JP28070892A patent/JPH06106345A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012011411A (en) * | 2010-06-30 | 2012-01-19 | Ihi Corp | Method of manufacturing support structure for tower or vessel, and support structure for tower or vessel |
JP2013113414A (en) * | 2011-11-30 | 2013-06-10 | Nippon Steel & Sumikin Engineering Co Ltd | Pressure vessel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4462629A (en) | Construction of car structure | |
JPH06106345A (en) | Stress reduction welding structure of pressure vessel | |
US7097185B2 (en) | Suspension cross member | |
JPS63231087A (en) | Flange joint | |
JP4292980B2 (en) | Railcar bogie frame and railcar bogie | |
JP2000170247A (en) | Buckling stiffening member | |
JPH0724481Y2 (en) | Concrete filled steel tube column beam joint hardware | |
JP2862414B2 (en) | End plate structure of pressure vessel | |
JP3350651B2 (en) | Column-beam joint structure of steel structure | |
JP4289177B2 (en) | Double steel pipe brace material | |
JP2001227573A (en) | Energy absorbing member | |
JP3264015B2 (en) | Inclined joint welding method | |
JPH1162001A (en) | Semi-rigid joint structure in square steel-pipe column and steel beam construction | |
JPH06170991A (en) | Honeycomb sandwich panel | |
JPH056788B2 (en) | ||
JPH09256460A (en) | Structure for steel pipe column/beam joint | |
JP3418659B2 (en) | Curved frame | |
JPH0643596Y2 (en) | Flexible joint flange structure | |
JP2002033060A (en) | Funnel design of slim tube having improved funnel part | |
JPH04201635A (en) | Seat device for automobile | |
JPS6035167Y2 (en) | Band reinforced cathode ray tube | |
JPS6015297Y2 (en) | oil immersed transformer | |
JP2000096708A (en) | Column-beam connection structure | |
JP3418660B2 (en) | Joint structure of truss structure | |
JPS6233035B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |