JP2861265B2 - Josephson junction element - Google Patents

Josephson junction element

Info

Publication number
JP2861265B2
JP2861265B2 JP2139461A JP13946190A JP2861265B2 JP 2861265 B2 JP2861265 B2 JP 2861265B2 JP 2139461 A JP2139461 A JP 2139461A JP 13946190 A JP13946190 A JP 13946190A JP 2861265 B2 JP2861265 B2 JP 2861265B2
Authority
JP
Japan
Prior art keywords
thin film
intersection
josephson junction
substrate
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2139461A
Other languages
Japanese (ja)
Other versions
JPH0432276A (en
Inventor
純一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP2139461A priority Critical patent/JP2861265B2/en
Publication of JPH0432276A publication Critical patent/JPH0432276A/en
Application granted granted Critical
Publication of JP2861265B2 publication Critical patent/JP2861265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はジョセフソン接合を有する素子に関し、更に
詳しくは、高温超電導体等の臨界電流密度やコヒーレン
ト長に結晶異方性のある超電導体を用いたジョセフソン
接合素子に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a device having a Josephson junction, and more particularly, to a superconductor having crystal anisotropy in critical current density and coherent length such as a high-temperature superconductor. The present invention relates to a used Josephson junction device.

なお、本発明は、例えばSQUIDや赤外線検出器、ミキ
サ、三端子素子、コンピュータ等のジョセフソン効果を
利用したあらゆる素子に応用可能である。
Note that the present invention is applicable to any device using the Josephson effect, such as a SQUID, an infrared detector, a mixer, a three-terminal device, and a computer.

<従来の技術> YBCO等を初めとする高温超電導体薄膜を用いたジョセ
フソン接合素子については、既に多くの提案や報告がな
されているが(例えばAkinobu Irie et.al.,Japanese J
ounal of Applied Physics Vol.28,No.10,October,198
9,pp.L1816−1819)、現時点において実現しているもの
はその殆どが粒界接合を利用したものである。
<Prior art> Many proposals and reports have been made on Josephson junction devices using a high-temperature superconductor thin film such as YBCO (for example, Akinobu Irie et.al., Japanese J
ounal of Applied Physics Vol.28, No.10, October, 198
9, pp. L1816-1819), most of those realized at the present time use grain boundary bonding.

その理由は、高温超電導体のコヒーレント長がÅオー
ダーから十数Åと短いため、トンネル型にしろ、弱結合
型にしろ、人為的にジョセフソン効果が得られる形状が
できないことに起因している。
The reason is that the coherent length of the high-temperature superconductor is as short as Å order to more than ten Å, so it is impossible to artificially obtain a Josephson effect regardless of tunnel type or weak coupling type .

<発明が解決しようとする課題> ところで、粒界を利用したジョセフソン接合接合で
は、粒界という本来人為的にコントロールできないもの
を使用しているため、接合の位置や接合部の臨界温度、
臨界電流密度あるい臨界電流等、その重要なファクタに
おいてばらつきが多く、再現性良く良好な特性を持つ素
子を得ることはできない。
<Problems to be Solved by the Invention> By the way, in the Josephson junction using the grain boundary, a grain boundary, which cannot be controlled artificially, is used.
An important factor such as a critical current density or a critical current varies widely, and an element having good reproducibility and good characteristics cannot be obtained.

本発明の目的は、再現性良く製造することができ、か
つ、高性能の粒界ジョセフソン接合素子を提供すること
にある。
An object of the present invention is to provide a high-performance grain boundary Josephson junction device that can be manufactured with good reproducibility.

<課題を解決するための手段> 上記の目的を達成するための構成を、実施例に対応す
る第1図を参照しつつ説明すると、本発明は、基板1の
表面に、その底面に平行な平面である第1の面11と、こ
の第1の面11に対して鈍角θで交差し、かつ、その交差
部分から離れるに従って次第にその底面に平行に近づく
曲面である第2の面12が形成され、その基板1の表面
に、臨界電流密度およびコヒーレント長に結晶異方性を
有する超電導体薄膜製の細線2が、第1と第2の面11と
12の交線3を横切るように形成されていることによって
特徴付けられる。
<Means for Solving the Problems> A configuration for achieving the above object will be described with reference to FIG. 1 corresponding to the embodiment. A first surface 11 that is a plane and a second surface 12 that is a curved surface that intersects the first surface 11 at an obtuse angle θ and that gradually approaches parallel to the bottom surface as the distance from the intersection increases. On the surface of the substrate 1, a thin wire 2 made of a superconducting thin film having crystal anisotropy in critical current density and coherent length is formed on the first and second surfaces 11.
It is characterized by being formed so as to cross 12 intersection lines 3.

<作用> YBCOを初めとする高温超電導体薄膜では、一般に、臨
界電流密度およびコヒーレント長に結晶異方性が存在
し、特にc軸に直交する方向に対して臨界電流密度が大
となる。
<Effect> In a high-temperature superconductor thin film such as YBCO, crystal anisotropy generally exists in the critical current density and the coherent length, and the critical current density becomes large particularly in a direction perpendicular to the c-axis.

また、結晶の相互の結合状態によって、臨界電流密度
が変化することが知られている(PHYSICAL REVIEW LETT
ERS,Vol 61,No.2,pp219−222)。更に、YBCO薄膜を用い
て、その自然発生的にできたc軸が数度ずれたジョセフ
ソン接合を用いて、良好なSQUIDを得た報告もある(Cur
rent in YBCO Bridge by MO−CVD Thin Film,by Tsutom
u Yamashita et al.)。
It is also known that the critical current density changes depending on the mutual bonding state of crystals (PHYSICAL REVIEW LETT
ERS, Vol 61, No. 2, pp. 219-222). Furthermore, there has been a report that a good SQUID has been obtained by using a YBCO thin film and a Josephson junction in which the spontaneously formed c-axis is shifted by several degrees (Cur
rent in YBCO Bridge by MO-CVD Thin Film, by Tsutom
u Yamashita et al.).

本発明はこのような事実を利用している。 The present invention utilizes such a fact.

すなわち、高温超電導体薄膜等の臨界電流密度および
コヒーレント長に結晶異方性のある超電導体薄膜製の細
線2を、基板1上に相互に鈍角θで交差する第1と第2
の面11と12のその交線3を横切るように形成すること
で、第1と第2の面11と12上の薄膜細線2の結晶軸方向
を、第2図に模式的に示すように、その交差角θだけ強
制的にずらせることが可能となり、この部分でいわゆる
亜粒界を人為的に形成することができる。つまり、この
部分の臨界電流密度を強制的に低下させることにより、
弱結合を人為的に得ることが可能となる。また、第2の
面12は底面に平行に近づく曲面をなすので、弱結合が形
成されるのは上記の交差角θをなす交差部分、すなわ
ち、段差基板の上段と第2の面12の交差面だけであり、
この段差基板の下段とこの第2の面12には結晶の不連続
面となる界面は形成されない。
That is, the first and second thin wires 2 made of a superconductor thin film having crystal anisotropy in critical current density and coherent length such as a high-temperature superconductor thin film intersect each other at an obtuse angle θ on the substrate 1.
2 is formed so as to cross the intersection line 3 between the surfaces 11 and 12, so that the crystal axis direction of the thin film thin line 2 on the first and second surfaces 11 and 12 is schematically shown in FIG. Can be forcibly shifted by the intersection angle θ, and a so-called sub-grain boundary can be artificially formed at this portion. In other words, by forcibly reducing the critical current density of this part,
It is possible to artificially obtain a weak bond. In addition, since the second surface 12 is a curved surface approaching parallel to the bottom surface, the weak coupling is formed at the intersection at the intersection angle θ, that is, at the intersection of the upper stage of the stepped substrate and the second surface 12. Surface only,
No interface is formed between the lower portion of the step substrate and the second surface 12 as a discontinuous crystal surface.

<実施例> 第1図は本発明実施例の構成を示す図で、(a)は要
部平面図、(b)はそのA−A断面図である。
<Embodiment> FIGS. 1A and 1B are views showing a configuration of an embodiment of the present invention, wherein FIG. 1A is a plan view of a main part, and FIG.

MgO(100)基板1の表面には、底面に平行な平面であ
る第1の面11と、これに鈍角θで交差し、かつ、その交
差部分から離れるに従って次第に底面に平行に近づくよ
うな曲面である第2の面12が形成されている。
The surface of the MgO (100) substrate 1 has a first surface 11 which is a plane parallel to the bottom surface and a curved surface which intersects the first surface 11 at an obtuse angle θ and gradually approaches the bottom surface as the distance from the intersection increases. Is formed.

そして、この第1と第2の面11と12の交線3を横切る
ように、微小な幅寸法を持つc軸配向のYBCO高温超電導
体薄膜細線2が形成されている。なお、この細線2の両
端は同じYBCO高温超電導体薄膜からなる電極部4および
5に接続される。
The c-axis-oriented YBCO high-temperature superconductor thin film 2 having a minute width is formed so as to cross the intersection 3 of the first and second surfaces 11 and 12. Both ends of the fine wire 2 are connected to electrode portions 4 and 5 made of the same YBCO high-temperature superconductor thin film.

以上のような構造は、次のような手順によって製造で
きる。
The above structure can be manufactured by the following procedure.

まず、MgO(100)基板1の表面に、角度θで交わる第
1と第2の面11と12を形成するには、平板上の基板に第
1の面11の部分を覆うようにレジストをパターニングし
た後、Arイオンミリングでその基板表面をミリングす
る。このとき、ミリング条件を調整することにより、交
差部分の角度が比較的急峻で、そこから離れるに連れて
次第に底面に対して平行に近づくような曲面状の第2の
面12を得ることができる。
First, in order to form the first and second surfaces 11 and 12 which intersect at an angle θ on the surface of the MgO (100) substrate 1, a resist is applied to the substrate on a flat plate so as to cover the first surface 11 portion. After patterning, the substrate surface is milled by Ar ion milling. At this time, by adjusting the milling conditions, it is possible to obtain a curved second surface 12 in which the angle of the intersection is relatively steep and gradually approaches parallel to the bottom surface as the distance from the intersection increases. .

次に、基板1を550〜650℃に加熱した状態で、第1と
第2の面11と12の交線3を横切るようにYBCO薄膜を製膜
する。
Next, while the substrate 1 is heated to 550 to 650 ° C., a YBCO thin film is formed so as to cross the intersection 3 of the first and second surfaces 11 and 12.

これにより、各部分には各部において基板表面に垂直
な方向にc軸配向したYBCO薄膜が成長する。
As a result, a YBCO thin film having a c-axis orientation in a direction perpendicular to the substrate surface grows in each portion.

以上のような本発明実施例の構造によると、第2図に
その細線2の軸線方向に直交する方向から見た模式図を
示すように、YBCO高温超電導体薄膜細線2の第1の面11
上の部分のc軸方向と、同じくYBCO高温超電導体薄膜細
線2の第2の面12上の交線3近傍の部分のc軸方向と
は、それぞれ図中矢印で示すように、ほぼ角度(π−
θ)だけ相互にずれることになる。従って、ここに結晶
の不連続部分ができ、いわゆる亜粒界20が得られること
になる。この亜粒界20の部分は、他の部分と比較して臨
界電流密度が大幅に低くなり、従ってこの部分において
YBCO高温超電導体薄膜細線2はウィークに接合し、ジョ
セフソン接合が得られる。
According to the structure of the embodiment of the present invention as described above, as shown in FIG. 2 which is a schematic diagram viewed from a direction perpendicular to the axial direction of the fine wire 2, the first surface 11 of the YBCO high-temperature superconductor thin film 2
The c-axis direction of the upper portion and the c-axis direction of the portion near the intersection line 3 on the second surface 12 of the YBCO high-temperature superconductor thin film 2 are substantially at angles (as indicated by arrows in the figure), respectively. π−
θ). Therefore, a discontinuous portion of the crystal is formed here, and a so-called sub-grain boundary 20 is obtained. This part of the sub-grain boundary 20 has a significantly lower critical current density compared to the other parts, and therefore, in this part,
The YBCO high-temperature superconductor thin film wire 2 is bonded in a weak manner, and a Josephson junction is obtained.

そして、この部分にできる亜粒界20は、2面の交差角
θ、YBCO高温超電導体薄膜細線2の幅および膜厚等によ
って人為的にコントロール可能であり、再現性良く所望
の臨界電流を持つジョセフソン接合を得ることができ
る。
The sub-grain boundary 20 formed in this portion can be artificially controlled by the intersection angle θ of the two surfaces, the width and the film thickness of the YBCO high-temperature superconductor thin film 2, and has a desired critical current with good reproducibility. A Josephson junction can be obtained.

なお、基板の材料としては、上記したMgOのほか、SrT
iO3(100),(110)、YSZ、GGG等使用する高温超電導
体薄膜に対してダメージを与えないものなら何でもよ
い。
The material of the substrate is, in addition to the above-mentioned MgO, SrT
Any material that does not damage the high-temperature superconductor thin film used, such as iO 3 (100), (110), YSZ, or GGG, may be used.

また、超電導体薄膜についても、結晶性の強いもので
あれば何でもよいことは勿論である。
Also, any superconductor thin film may be used as long as it has strong crystallinity.

更に、超電導体薄膜の結晶軸方向は、特にc軸に限定
されることなく、他の方向でもよい。
Further, the crystal axis direction of the superconductor thin film is not particularly limited to the c-axis, but may be another direction.

<発明の効果> 以上説明したように、本発明によれば、基板表面に、
その底面に平行な第1の面と、この第1の面に対して鈍
角θで交差し、かつ、曲面をなす第2の面を形成し、こ
れらの2面の交線を横切るように、結晶異方性のある超
電導体薄膜細線を形成したので、この交線上の超電導体
薄膜に結晶軸方向が急峻に変化する不連続面が生じて人
為的に亜粒界が形成されることになり、高温超電導体薄
膜等を使用しても、人為的にIcやダイナミック抵抗Rを
コントロールすることのできるSQUID等を安定して再現
性良く作成できる。また、本発明における段差基板にお
ける弱結合は上段にのみ形成される構成であるので、例
えば、段差基板の上段および下段の両方に弱結合が形成
される構成に比べ、ウィークリンク長が長くなりすぎて
所望のジョセフソン接合を得ることができなかったり、
上段および下段の異なる弱結合により動作が不安定にな
るといった不具合も生じない。
<Effects of the Invention> As described above, according to the present invention,
A first surface that is parallel to the bottom surface intersects the first surface at an obtuse angle θ and forms a second surface that forms a curved surface, and crosses the intersection of these two surfaces. Since a superconducting thin film with crystal anisotropy was formed, a discontinuous surface where the crystal axis direction changes sharply occurs in the superconducting thin film on this intersection, and a sub-grain boundary is formed artificially. , the use of high-temperature superconducting thin film or the like, can create stable reproducibility good SQUID like which can artificially by controlling the I c and dynamic resistance R. Further, since the weak coupling in the stepped substrate in the present invention is formed only in the upper stage, for example, the weak link length is too long compared to the configuration in which the weak coupling is formed in both the upper stage and the lower stage of the stepped substrate. To obtain the desired Josephson junction,
There is no problem that the operation becomes unstable due to the different weak couplings in the upper and lower stages.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明実施例の構成を示す図、第2図はその模
式的な作用説明図である。 1……基板 11……第1の面 12……第2の面 2……YBCO高温超電導体薄膜細線 20……亜粒界 3……交線
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a schematic operation explanatory diagram thereof. DESCRIPTION OF SYMBOLS 1 ... Substrate 11 ... 1st surface 12 ... 2nd surface 2 ... YBCO high temperature superconductor thin film thin wire 20 ... Sub-grain boundary 3 ... Intersection

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板表面に、その底面に平行な平面である
第1の面と、この第1の面に対して鈍角で交差し、か
つ、その交差部分から離れるに従って次第にその底面に
平行に近づく曲面である第2の面が形成され、その基板
表面に、臨界電流密度およびコヒーレント長に結晶異方
性を有する超電導体薄膜製の細線が、上記第1と第2の
面の交線を横切るように形成されてなるジョセフソン接
合素子。
1. A first surface which is a plane parallel to a bottom surface thereof intersects at an obtuse angle with the first surface and gradually becomes parallel to the bottom surface as the distance from the intersection increases. A second surface, which is a curved surface approaching, is formed, and a thin line made of a superconducting thin film having crystal anisotropy in critical current density and coherent length is formed on the surface of the substrate by crossing the first and second surfaces. Josephson junction element formed so as to cross.
JP2139461A 1990-05-29 1990-05-29 Josephson junction element Expired - Lifetime JP2861265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139461A JP2861265B2 (en) 1990-05-29 1990-05-29 Josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139461A JP2861265B2 (en) 1990-05-29 1990-05-29 Josephson junction element

Publications (2)

Publication Number Publication Date
JPH0432276A JPH0432276A (en) 1992-02-04
JP2861265B2 true JP2861265B2 (en) 1999-02-24

Family

ID=15245767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139461A Expired - Lifetime JP2861265B2 (en) 1990-05-29 1990-05-29 Josephson junction element

Country Status (1)

Country Link
JP (1) JP2861265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776863A (en) * 1996-07-08 1998-07-07 Trw Inc. In-situ fabrication of a superconductor hetero-epitaxial Josephson junction
US8809854B2 (en) 2011-04-22 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JPH0432276A (en) 1992-02-04

Similar Documents

Publication Publication Date Title
US5801393A (en) Superconductor-insulator-superconductor Josephson tunnel junction and method therefor
JPH05160449A (en) Josephson junction structure
JPH098368A (en) High temperature superconducting jesephson element and fabrication thereof
JP2861265B2 (en) Josephson junction element
Fujita et al. In‐plane anisotropic transport properties observed in epitaxial Bi2 (Sr, Ca) 3Cu2O x films grown on tilted (001) SrTiO3 substrate
JPH0745874A (en) Anisotropic superconductive element and its manufacturing method and fluxon device using it
JP2981197B2 (en) Self-aligned thin barrier high-temperature superconducting edge junction
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH08264845A (en) Superconducting oxide thin film device
JP2761504B2 (en) Oxide superconducting device and manufacturing method thereof
JP2853242B2 (en) Josephson junction element
JPH04268774A (en) Josephson junction
JPH02271685A (en) Superconducting 3-terminal element and manufacture thereof
JP3000830B2 (en) Semiconductor device
JPS63268206A (en) Superconducting magnet
KR100241262B1 (en) Bi-epitaxial josephson junction device using high temperature superconducting y1ba2cu3o7-x(ybco) thin film, and manufacturing method of the same
JPH01101676A (en) Superconducting transistor
JP2790079B2 (en) Oxide superconducting circuit
JPH05291632A (en) Superconductive junction structure
JPH04332180A (en) Josephson element
JPH03108782A (en) Weak connection element
JP2883493B2 (en) Superconducting element
JPH0738165A (en) Manufacture of superconducting josephson device
JP3221037B2 (en) Current modulator
JPH0555651A (en) Manufacture of josephson device