JP2859531B2 - Fuel cell electrode and method of manufacturing the same - Google Patents

Fuel cell electrode and method of manufacturing the same

Info

Publication number
JP2859531B2
JP2859531B2 JP5350838A JP35083893A JP2859531B2 JP 2859531 B2 JP2859531 B2 JP 2859531B2 JP 5350838 A JP5350838 A JP 5350838A JP 35083893 A JP35083893 A JP 35083893A JP 2859531 B2 JP2859531 B2 JP 2859531B2
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
electrode catalyst
carbon
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5350838A
Other languages
Japanese (ja)
Other versions
JPH07201334A (en
Inventor
達雄 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5350838A priority Critical patent/JP2859531B2/en
Publication of JPH07201334A publication Critical patent/JPH07201334A/en
Application granted granted Critical
Publication of JP2859531B2 publication Critical patent/JP2859531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池用電極およ
びその製造方法、特に、リン酸形燃料電池等の燃料電池
用電極の触媒層およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode and a method for producing the same, and more particularly to a catalyst layer for a fuel cell electrode such as a phosphoric acid fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】リン酸形燃料電池等の燃料電池は、例え
ば、電解質を含浸したマトリックスの両側に一対の燃料
極および空気極の電極、さらにその外側に一対の燃料流
路および空気流路を有する電解質貯蔵用リブ付多孔質カ
ーボン板を配置してなる単位セルをセパレータを介して
複数個積層して形成されている。また、燃料極および空
気極の電極、マトリックス、電解質貯蔵用リブ付多孔質
カーボン板等の構成部材には、電気化学反応が起こり易
いようにリン酸等の電解質が含浸されている。
2. Description of the Related Art In a fuel cell such as a phosphoric acid fuel cell, for example, a pair of fuel electrode and air electrode are provided on both sides of a matrix impregnated with an electrolyte, and a pair of fuel flow path and air flow path are further provided outside the electrode. It is formed by laminating a plurality of unit cells each having a porous carbon plate provided with ribs for electrolyte storage with a separator interposed therebetween. In addition, components such as a fuel electrode and an air electrode, a matrix, and a porous carbon plate with a rib for storing electrolyte are impregnated with an electrolyte such as phosphoric acid so that an electrochemical reaction easily occurs.

【0003】以下、リン酸形燃料電池を例にとり、従来
の燃料電池について説明する。リン酸形燃料電池の実用
化のためには、(イ)大幅なコスト低減、(ロ)信頼性の向
上が重要である。大幅なコスト低減のためには、例えば
出力密度を向上させて、言いかえれば、電流密度を増加
したときにセル電圧が高くなるように、セル電圧−電流
密度特性を向上させて、積層セル数を低減させる必要が
ある。また、燃料電池の信頼性の向上のためには、例え
ば、電極の構造を改善して、セルの長期寿命特性を向上
させる必要がある。リン酸形燃料電池のセル電圧は実用
的には式(1)で表される。
Hereinafter, a conventional fuel cell will be described by taking a phosphoric acid type fuel cell as an example. For the practical use of phosphoric acid fuel cells, it is important to (a) significantly reduce costs and (b) improve reliability. In order to greatly reduce the cost, for example, by improving the output density, in other words, by improving the cell voltage-current density characteristics so that the cell voltage becomes higher when the current density is increased, the number of stacked cells is increased. Needs to be reduced. Further, in order to improve the reliability of the fuel cell, for example, it is necessary to improve the electrode structure to improve the long-term life characteristics of the cell. The cell voltage of the phosphoric acid fuel cell is practically represented by equation (1).

【0004】[数1] E=Eo−△EH2−△Eo2−IR (セル電圧) ・・・・ (1) △ 2 −EH2 (H2ゲイン) ・・・・ (2) △Ho2=Eo2 (O2ゲイン) ・・・・ (3)[0004] [Equation 1] E = Eo- △ E H2 - △ Eo 2 -IR ( cell voltage) ···· (1) △ H 2 -E H2 - E (H 2 Gain) ... (2 ) △ Ho 2 = Eo 2 - E (O 2 gain) ... (3)

【0005】ここで、は燃料極に燃料、空気極に空気
を供給したときのセル電圧、Eoは燃料極にH2、空気
極にO2を供給したときのセル電圧、EH2は燃料極に
2、空気極に空気を供給したときのセル電圧、Eo2
燃料極に燃料、空気極にO2を供給したときのセル電
圧、Iは電流密度、Rはセル内部抵抗(単位面積当た
り)、△HH2はH2ゲイン(燃料極のガス拡散性を表す
指標であり、小さいほど拡散性がよい)、△Eo2はO2
ゲイン(空気極のガス拡散性を表す指標であり、小さい
ほど拡散性がよい)、およびIRはセル内部抵抗による
電圧降下(電流密度とセルの内部抵抗の積)である。
Here, E is a cell voltage when fuel is supplied to the fuel electrode and air is supplied to the air electrode, Eo is a cell voltage when H 2 is supplied to the fuel electrode, O 2 is supplied to the air electrode, and E H2 is a fuel voltage. The cell voltage when H 2 is supplied to the pole and air is supplied to the air electrode, Eo 2 is the cell voltage when fuel is supplied to the fuel electrode, and the cell voltage when O 2 is supplied to the air electrode, I is the current density, and R is the cell internal resistance (unit) △ H H2 is an H 2 gain (an index indicating the gas diffusivity of the fuel electrode, the smaller the better, the better the diffusivity), and △ Eo 2 is O 2
The gain (an index indicating the gas diffusivity of the air electrode, and the smaller the gas diffusivity, the better the diffusivity) and IR are the voltage drop (product of the current density and the internal resistance of the cell) due to the internal resistance of the cell.

【0006】式(1)において、Eoが大きいほど、△E
H2、△Eo2 IRが小さいほどセル電圧が高くな
る。従来、Eoを大きくするために、電極触媒層の単位
面積当たりの白金量を増加させることが行われており、
またH2ゲイン△EH2、O2ゲイン△Eo2やセル内部抵
抗による電圧降下IRを小さくするために、電極触媒層
の厚さを薄くすることが行われている。
In equation (1), as Eo increases, ΔE
H2, the cell voltage E, the higher △ Eo 2, IR is small. Conventionally, in order to increase Eo, the amount of platinum per unit area of the electrode catalyst layer has been increased,
Further, in order to reduce the voltage drop IR due to the H 2 gain △ E H2 , the O 2 gain や Eo 2 and the internal resistance of the cell, the thickness of the electrode catalyst layer is reduced.

【0007】図45は、例えば特開平3−37963号
公報に示された従来の電極触媒層の構成を示す説明図で
ある。図において、カーボンブラック坦体に白金を坦持
した触媒を結着した電極触媒層の厚さL[μm]と白金
量D[mg/cm2]とが直角座標(D,L)で表したと
き、次式(4)、(5)、(6)を同時に満足する領域内にある
ように電極触媒層が構成されている。
FIG. 45 is an explanatory view showing the structure of a conventional electrode catalyst layer disclosed in, for example, JP-A-3-37963. In the figure, the thickness L [μm] of the electrode catalyst layer obtained by binding the catalyst carrying platinum on the carbon black carrier and the amount of platinum D [mg / cm 2 ] are represented by rectangular coordinates (D, L). At this time, the electrode catalyst layer is configured to be in a region that simultaneously satisfies the following expressions (4), (5), and (6).

【0008】[0008]

【数2】 (Equation 2)

【0009】しかし、触媒粉末の組成としては白金とカ
ーボンブラック坦体のみであり、白金を除く金属元素の
含有については考慮されていなかった。
However, the composition of the catalyst powder is only platinum and carbon black carrier, and no consideration has been given to the content of metal elements other than platinum.

【0010】[0010]

【発明が解決しようとする課題】上述したようなリン酸
形燃料電池等の電極触媒層では、電極触媒層が緻密にな
り過ぎ、電気抵抗は小さくなるもののガス拡散性が悪く
セル電圧電流密度が高く取れず、積層セル数を低減で
きないという問題点があり、長期寿命特性においても、
セル電圧の時低下が大きく、信頼性の向上が図れない
という問題点があった。また、電極触媒層が、緻密にな
りすぎているために、電極触媒層へのリン酸等の電解質
の含浸が速やかに行われないという問題点があった。さ
らに、触媒粉末中に白金を除く金属元素を含有する場
合、電極触媒層の導電性物質であるカーボンブラック
体の体積比率が小さくなり電極触媒層の電気抵抗率や電
気抵抗が大きくなる場合があるという問題点があった。
In the above-mentioned electrode catalyst layer of a phosphoric acid fuel cell or the like, the electrode catalyst layer becomes too dense and the electric resistance is low, but the gas diffusion property is poor and the cell voltage - current density is low. And the number of stacked cells cannot be reduced.
Increased after time reduction of the cell voltage, there is a problem that can not be improved in reliability. In addition, since the electrode catalyst layer is too dense, there is a problem that the electrode catalyst layer is not quickly impregnated with an electrolyte such as phosphoric acid. Further, when containing a metal element except platinum in the catalyst powder, the electrical resistivity and electric resistivity of the volume ratio of carbon black responsible <br/> body is a conductive material of the electrode catalyst layer is smaller becomes the electrode catalyst layer There was a problem that it might become large.

【0011】この発明はこのような問題点を解決するた
めになされたものであり、セル電圧−電流密度特性が高
く、かつ、セル電圧の時低下が小さく、長期寿命特性
の良好な燃料電池用電極を得ることを目的とする。ま
た、リン酸等の電解質の含浸が速やかに行われ、電気抵
抗値の大きさが適正な電極触媒層を得ることも目的とす
る。あわせて、低コストで信頼性の高い燃料電池用電極
およびその製造方法を得ることを目的とする。
[0011] This invention has been made to solve the above problems, the cell voltage - current density characteristics is high and, after the time of cell voltage reduction is small, good fuel cell of long life characteristics It is intended to obtain an electrode for use. It is another object of the present invention to obtain an electrode catalyst layer in which the impregnation of an electrolyte such as phosphoric acid is promptly performed and the electric resistance value is appropriate. Another object of the present invention is to obtain a low-cost and highly reliable electrode for a fuel cell and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】この発明の請求項第1項
に係る発明は、電解質を含浸したマトリックスと、この
マトリックスの両側に設けられた一対の燃料極及び空気
極からなる電極と、これらの電極の外側に形成された一
対の燃料流路及び空気流路とから構成される単位セルを
セパレータを介して複数個積層して形成された燃料電池
の電極において、上記燃料極及び空気極の少なくとも一
方の電極触媒層は、カーボンブラック担体に白金及び白
金を除く1種以上の金属元素である灰分を担持した触媒
粉末と、フッ素樹脂とからなり、上記カーボンブラック
担体の体積比率は、上記電極触媒層に対して10%〜2
5%としたものである。
According to the first aspect of the present invention, there is provided a matrix impregnated with an electrolyte, a pair of fuel and air electrodes provided on both sides of the matrix, and In a fuel cell electrode formed by laminating a plurality of unit cells each comprising a pair of fuel flow paths and an air flow path formed outside the electrode with a separator interposed therebetween, the fuel electrode and the air electrode At least one of the electrode catalyst layers is composed of a catalyst powder in which a carbon black carrier carries platinum and ash, which is one or more metal elements other than platinum, and a fluororesin. 10% to 2 with respect to the catalyst layer
5%.

【0013】この発明の請求項第2項に係る発明は、電
極触媒層の気孔率を50%〜80%としたものである。
In the invention according to claim 2 of the present invention, the porosity of the electrode catalyst layer is 50% to 80%.

【0014】この発明の請求項第3項に係る発明は、電
極触媒層のフッ素樹脂含有率を20%〜60%としたも
のである。
According to a third aspect of the present invention, the content of the fluororesin in the electrode catalyst layer is 20% to 60%.

【0015】この発明の請求項第4項に係る発明は、触
媒粉末中の白金含有率を10%〜40%としたものであ
る。
According to a fourth aspect of the present invention, the platinum content in the catalyst powder is 10% to 40%.

【0016】この発明の請求項第5項に係る発明は、触
媒粉末中の灰分含有率を15%以下としたものである。
The invention according to claim 5 of the present invention is one wherein the ash content in the catalyst powder is 15% or less.

【0017】この発明の請求項第6項に係る発明は、電
極触媒層の空隙率を20%〜45%としたものである。
In the invention according to claim 6 of the present invention, the porosity of the electrode catalyst layer is 20% to 45%.

【0018】この発明の請求項第7項に係る発明は、カ
ーボンブラック担体を密度が1.8/cm3以上の熱処
理カーボンとしたものである。
According to a seventh aspect of the present invention, the carbon black carrier is heat-treated carbon having a density of 1.8 g / cm 3 or more.

【0019】この発明の請求項第8項に係る発明は、空
気極の電極触媒層の厚さを100μm〜350μmとした
ものである。
In the invention according to claim 8 of the present invention, the thickness of the electrode catalyst layer of the air electrode is set to 100 μm to 350 μm.

【0020】この発明の請求項第9項に係る発明は、燃
料極の電極触媒層の厚さを50μm〜250μmとしたも
のである。
According to a ninth aspect of the present invention, the thickness of the electrode catalyst layer of the fuel electrode is set to 50 μm to 250 μm.

【0021】この発明の請求項第10項に係る発明は、
カーボンブラック担体に白金及び白金を除く1種以上の
金属元素である灰分を担持した触媒粉末と、フッ素樹脂
とからなる電極触媒層を、50℃〜300℃の範囲の温
度及び10kgf/cm2〜50kgf/cm2の範囲の圧力でプレ
ス成形する工程を含むものである。
According to a tenth aspect of the present invention,
An electrode catalyst layer comprising a catalyst powder in which platinum and ash, which is one or more metal elements other than platinum, is supported on a carbon black carrier and a fluororesin, is subjected to a temperature in the range of 50 ° C to 300 ° C and a pressure of 10 kgf / cm 2 to The method includes a step of press-molding at a pressure in the range of 50 kgf / cm 2 .

【0022】この発明の請求項第11項に係る発明は、
プレス成形前の電極触媒層を有機溶に侵漬し、次い
で、上記電極触媒層の超音波振動を加えながら電極触媒
層中の有機を抽出除去する工程を含むものである。
The invention according to claim 11 of the present invention provides
Was immersed an electrode catalyst layer before press-forming organic Solvent, then those containing a step of extracting and removing the organic material of the electrode catalyst layer while applying ultrasonic vibration of the electrode catalyst layer.

【0023】[0023]

【作用】この発明の請求項第1項においては、カーボン
ブラック担体の体積比率を所定の範囲とすることによ
り、空気極の電極触媒層の電圧降下とセルのO2ゲイン
の和を小さくし、かつセル電圧を高くする。
According to the first aspect of the present invention, the sum of the voltage drop of the electrode catalyst layer of the air electrode and the O 2 gain of the cell is reduced by setting the volume ratio of the carbon black carrier within a predetermined range. And increase the cell voltage.

【0024】この発明の請求項第2項においては、電極
触媒層の気孔率を所定の範囲とすることにより、電気抵
抗による電圧降下、H 2 ゲイン、O 2 ゲインが小さくな
り、セル電圧を高くする。
In the second aspect of the present invention, by setting the porosity of the electrode catalyst layer within a predetermined range, the voltage drop due to electric resistance , the H 2 gain, and the O 2 gain are reduced.
And increase the cell voltage.

【0025】この発明の請求項第3項においては、電極
触媒層のフッ素樹脂含有率を所定の範囲とすることによ
り、電気抵抗による電圧降下とO2ゲインの和を小さく
し、セル電圧を高くする。
In the third aspect of the present invention, the sum of the voltage drop due to electric resistance and the O 2 gain is reduced by setting the fluorine resin content of the electrode catalyst layer within a predetermined range, and the cell voltage is increased. I do.

【0026】この発明の請求項第4項においては、触媒
粉末中の白金含有率を所定の範囲とすることにより、電
気抵抗による電圧降下とO2ゲインの和を小さくし、セ
ル電圧を高くする。
According to a fourth aspect of the present invention, by setting the platinum content in the catalyst powder within a predetermined range, the sum of the voltage drop due to electric resistance and the O 2 gain is reduced, and the cell voltage is increased. .

【0027】この発明の請求項第5項においては、触媒
粉末中の灰分含有率を所定の範囲以下とすることによ
り、電極触媒層の電気抵抗率および電気抵抗を小さくす
る。
In the fifth aspect of the present invention, the electric resistivity and electric resistance of the electrode catalyst layer are reduced by setting the ash content in the catalyst powder to a predetermined range or less.

【0028】この発明の請求項第6項においては、電極
触媒層の空隙率を所定の範囲とすることにより、セル電
圧を高くする。
In the sixth aspect of the present invention, the cell voltage is increased by setting the porosity of the electrode catalyst layer within a predetermined range.

【0029】この発明の請求項第7項においては、カー
ボンブラック担体の密度を所定の範囲とし、熱処理カー
ボン担体としたので、セル電圧やO2ゲインの経時特性
を改善する。
In the seventh aspect of the present invention, since the density of the carbon black carrier is set within a predetermined range and the carbon carrier is heat-treated, the aging characteristics of the cell voltage and the O 2 gain are improved.

【0030】この発明の請求項第8項においては、空気
極の厚さを所定の範囲とすることにより、電気抵抗によ
る電圧降下とO2ゲインの和を小さくし、セル電圧を高
くする。
In the eighth aspect of the present invention, by setting the thickness of the air electrode in a predetermined range, the sum of the voltage drop due to electric resistance and the O 2 gain is reduced, and the cell voltage is increased.

【0031】この発明の請求項第9項においては、燃料
極の厚さを所定の範囲とすることにより、電気抵抗によ
る電圧降下とH2ゲインの和を小さくし、セル電圧を高
くする。
In the ninth aspect of the present invention, the sum of the voltage drop due to the electric resistance and the H 2 gain is reduced by setting the thickness of the fuel electrode within a predetermined range, and the cell voltage is increased.

【0032】この発明の請求項第10項においては、電
極触媒層の電気抵抗率を低くする。
According to a tenth aspect of the present invention, the electric resistivity of the electrode catalyst layer is reduced.

【0033】この発明の請求項第11項においては、電
極触媒層の電気抵抗率を低くする。
In the eleventh aspect of the present invention, the electric resistivity of the electrode catalyst layer is reduced.

【0034】[0034]

【実施例】この発明による燃料電池用電極は、電解質を
含浸したマトリックスと、このマトリックスの両側に設
けられた一対の燃料極及び空気極からなる電極と、これ
らの電極の外側に形成された一対の燃料流路及び空気流
路とから構成される単位セルをセパレータを介して複数
個積層して形成された燃料電池の電極において、上記燃
料極及び空気極の少なくとも一方の電極触媒層は、カー
ボンブラック担体に白金及び白金を除く1種以上の金属
元素である灰分を担持した触媒粉末と、フッ素樹脂とか
らなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A fuel cell electrode according to the present invention comprises a matrix impregnated with an electrolyte, a pair of fuel and air electrodes provided on both sides of the matrix, and a pair of electrodes formed outside these electrodes. In a fuel cell electrode formed by laminating a plurality of unit cells each composed of a fuel flow path and an air flow path with a separator interposed therebetween, at least one electrode catalyst layer of the fuel electrode and the air electrode is formed of carbon. It is composed of a catalyst powder in which a black carrier carries platinum and ash, which is one or more metal elements other than platinum, and a fluororesin.

【0035】上記カーボンブラック担体の体積比率は、
上記電極触媒層に対して10%〜25%(さらに好まし
くは15%〜20%)である。これにより、電極触媒層
の各組成の分配が適正化され、セル電圧−電流密度特性
が高く、かつ、セル電圧の時低下の小さい長期寿命特
性の良好な燃料電池が得られる。この発明における電極
触媒層は白金、灰分、熱処理カーボンブラック坦体、フ
ッ素樹脂、空孔より構成されている。ここで、電極触媒
層の単位体積を考え、電極触媒層の体積は白金の体積+
灰分の体積+熱処理カーボンブラック坦体の体積+フッ
素樹脂+空孔の体積とする。
The volume ratio of the carbon black carrier is as follows:
It is 10% to 25% (more preferably 15% to 20%) with respect to the electrode catalyst layer. Thus, it distributed proper of the composition of the electrode catalyst layer, the cell voltage - current density characteristics is high and a good fuel cell small extended life characteristics decline when after the cell voltage is obtained. The electrode catalyst layer in the present invention comprises platinum, ash, a heat-treated carbon black carrier, a fluororesin, and pores. Here, considering the unit volume of the electrode catalyst layer, the volume of the electrode catalyst layer is the volume of platinum plus the volume of platinum.
Ash volume + heat-treated carbon black carrier volume + fluororesin + pore volume.

【0036】以下、次のように定義する。熱処理カーボ
ンブラック坦体の体積比率は熱処理カーボンブラック
体の体積/電極触媒層の体積×100[%]、(電解質
含浸前の)電極触媒層の気孔率は(電極触媒層の電解質
含浸前の)空孔の体積/電極触媒層の体積×100
[%]、電極触媒層の電解質占有率は(電極触媒層中
の)電解質の体積/(電極触媒層の電解質含浸前の)空
孔の体積×100[%]、(電解質含浸後の)電極触媒
層の空隙率は(電極触媒層の)気孔率/100×(10
0−(電極触媒層の)電解質占有率)[%]である。
Hereinafter, it is defined as follows. The volume ratio of the heat-treated carbon black carrier volume × 100 [%] of the volume / electrode catalyst layer of the heat treatment of carbon black in charge <br/> body (before the electrolyte impregnation) the porosity of the electrode catalyst layer of the (electrode catalyst layer Volume of pores (before electrolyte impregnation) / Volume of electrocatalyst layer × 100
[%], The electrolyte occupancy of the electrode catalyst layer is the volume of the electrolyte (in the electrode catalyst layer) / the volume of the pores (before the electrolyte impregnation of the electrode catalyst layer) × 100 [%], the electrode (after the electrolyte impregnation) The porosity of the catalyst layer is expressed as porosity (of the electrode catalyst layer) / 100 × (10
0- (electrolyte occupancy of the electrode catalyst layer) [%].

【0037】また、電極触媒層や触媒粉末の単位重量を
考え、電極触媒層重量は白金の重量+灰分の重量+熱処
理カーボンブラック体の重量+フッ素樹脂の重量、触
媒粉末の重量は白金の重量+灰分の重量+熱処理カーボ
ンブラック体の重量、フッ素樹脂含有率はフッ素樹脂
の重量/電極触媒層の重量×100[%]、白金濃度
(白金含有率)は白金の重量/触媒粉末の重量×100
[%]、灰分含有率は灰分の重量/触媒粉末の重量×1
00[%]と定義する。
The unit weight of the electrode catalyst layer and the catalyst powder is
Considering the weight of the electrode catalyst layer, the weight of platinum + weight of ash + heat treatment
Natural carbon blackResponsibleBody weight + fluororesin weight, touch
The weight of the medium powder is platinum weight + ash weight + heat treated carbo
BlackResponsibleBody weight, fluororesin content is fluororesin
Weight / electrode catalyst layer weight × 100 [%], platinumconcentration
(platinumContent) Is weight of platinum / weight of catalyst powder × 100
[%], Ash content is weight of ash / weight of catalyst powder × 1
Defined as 00 [%].

【0038】この発明における電極触媒層のフッ素樹脂
は、ポリテトラフルオロエチレン、テトラフルオロエチ
レン−ヘキサフルオロプロピレン共重合体、テトラフル
オロエチレン−パーフルオロアルキルビニルエーテル共
重合体などのうち少なくとも1種よりなるものである。
この発明における電極触媒層の灰分は、ニッケル、クロ
ム、鉄、コバルト、銅、ルテニウム、パラジウムなどの
うち、少なくとも1種の金属よりなるものである。
The fluororesin of the electrode catalyst layer in the present invention comprises at least one of polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkylvinyl ether copolymer and the like. It is.
The ash of the electrode catalyst layer in the present invention is made of at least one metal among nickel, chromium, iron, cobalt, copper , ruthenium, palladium and the like.

【0039】この発明における電極触媒層の熱処理カー
ボン坦体の体積比率を10〜25[%](好ましくは1
5〜20[%])にすることに加えて、電極触媒層の気
孔率を50〜80[%](好ましくは60〜70
[%])、フッ素樹脂有率を20〜60[%](好ま
しくは30〜50[%])、白金濃度を10〜40
[%](好ましくは15〜30[%])、灰分含有率を
15[%](好ましくは10[%])以下、カーボンブ
ラック体を密度1.8[g/cm3]以上の熱処理カーボ
ン、空隙率を20〜45[%](好ましくは25〜40
[%])、空気極触媒層の厚さを100〜350[μ
m](好ましくは150〜300[μm])、燃料極触媒
層の厚さを50〜250[μm](好ましくは100〜
200[μm])とする。これにより、セル電圧−電流
密度特性および、セル電圧の時特性をより高めること
ができるとともに、電極触媒層へのリン酸等の電解質の
含浸が速やかになる。
In the present invention, the volume ratio of the heat-treated carbon carrier in the electrode catalyst layer is 10 to 25% (preferably 1%).
5-20 [%]) and the porosity of the electrode catalyst layer is 50-80 [%] (preferably 60-70 [%]).
[%]), Fluorine resin containing Yuritsu 20-60 [%] (preferably 30 to 50 [%]), 10 to 40 platinum concentration
[%] (Preferably 15 to 30 [%]), the ash content of 15%] (preferably 10 [%]) or less, heat-treated carbon black responsible body density 1.8 [g / cm 3] or more Carbon, having a porosity of 20 to 45% (preferably 25 to 40%)
[%]), The thickness of the air electrode catalyst layer is 100 to 350 [μ
m] (preferably 150 to 300 μm), and the thickness of the anode catalyst layer is set to 50 to 250 μm (preferably 100 to 300 μm).
200 [μm]). Thus, the cell voltage - current density characteristics and makes it possible to increase the over-time characteristics of the cell voltage, impregnation of an electrolyte such as phosphoric acid to the electrode catalyst layer is quickly.

【0040】また、本発明の電極触媒層の製造方法は、
電極触媒層を温度50〜300[℃]、圧力10〜50
[kgf/cm 2 ]でプレス成形し、熱処理前にアセトン等の
有機溶に浸漬し、次いで、超音波振動を与えながら有
機物を抽出除去する工程を含むようにしたので、電極触
媒層の電気抵抗率を低くでき、したがって、低コストで
高信頼性の燃料電池を提供できる。
Further, the method for producing an electrode catalyst layer of the present invention comprises:
The temperature of the electrode catalyst layer is 50 to 300 [° C.] and the pressure is 10 to 50.
And press-molded at [kgf / cm 2], then immersed in an organic solvent medium such as acetone before the heat treatment, then, since to include the step of extracting and removing organic matter while applying ultrasonic vibration, the electrode catalyst layer electrically It is possible to provide a low-cost, highly-reliable fuel cell with low resistivity.

【0041】以下、実施例1〜14及び比較例に基づ
き、この発明をさらに詳細に説明する。 実施例1. まず、燃料電池における空気極の電極触媒層を作製する
ために、触媒粉末とフッ素樹脂であるポリテトラフルオ
ロエチレン(以下、PTFEと略す)のディスパージョ
ンを準備した。触媒粉末は重量比で白金が20[%]、
カーボンブラック体(以下、カーボン体と略す)が
72[%]、ニッケルを主成分とする灰分が8[%]の
ものを使用した。また、PTFEディスパージョンは、
固形分のPTFEが60[%]、分散剤が4[%]、残
部が水のものを用いた。触媒粉末の白金を持している
カーボンは、体に2500の熱処理を施した密
度1.8[g/cm3]のグラファイト化したカーボン(以
下熱処理カーボンと略す)を用いた。この触媒粉末及び
PTFEを用いて水性触媒ペーストを調製した。触媒ペ
ーストを薄くフイルム状に形成後、水分を乾燥除去して
電極触媒層を得た。さらに、この電極触媒層を超音波振
動を与えたアセトンに20時間(以下、単に[h]とす
る)浸漬して電極触媒層中の分散剤等の有機物の大部分
を抽出除去して乾燥した後、最終的に360[℃]の温
度で焼成し、その後室温約20[℃]でプレス成形を行
った。
Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 14 and Comparative Examples. Embodiment 1 FIG. First, a dispersion of catalyst powder and polytetrafluoroethylene (hereinafter abbreviated as PTFE), which is a fluororesin, was prepared to form an electrode catalyst layer for an air electrode in a fuel cell. The catalyst powder contains 20% platinum by weight,
Carbon black responsible body (hereinafter, referred to as carbon responsible body) is 72 [%], ash mainly comprising nickel was used for 8%. Also, PTFE dispersion is
The PTFE having a solid content of PTFE of 60%, the dispersant of 4%, and the balance being water was used. Carbon platinum catalyst powder are responsible lifting was used graphitized carbon in charge of body 2500 Density 1.8 was subjected to heat treatment of [℃] [g / cm 3 ] ( hereinafter referred to as heat treatment Carbon) . An aqueous catalyst paste was prepared using the catalyst powder and PTFE. After the catalyst paste was thinly formed into a film, the water was removed by drying to obtain an electrode catalyst layer. Furthermore, this electrode catalyst layer was immersed in acetone subjected to ultrasonic vibration for 20 hours (hereinafter simply referred to as [h]) to extract and remove most of organic substances such as a dispersant in the electrode catalyst layer and dried. Thereafter, the resultant was finally fired at a temperature of 360 [° C.], and thereafter, was subjected to press molding at a room temperature of about 20 [° C.].

【0042】この方法で、重量比で触媒粉末/PTFE
=60/40、単位面積当たりの電極触媒層の重量(坪
量)15.0[mg/cm2]の空気極の電極触媒層を作製し
た。同一の方法で、重量比で白金が10[%]、カーボ
体(熱処理カーボン)90[%]の触媒粉末とPT
FEを用いて、重量比で触媒粉末/PTFE=60/4
0、坪量6.0[mg/cm2]、気孔率65[%]の燃料極
の触媒層を作製した。空気極の電極触媒層を成形すると
きプレス圧力Pを変化させて、電極触媒層中のカーボン
体の体積比率Cを変化させ、このとき電極触媒の気
孔率εと厚さLを測定した。その結果を図1と図2に示
す。また、電極触媒層の電気抵抗率ρと電気抵抗Rcを
測定した。その結果を図3に示す。
According to this method, the catalyst powder / PTFE in a weight ratio of
= 60/40, and an electrode catalyst layer of an air electrode having a weight (basis weight) of 15.0 [mg / cm 2 ] of the electrode catalyst layer per unit area was produced. In the same way, platinum 10%] by weight, the catalyst powder and PT of the carbon responsible body (heat treatment Carbon) 90 [%]
Using FE, catalyst powder / PTFE = 60/4 by weight ratio
A catalyst layer of a fuel electrode having a basic weight of 6.0 [mg / cm 2 ] and a porosity of 65 [%] was prepared. When forming the electrode catalyst layer of the air electrode, the pressing pressure P is changed to change the carbon in the electrode catalyst layer.
Changing the volume ratio C of the responsible body was measured porosity ε and thickness L in this case the electrode catalyst layer. The results are shown in FIG. 1 and FIG. Further, the electric resistivity ρ and the electric resistance Rc of the electrode catalyst layer were measured. The result is shown in FIG.

【0043】図1によれば、プレス圧力Pの大きさによ
って電極触媒層のカーボン体の体積比率Cが変化して
いる。プレス圧力Pが大きいほどカーボン体の体積比
率Cも大きくなっている。また、図2によれば電極触媒
層のカーボン体の体積比率Cが大きくなるにつれて、
電極触媒層の気孔率ε及び厚さLが小さくなっている。
電極触媒層の厚さLはセルのコンパクト化の点からは小
さい方が好ましいが、カーボン体の体積比率Cが10
〜15[%]以上で飽和する傾向にある。
[0043] According to FIG. 1, the volume ratio C of the carbon in charge of the electrode catalyst layer is changed by the magnitude of the pressing pressure P. Volume ratio C of the larger pressing pressure P carbon responsible body also increases. Furthermore, as the volume ratio C of the carbon in charge of the electrode catalyst layer is increased according to Fig. 2,
The porosity ε and the thickness L of the electrode catalyst layer are small.
The thickness L of the electrode catalyst layer is preferably smaller in terms of compactness of the cell, the volume ratio C of the carbon responsible body 10
で 15% or more tends to be saturated.

【0044】また、同様に図3によれば、電極触媒層の
カーボン体の体積比率Cが大きくなるにつれて、電極
触媒層の電気抵抗率ρ及び電気抵抗Rcが小さくなって
いる。セル内部の電流分布を均一化し、ジュール損を小
さく抑制するためには電気抵抗率ρは小さい方が望まし
く、また、前述のセル内部抵抗Rによる電圧降下IRを
小さくするためには電気抵抗Rcは小さい方が望ましい
が、カーボン体の体積比率Cが10〜15[%]以上
で飽和する傾向にある。以上、電極触媒層のカーボン
体の体積比率Cを10[%](好ましくは15[%])
以上の範囲に管理することにより、電極触媒層の厚さ
L、電気抵抗率ρ及び電気抵抗Rcの大きさを適正化で
きる効果がある。
[0044] According similarly to FIG. 3, as the volume ratio C of the carbon in charge of the electrode catalyst layer increases, the electrical resistivity of the electrode catalyst layer ρ and electric resistance Rc is reduced. In order to make the current distribution inside the cell uniform and to reduce the Joule loss, it is desirable that the electric resistivity ρ is small, and in order to reduce the above-mentioned voltage drop IR due to the cell internal resistance R, the electric resistance Rc is smaller is desirable, there is a tendency that the volume ratio C of the carbon responsible body is saturated at 10 to 15 [%] or more. Above, the volume ratio C of the carbon responsible <br/> of the electrode catalyst layer 10 [%] (preferably 15 [%])
By controlling the thickness in the above range, the thickness L, the electric resistivity ρ, and the electric resistance Rc of the electrode catalyst layer can be appropriately adjusted.

【0045】次に、燃料極及び空気極の電極触媒層にカ
ーボンペーパを接合して、各々、燃料極及び空気極の電
極としてセルに組み立てた。厚さ100[μm]のマト
リックスの両側に上記燃料極及び空気極の電極、その外
側に一対の燃料流路及び空気流路を有する電解質貯蔵用
リブ付多孔質カーボン板、さらにその外側に一対のセパ
レータ板を配してセルを組み立てた。マトリックスには
空孔容積の100[%]、電極及び多孔質カーボン板に
は空孔容積の約40[%]のリン酸を含浸した。空気極
には電極触媒層のカーボン体の体積比率Cを種々に変
化させたものを用いた。セルを温度200[℃]で燃料
(H2:CO2=80:20)及び空気をガス利用率がそ
れぞれ80[%]及び60[%]で供給して運転して、
特性が安定してから、セル電圧E、空気極のガス拡散性
の指標のO2ゲイン△Eo2及び空気極の電極触媒層の電
圧降下IRcを測定した。いずれも電流密度Iは300
[mA/cm2]で実施した。その結果を図4及び図5に示
す。
Next, carbon paper was bonded to the electrode catalyst layers of the fuel electrode and the air electrode, and assembled into cells as the electrodes of the fuel electrode and the air electrode, respectively. The electrodes of the fuel electrode and the air electrode on both sides of a matrix having a thickness of 100 [μm], a porous carbon plate with electrolyte storage ribs having a pair of fuel passages and an air passage on the outside thereof, and a pair of porous carbon plates on the outside thereof. A cell was assembled by disposing a separator plate. The matrix was impregnated with 100% of the pore volume of phosphoric acid, and the electrode and the porous carbon plate were impregnated with about 40% of the pore volume of phosphoric acid. The air electrode was used to change the volume ratio C of the carbon in charge of the electrode catalyst layer in various ways. The cell is operated at a temperature of 200 ° C. by supplying fuel (H 2 : CO 2 = 80: 20) and air at a gas utilization of 80% and 60%, respectively.
After the characteristics were stabilized, the cell voltage E, the O 2 gain ΔEo 2 as an index of the gas diffusivity of the air electrode, and the voltage drop IRc of the electrode catalyst layer at the air electrode were measured. In each case, the current density I was 300
[MA / cm 2 ]. The results are shown in FIGS.

【0046】図4によれば、空気極の電極触媒層のカー
ボン体の体積比率Cが大きくなるにつれて、空気極の
電極触媒層の電圧降下IRcは小さくなり、カーボン
体の体積比率Cが10〜15[%]以上で飽和する傾向
にある。また、空気極の電極触媒層のカーボン体の体
積比率Cが大きくなるにつれて、セル運転時の空気極の
ガス拡散性指標のO2ゲイン△Eo2が大きくなり、空気
極の電極触媒層のカーボン体の体積比率Cが20〜2
5[%]以上で急増する傾向にある。以上より、図4か
らは空気極の電極触媒層のカーボン体の体積比率Cは
10〜25[%](好ましくは15〜20[%])が望
ましい範囲としての一応の目安となることが分かる。
[0046] According to FIG. 4, as the volume ratio C of the carbon in charge of the electrode catalyst layer of the air electrode is increased, the voltage drop IRc electrode catalyst layer of the air electrode is reduced, the carbon responsible <br/> body When the volume ratio C is 10% to 15% or more, it tends to be saturated. Furthermore, as the volume ratio C of the carbon in charge of the electrode catalyst layer of the air electrode is increased, during cell operation O 2 gain △ Eo 2 gas diffusion index of the air electrode is increased, the cathode electrode catalyst layer volume ratio C of the carbon responsible body 20-2
At 5% or more, it tends to increase rapidly. From the above, to be a tentative standard of the volume ratio C is 10 to 25 [%] (preferably 15 to 20 [%]) is preferably in the range of carbon in charge of the electrode catalyst layer of the air electrode is from 4 I understand.

【0047】以上の関係を総合的に調べたものが図5で
ある。図5によれば、空気極の電極触媒層のカーボン
体の体積比率Cが10〜20[%]で空気極の電極触媒
層の電圧降下IRcとセルのO2ゲイン△Eo2の和が小
さくなっている。特にカーボン体の体積比率Cが15
〜20[%]では120[mv]前後のの小さい値となっ
ており好ましい。これらに対応して空気極の電極触媒層
のカーボン体の体積比率Cが10〜25[%]でセル
電圧Eが高くなっている。特にカーボン体の体積比率
Cが15〜20[%]では650[mv]前後の高い値と
なっており好ましい。また、この範囲では∂E/∂Cが
小さくなっておりセル電圧Eがカーボン体の体積比率
Cの影響を受けにくくなっている。
FIG. 5 shows a comprehensive examination of the above relationship. According to FIG. 5, O 2 gain △ Eo voltage drop IRc and cell volume ratio C of the carbon responsible <br/> of the electrode catalyst layer of the air electrode is 10 to 20 [%] in the electrode catalyst layer of the air electrode The sum of 2 is smaller. In particular the volume ratio C of the carbon responsible body 15
In the case of 2020 [%], a small value of around 120 [mv] is preferable. Volume ratio C of the carbon in charge of these corresponding electrode catalyst layer of the air electrode is the cell voltage E in 10 to 25 [%] is high. In particular the volume ratio C of the carbon in charge are preferred has a high value of around 15 to 20 [%] in 650 [mv]. Further, the cell voltage E has become smaller ∂E / ∂C in this range is less likely affected by the volume ratio C of the carbon responsible body.

【0048】例えば、リン酸形燃料電池のセルを量産化
する場合には、空気極の電極触媒層のカーボン体の体
積比率Cを10〜25[%](好ましくは10〜20
[%])の範囲になるように制御すれば、空気極の電極
触媒層の電圧降下IRcとセルO2ゲイン△Eo2の和が
小さく、それに対応してセル電圧Eが高く、しかも電圧
がカーボン体の体積比率Cの影響を受けにくいものが
得られるという効果がある。
[0048] For example, in the case of mass production of the cell of the phosphoric acid fuel cell, the volume ratio C of the carbon in charge of the electrode catalyst layer of the air electrode 10 to 25 [%] (preferably 10 to 20
[%]), The sum of the voltage drop IRc of the electrode catalyst layer of the air electrode and the cell O 2 gain △ Eo 2 is small, the cell voltage E is correspondingly high, and the voltage is low. there is an effect that those less susceptible to volume ratio C of the carbon responsible body is obtained.

【0049】実施例2. 実施例1と同様な方法で電極触媒層を作製した。触媒粉
末は重量比で白金が20[%]、カーボン体が72
[%]、ニッケルを主成分とする灰分が8[%]のもの
を用いた。カーボン体は熱処理カーボンを用いた。重
量比で触媒粉末/PTFE=60/40、坪量6.0[m
g/cm2]の燃料極の電極触媒層、及び重量比で触媒粉末
/PTFE=60/40、坪量15.0[mg/cm2]の空
気極の電極触媒層を作製した。これらの燃料極及び空気
極の電極触媒層を成形するときにプレス圧Pを変化さ
せて、気孔率εを変化させ、このときのカーボン体の
体積比率Cと電気抵抗率ρを測定した。その結果を図6
及び図7に示す。
Embodiment 2 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. Catalyst powder platinum is 20% by weight, carbon responsible body 72
% And an ash containing nickel as a main component of 8% were used. Carbon responsible body was using the heat treatment carbon. Catalyst powder / PTFE = 60/40 by weight ratio, basis weight 6.0 [m
g / cm 2 ] and an air electrode electrode catalyst layer having a weight ratio of catalyst powder / PTFE = 60/40 and a basis weight of 15.0 [mg / cm 2 ]. By changing the pressing pressure P when forming the electrode catalyst layer of the fuel electrode and the air electrode, to change the porosity epsilon, was measured volume ratio C and the electric resistivity ρ of the carbon in charge of this time . The result is shown in FIG.
And FIG.

【0050】この実施例2では、燃料極及び空気極の電
極触媒層の組成が同じため、燃料極が空気極の電極触媒
層のカーボン体の体積比率Cと電気抵抗率ρは同じ値
となった。また、図6によれば、プレス圧力Pの大きさ
によって電極触媒層の気孔率εが変化しているプレス
圧力Pが大きいほど気孔率εが小さくなっている。さら
に、図7によれば、燃料極及び空気極の電極触媒層の気
孔率εが大きくなるにつれて電極触媒層のカーボン坦体
の体積比率Cは小さくなり、電極触媒層の電気抵抗率ρ
は大きくなっている。反対に、電極触媒層の電気抵抗率
ρは電極触媒層の気孔率εが75〜80[%]以下で小
さくなり、飽和する傾向にある。また、このときの電極
触媒層のカーボン坦体の体積比率Cは10〜15[%]
以上となっている。
[0050] In the second embodiment, since the composition of the electrode catalyst layer of the fuel electrode and the air electrode are the same, the fuel electrode and the same value is the volume ratio C and the electric resistivity ρ of the carbon in charge of the electrode catalyst layer of the air electrode became. In addition, according to FIG. 6, the porosity of the electrode catalyst layer ε is changed by the magnitude of the pressing pressure P. The porosity ε decreases as the pressing pressure P increases. Further, according to FIG. 7, as the porosity ε of the electrode catalyst layers of the fuel electrode and the air electrode increases, the volume ratio C of the carbon carrier of the electrode catalyst layer decreases, and the electric resistivity ρ of the electrode catalyst layer increases.
Is getting bigger. Conversely, the electric resistivity ρ of the electrode catalyst layer tends to decrease and become saturated when the porosity ε of the electrode catalyst layer is 75% to 80% or less. At this time, the volume ratio C of the carbon carrier in the electrode catalyst layer is 10 to 15 [%].
That is all.

【0051】上記燃料極及び空気極の電極触媒層にカー
ボンペーパを接合して各々、燃料極及び空気極の電極と
した。これらの燃料極及び空気極の電極を実施例1と同
じ条件でセルを組み立ててセルの運転を行った。200
[℃]で運転して、特性が安定してから、電流密度Iが
300[mA/cm2]の状態でガス拡散性の評価を行っ
た。燃料極のガス拡散性の指標であるH2ゲイン△EH2
と空気極のガス拡散性の指標であるO2ゲイン△Eo2
測定した。その結果をそれぞれ図8及び図9に示す。
[0051] Carbon paper was bonded to the electrode catalyst layers of the fuel electrode and the air electrode to form fuel electrode and air electrode, respectively. A cell was assembled using these fuel electrode and air electrode under the same conditions as in Example 1, and the cell was operated. 200
After operating at [° C.] and the characteristics were stabilized, gas diffusivity was evaluated at a current density I of 300 [mA / cm 2 ]. H 2 gain △ E H2 which is an index of gas diffusivity of the fuel electrode
And O 2 gain ΔEo 2 , which is an index of gas diffusivity of the air electrode, was measured. The results are shown in FIGS. 8 and 9, respectively.

【0052】図8は、空気極の電極触媒層の気孔率εを
65[%]一定として、燃料極の電極触媒層の気孔率ε
を変化させた場合のものである。燃料極の電極触媒層の
気孔率εが大きくなるにつれて、セルのH2ゲイン△E
H2が小さくなっており、燃料極の電極触媒層の気孔率ε
が50〜55[%]以上で飽和する傾向がある。また、
このときの燃料極の電極触媒層のカーボン坦体の体積比
率Cは20〜25[%]程度となっている。
FIG. 8 shows that the porosity ε of the electrode catalyst layer of the air electrode is fixed at 65% and the porosity ε of the electrode catalyst layer of the fuel electrode is constant.
Is changed. As the porosity ε of the electrode catalyst layer of the fuel electrode increases, the H 2 gain of the cell ΔE
H2 is small, the porosity ε of the electrode catalyst layer of the fuel electrode
Tends to be saturated at 50 to 55 [%] or more. Also,
At this time, the volume ratio C of the carbon carrier in the electrode catalyst layer of the fuel electrode is about 20 to 25%.

【0053】同様に図9は燃料極の電極触媒層の気孔率
εを65[%]で一定として、空気極の電極触媒層の気
孔率εを変化させた場合のものである。空気極の電極触
媒層の気孔率εが大きくなるにつれて、セルのO2ゲイ
ン△Eo2が小さくなっており、空気極の電極触媒層の
気孔率εが50〜55[%]以上で飽和する傾向にあ
る。また、このときの空気極の電極触媒層のカーボン
体の体積比率Cは20〜25[%]程度となっている。
Similarly, FIG. 9 shows a case where the porosity ε of the electrode catalyst layer of the air electrode is changed while the porosity ε of the electrode catalyst layer of the fuel electrode is kept constant at 65 [%]. As the porosity ε of the electrode catalyst layer of the air electrode increases, the O 2 gain ΔEo 2 of the cell decreases, and the cell becomes saturated when the porosity ε of the electrode catalyst layer of the air electrode is 50 to 55% or more. There is a tendency. The volume ratio C of the carbon responsible <br/> of the electrode catalyst layer of the air electrode at this time is 20 to 25 [%] degree.

【0054】以上、図7〜図9より次のことが言える。
すなわち、燃料極及び空気極の電極触媒層の気孔率εが
75〜80[%]以下(カーボン体の体積比率Cが1
0〜15[%]程度以上)で電極触媒層の電気抵抗ρが
小さくなり望ましい。また、燃料極の電極触媒層の気孔
率εが50〜55[%]以上(カーボン体の体積比率
Cが20〜25[%]程度以下)でセルのH2ゲイン△
H2が小さくなり望ましい。さらに、空気極の電極触媒
層の気孔率εが50〜55[%]以上(カーボン体の
体積比率Cが20〜25[%]程度以下)でセルのO2
ゲイン△Eo2が小さくなり望ましい。
The following can be said from FIGS. 7 to 9.
That is, the porosity of the electrode catalyst layer of the fuel electrode and the air electrode ε is 75-80% or less (volume ratio C of the carbon responsible body 1
(About 0 to 15% or more), the electric resistance ρ of the electrode catalyst layer is desirably small. The porosity of the electrode catalyst layer of the fuel electrode ε is 50-55% or more H 2 gain (volume ratio C is more than about 20 to 25 [%] of carbon responsible body) cell △
This is desirable because E H2 is small. Furthermore, the porosity of the electrode catalyst layer of the air electrode ε is 50-55% or more (volume ratio C of the carbon responsible body 20-25% of around or less) of the cell O 2
It is desirable that the gain △ Eo 2 be small.

【0055】したがって、燃料極及び空気極の電極触媒
層の気孔率εを50〜80[%](好ましくは60〜7
0[%]程度)かつ、燃料極及び空気極の電極触媒層の
カーボン体の体積比率Cを10〜25[%](好まし
くは15〜20[%]程度)にすることにより、電極触
媒層の電気抵抗率ρが小さく、電気抵抗による電圧降下
が小さいものが得られ、さらにセルのH2ゲイン△Eo2
の小さいものが得られ、セルの内部損失が小さくなり、
セル電圧の高いものが得られる効果がある。
Therefore, the porosity ε of the electrode catalyst layers of the fuel electrode and the air electrode is set to 50 to 80% (preferably 60 to 7%).
0 [%] C.) and the volume ratio C of the carbon in charge of the electrode catalyst layer of the fuel electrode and the air electrode 10 to 25 [%] (preferably by 15 to 20 [%] or so), the electrode catalyst electrical resistivity of the layer ρ is small, what is obtained a voltage drop due to the electrical resistance is small, H 2 gain further cell △ Eo 2
Is obtained, the internal loss of the cell is reduced,
There is an effect that a high cell voltage can be obtained.

【0056】実施例3. 実施例1と同様に方法で電極触媒層を作した。すなわ
ち、原料の触媒粉末の組成は重量比で次のものを用い
た。カーボンブラック体は熱処理カーボンを用いた。
灰分はニッケルを主成分とする金属である。試料Aは白
金10[%]、カーボン体86[%]、灰分 4
[%]、試料Bは白金20[%]、カーボン体72
[%]、灰分 8[%]、試料Cは白金30[%]、カ
ーボン体58[%]、灰分12[%]、試料Dは白金
40[%]、カーボン体44[%]、灰分16[%]
を含む。重量比で触媒粉末/PTFE=60/40、坪
量15.0[mg/cm2]の空気極の電極触媒層を作
た。これらの電極触媒層は気孔率εを変化させ、このと
きの電極触媒層のカーボン体の体積比率Cと電気抵抗
率ρを測定した。その結果を図10及び図11に示す。
Embodiment 3 FIG. The electrode catalyst layer was created manufactured by the method as in Example 1. That is, the composition of the raw material catalyst powder was as follows in terms of weight ratio. Carbon black responsible body was using the heat treatment carbon.
Ash is a metal mainly composed of nickel. Sample A platinum 10 [%], carbon responsible 86 [%], ash 4
[%], Sample B Pt 20 [%], carbon responsible 72
[%], Ash 8 [%] Sample C Pt 30 [%], carbon responsible 58 [%], ash 12%, Sample D Platinum 40%, carbon responsible 44 [%], Ash content 16 [%]
including. Catalyst powder / PTFE = 60/40, was a basis weight 15.0 [mg / cm 2] to create made an electrode catalyst layer of the air electrode of <br/> by weight. These electrode catalyst layer changes the porosity epsilon, was measured volume ratio C and the electric resistivity ρ of the carbon in charge of the electrode catalyst layer at this time. The results are shown in FIGS.

【0057】図10によれば、空気極の電気触媒層の気
孔率εが大きくなるにつれて、電極触媒層の電気抵抗率
ρが大きくなっており、その程度は原料の触媒粉末の白
金濃度の大きいものほど著しい。一方、図11によれ
ば、空気極の電極触媒層のカーボン体の体積比率Cが
大きくなるにつれて電極触媒層の電気抵抗率ρが小さく
なっているが、原料の触媒粉末の白金濃度の影響を殆ど
受けずに大略1本の曲線で表せる。この図11による表
示形式、すなわち、電極触媒層のカーボン体の体積比
率Cに対する電気抵抗率ρの影響を考えることにより、
電極触媒層の電気抵抗、さらには電極の電気抵抗による
電圧降下を見積もることが容易となる効果がある。
According to FIG. 10, the electric resistivity ρ of the electrode catalyst layer increases as the porosity ε of the electrocatalyst layer at the air electrode increases, and the degree of the increase is such that the platinum concentration of the raw material catalyst powder increases. Things are remarkable. On the other hand, according to FIG. 11, the electrical resistivity of the electrode catalyst layer as the volume ratio C of the carbon in charge of the electrode catalyst layer of the air electrode increases ρ is reduced, the influence of the concentration of platinum catalyst powder of raw material , And can be represented by a single curve. Display format according to FIG. 11, i.e., by considering the influence of the electrical resistivity ρ to volume ratio C of the carbon in charge of the electrode catalyst layer,
There is an effect that it is easy to estimate the electric resistance of the electrode catalyst layer and the voltage drop due to the electric resistance of the electrode.

【0058】これらの空気極の電極触媒層にカーボンペ
ーパを接合して空気極の電極とした。さらに、実施例1
で作製した燃料極と上記空気極を用いて実施例1と同じ
条件でセルを組み立ててセルの運転を行った。200
[℃]で運転して、特性が安定してから、電流密度Iが
300[mA/cm2]の状態でガス拡散性の評価を行っ
た。空気極のガス拡散性の指標であるO2ゲイン△Eo2
を測定した。その結果を図12に示す。図12によれ
ば、空気極の電極触媒層の気孔率εが大きくなるにつれ
て、セルのO2ゲイン△Eo2が小さくなっているが、原
料の触媒粉末の白金濃度の影響をあまり受けず、大略1
本の曲線の周辺に分布している。
[0058] Carbon paper was bonded to the electrode catalyst layers of these air electrodes to form air electrode electrodes. Example 1
A cell was assembled under the same conditions as in Example 1 using the fuel electrode prepared in the above and the air electrode, and the cell was operated. 200
After operating at [° C.] and the characteristics were stabilized, gas diffusivity was evaluated at a current density I of 300 [mA / cm 2 ]. O 2 gain △ Eo 2, which is an index of the gas diffusion property of the air electrode
Was measured. FIG. 12 shows the result. According to FIG. 12, as the porosity ε of the electrode catalyst layer of the air electrode increases, the O 2 gain △ Eo 2 of the cell decreases, but is not significantly affected by the platinum concentration of the raw material catalyst powder. Roughly 1
It is distributed around the curve of the book.

【0059】従って、図11により、電極触媒層のカー
ボン体の体積比率Cを10[%]以上(好ましくは1
5[%]以上)に選ぶことにより電気抵抗率ρを小さく
することができ、図12より電極触媒層の気孔率εを5
0[%]以上(好ましくは60[%]以上)に選ぶこと
によりセルのO2ゲイン△Eo2を小さくすることがで
き、さらに、両者を組み合わせることにより電気抵抗率
ρとセルのO2ゲイン△Eo2の両方を共に小さくするこ
とができる相乗効果が得られる。
[0059] Thus, referring to FIG. 11, the volume ratio C of the carbon in charge of the electrode catalyst layer 10% or more (preferably 1
5 [%] or more), the electrical resistivity ρ can be reduced, and FIG. 12 shows that the porosity ε of the electrode catalyst layer is 5%.
By selecting 0 [%] or more (preferably 60 [%] or more), the cell O 2 gain △ Eo 2 can be reduced, and the electrical resistivity ρ and the cell O 2 gain can be reduced by combining both. A synergistic effect that can reduce both ΔEo 2 is obtained.

【0060】実施例4.実施例1と同様の方法で電極触
媒層を作製した。触媒粉末は重量比で白金が20
[%]、カーボン担体が72[%]、ニッケルを主成分
とする灰分が8[%]のものを用いた。カーボン担体は
熱処理カーボンを用いた。重量比で触媒粉末/PTFE
=100/0〜40/60に変化させ白金量が1.8[m
g/cm2]気孔率εが65[%]の空気極の電極触媒層を
作製した。触媒粉末/PTFE=60/40の場合に、
電極触媒層の坪量が15[mg/cm2]である。この電極
触媒層のカーボン担体の体積比率C、厚さL、電気抵抗
率ρ、及び電気抵抗Rcを測定した。その結果を図13
及び図14に示す。
Embodiment 4 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. The catalyst powder contains 20 platinum by weight.
[%], A carbon carrier of 72 [%] and an ash containing nickel as a main component of 8 [%] were used. As the carbon carrier, heat-treated carbon was used. Catalyst powder / PTFE by weight ratio
= 100/0 to 40/60 and the amount of platinum was 1.8 [m
g / cm 2 ] The porosity ε was 65 [%] to prepare an electrode catalyst layer of an air electrode. When catalyst powder / PTFE = 60/40,
The basis weight of the electrode catalyst layer is 15 [mg / cm 2 ]. The volume ratio C, the thickness L, the electric resistivity ρ, and the electric resistance Rc of the carbon support in the electrode catalyst layer were measured. The result is shown in FIG.
And FIG.

【0061】図13によれば、空気極の電極触媒層のP
TFE含有率[%](重量比)が大きくなるにつれて、
カーボン担体の体積比率Cは小さくなり、反対に電極触
媒層の厚さLが大きくなっている。また、PTFE含有
率が20〜60[%]程度の場合にカーボン担体の体積
比率Cが10〜25[%]程度になっている。図14に
よれば、空気極の電極触媒層のカーボン担体の体積比率
Cが大きくなるにつれて、電極触媒層の電気抵抗率ρ及
び電気抵抗Rcが小さくなっており、カーボン担体の体
積比率Cが15〜20[%]程度以上で飽和する傾向に
ある。これらの空気極の電極触媒層にカーボンペーパを
接合して空気極の電極とした。
According to FIG. 13, the P of the electrode catalyst layer of the air electrode is
As the TFE content [%] (weight ratio) increases,
The volume ratio C of the carbon support is small, and conversely, the thickness L of the electrode catalyst layer is large. Further, when the PTFE content is about 20 to 60%, the volume ratio C of the carbon carrier is about 10 to 25%. According to FIG. 14, as the volume ratio C of the carbon support in the electrode catalyst layer of the air electrode increases, the electrical resistivity ρ and the electrical resistance Rc of the electrode catalyst layer decrease, and the volume ratio C of the carbon support decreases by 15%. It tends to be saturated at about 20% or more. Carbon paper was bonded to the electrode catalyst layers of these cathodes to form cathode electrodes.

【0062】さらに、実施例1で作製した燃料極と上記
空気極を用いて実施例1と同じ条件でセルを組み立てて
セルの運転を行った。200[℃]で運転して、特性が
安定してから電流密度Iが300[mA/cm2]の状態で
セル電圧E、空気極のガス拡散性の指標であるO2ゲイ
ンΔEo2及び空気極の電極触媒層の電圧降下IRcを
測定した。その結果を図15及び図16に示す。図15
によれば、空気極の電極触媒層のカーボン担体の体積比
率Cが大きくなるにつれて、空気極の電極触媒層の電圧
降下IRcは小さくなり、カーボン担体の体積比率Cが
10〜15[%]程度以上で飽和する傾向にある。ま
た、空気極の電極触媒層のカーボン担体の体積比率Cが
大きくなるにつれて、セル運転時の空気極のガス拡散性
指標のO2ゲインΔEo2が大きくなり、空気極の電極触
媒層のカーボン担体の体積比率Cが20〜25[%]程
度以上で急増する傾向にある。
Further, a cell was assembled and operated under the same conditions as in Example 1 using the fuel electrode prepared in Example 1 and the above-mentioned air electrode. The cell voltage E, the O 2 gain ΔEo 2, which is an index of gas diffusivity of the air electrode, and the air were supplied at a current density I of 300 [mA / cm 2 ] after the characteristics were stabilized after operation at 200 ° C. The voltage drop IRc of the electrode catalyst layer of the pole was measured. The results are shown in FIGS. FIG.
According to the method, as the volume ratio C of the carbon support in the electrode catalyst layer of the air electrode increases, the voltage drop IRc of the electrode catalyst layer of the air electrode decreases, and the volume ratio C of the carbon support becomes about 10 to 15%. The above tends to saturate. Further, as the volume ratio C of the carbon support of the electrode catalyst layer of the air electrode increases, the O 2 gain ΔEo 2 of the gas diffusion index of the air electrode during cell operation increases, and the carbon support of the electrode catalyst layer of the air electrode increases. Tend to sharply increase when the volume ratio C of about 20% to 25% or more.

【0063】以上より、図15からは、空気極の電極触
媒層のカーボン担体の体積比率Cは10〜25[%]程
度、好ましくは15〜20[%]程度が望ましいことが
分かる。以上の関係を総合的に調べたものが図16であ
る。図16によれば、空気極の電極触媒層のカーボン担
体の体積比率Cが10〜25[%]程度で空気極の電極
触媒層の電圧降下IRcとセルのO2ゲインΔEo2の和
が小さくなっている。特にカーボン担体の体積比率Cが
15〜20[%]程度では110[mv]前後の小さい値
となっており好ましい。以上に対応して、空気極の電極
触媒層のカーボン担体の体積比率Cが10〜25[%]
程度でセル電圧が高くなっている。特にカーボン担体の
体積比率Cが15〜20[%]程度では650[mv]前
後の高い値となっており好ましい。
From the above, it can be seen from FIG. 15 that the volume ratio C of the carbon carrier in the electrode catalyst layer of the air electrode is desirably about 10 to 25%, preferably about 15 to 20%. FIG. 16 shows a comprehensive examination of the above relationship. According to FIG. 16, the sum of the voltage drop IRc of the electrode catalyst layer of the air electrode and the O 2 gain ΔEo 2 of the cell is small when the volume ratio C of the carbon carrier in the electrode catalyst layer of the air electrode is about 10 to 25 [%]. Has become. In particular, when the volume ratio C of the carbon carrier is about 15 to 20%, the value is as small as about 110 [mv], which is preferable. Corresponding to the above, the volume ratio C of the carbon support in the electrode catalyst layer of the air electrode is 10 to 25 [%].
The cell voltage is higher by the degree. In particular, when the volume ratio C of the carbon carrier is about 15 to 20%, a high value of about 650 [mv] is preferable.

【0064】したがって、空気極の電極触媒層のカーボ
ン担体の体積比率Cを10〜25[%]程度(好ましく
は15〜20[%]程度)の範囲に管理することによ
り、空気極の電極触媒層の電圧降下IRcとセルのO2
ゲインΔEo2の和を小さく、それに対応して、セル電
圧Eを高くすることができるという効果がある。具体的
には図13により、空気極の電極触媒層のPTFE含有
率(重量比)を20〜60[%]程度(好ましくは30
〜50[%]程度)の範囲に管理することにより、カー
ボン担体の体積比率Cが10〜25[%]程度(好まし
くは15〜20[%]程度)の範囲に管理され上記の効
果が得られる。
Therefore, by controlling the volume ratio C of the carbon carrier in the electrode catalyst layer of the air electrode in the range of about 10 to 25 [%] (preferably about 15 to 20 [%]), Layer voltage drop IRc and cell O 2
There is an effect that the sum of the gains ΔEo 2 can be reduced, and the cell voltage E can be increased correspondingly. Specifically, according to FIG. 13, the PTFE content (weight ratio) of the electrode catalyst layer of the air electrode is about 20 to 60% (preferably 30%).
By controlling the volume ratio C of the carbon carrier to a range of about 10 to 25 [%] (preferably about 15 to 20 [%]), and the above-described effect is obtained. Can be

【0065】例えば、リン酸型燃料電池のセルを量産化
する場合には、空気極の電極触媒層のカーボン担体の体
積比率Cを10〜25[%]程度(好ましくは15〜2
0[%]程度)の範囲になるように電極触媒層のPTF
E含有率を制御すれば、電極触媒層作製時にPTFE含
有率に若干の変動があっても製作されたセルはセル電圧
が高く、しかもバラツキの小さいものが得られるという
効果がある。
For example, when mass-producing cells of the phosphoric acid type fuel cell, the volume ratio C of the carbon carrier in the electrode catalyst layer of the air electrode is set to about 10 to 25% (preferably 15 to 2%).
0%) of the electrode catalyst layer.
If the E content is controlled, there is an effect that even if there is a slight change in the PTFE content at the time of preparing the electrode catalyst layer, the manufactured cell can have a high cell voltage and a small variation.

【0066】実施例5.実施例1と同様の方法で電極触
媒層を作製した。触媒粉末は重量比で白金が20
[%]、カーボン担体が72[%]、ニッケルを主成分
とする灰分が8[%]のものを用いた。カーボン担体は
熱処理カーボンを用いた。重量比で触媒粉末/PTFE
=60/40で気孔率εが65[%]でカーボン担体の
体積比率Cが19.3[%]の空気極の電極触媒層を作
製した。電極触媒層の厚さLを50〜400[μm]に
変化させて作製した。これらの空気極の電極触媒層にカ
ーボンペーパを接合して空気極の電極とした。さらに実
施例1で作製した燃料極と上記空気極を用いて実施例1
と同じ条件でセルを組み立ててセルの運転を行った。2
00[℃]で運転して特性が安定してから電流密度Iが
300[mA/cm2]の状態でセル電圧E、空気極のガス
拡散性の指標であるO2ゲインΔEo2及び空気極の電極
触媒層の電圧降下IRcを測定した。その結果を図17
及び図18に示す。
Embodiment 5 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. The catalyst powder contains 20 platinum by weight.
[%], A carbon carrier of 72 [%] and an ash containing nickel as a main component of 8 [%] were used. As the carbon carrier, heat-treated carbon was used. Catalyst powder / PTFE by weight ratio
= 60/40, the porosity ε was 65 [%], and the volume ratio C of the carbon carrier was 19.3 [%]. It was prepared by changing the thickness L of the electrode catalyst layer to 50 to 400 [μm]. Carbon paper was bonded to the electrode catalyst layers of these cathodes to form cathode electrodes. Further, using the fuel electrode prepared in Example 1 and the above-mentioned air electrode, Example 1 was used.
The cell was assembled and operated under the same conditions as described above. 2
The cell voltage E, the O 2 gain ΔEo 2, which is an index of gas diffusivity of the air electrode, and the air electrode were obtained at a current density I of 300 [mA / cm 2 ] after the operation was stabilized at 00 [° C.]. Of the electrode catalyst layer was measured. The result is shown in FIG.
And FIG.

【0067】セル電圧を高めるために、電極触媒層の厚
さを厚くして白金量を増加させる方法が従来より知られ
ている。図17及び図18はそれに対応するものであ
る。図17によれば、空気極の電極触媒層の厚さLに比
例して空気極の電極触媒層の電圧降下IRcは大きくな
っている。一方、セルのO2ゲインΔEo2は電極触媒層
の厚さLが300〜350[μm]以上で急増してい
る。以上の関係を総合的に調べたものが図18である。
図18によれば、空気極の電極触媒層の厚さLが300
〜350[μm]以上で、空気極の電極触媒層の電圧降
下IRcとセルのO2ゲインΔEo2の和が急増してい
る。空気極の電極触媒層の厚さを厚くしてセル電圧を高
くすることを期待しているわけであるが、上記の理由に
より、セル電圧は空気極の電極触媒層の厚さLが100
〜350[μm]程度の範囲で高くなっている。特に、
空気極の電極触媒層の厚さLが150〜300[μm]
程度の範囲では650[mv]前後の高い値となっており
好ましい。
A method of increasing the amount of platinum by increasing the thickness of the electrode catalyst layer in order to increase the cell voltage has been conventionally known. 17 and 18 correspond to this. According to FIG. 17, the voltage drop IRc of the electrode catalyst layer of the air electrode increases in proportion to the thickness L of the electrode catalyst layer of the air electrode. On the other hand, the O 2 gain ΔEo 2 of the cell rapidly increases when the thickness L of the electrode catalyst layer is 300 to 350 [μm] or more. FIG. 18 comprehensively examines the above relationship.
According to FIG. 18, the thickness L of the electrode catalyst layer of the air electrode is 300
At ~ 350 [μm] or more, the sum of the voltage drop IRc of the electrode catalyst layer of the air electrode and the O 2 gain ΔEo 2 of the cell sharply increases. It is expected that the cell voltage is increased by increasing the thickness of the electrode catalyst layer of the air electrode.
It is high in the range of about 350 [μm]. In particular,
The thickness L of the electrode catalyst layer of the air electrode is 150 to 300 [μm]
In the range of the degree, a high value of about 650 [mv] is preferable.

【0068】したがって、空気極の電極触媒層の厚さL
を100〜350[μm]程度(好ましくは150〜3
00[μm]程度)の範囲に制御することにより高いセ
ル電圧のものが得られ、本発明の効果をより高めること
ができる。また、空気極の電極触媒層の必要な触媒量を
適正化することにより触媒の使用にむだがなくなり、セ
ルのコスト低減に貢献できる効果がある。
Therefore, the thickness L of the electrode catalyst layer of the air electrode
Of about 100 to 350 [μm] (preferably 150 to 3
By controlling to within the range of about 00 [μm], a high cell voltage can be obtained, and the effect of the present invention can be further enhanced. Further, by optimizing the required amount of catalyst in the electrode catalyst layer of the air electrode, use of the catalyst becomes useless, which has the effect of contributing to a reduction in cell cost.

【0069】実施例6.実施例1と同様な方法で電極触
媒層を作製した。触媒粉末は重量比で白金が20
[%]、カーボン担体が72[%]、ニッケルを主成分
とする灰分が8[%]のものを用いた。カーボン担体は
熱処理カーボンを用いた。重量比で触媒粉末/PTFE
=60/40、坪量15.0[mg/cm2]、気孔率εが6
5[%]、カーボン担体の体積比率Cが19.3[%]
の空気極の電極触媒層を作製した。この空気極の電極触
媒層にカーボンペーパを接合して空気極の電極とした。
同じようにして、重量比で触媒粉末/PTFE=60/
40、気孔率εが65[%]、カーボン担体の体積比率
Cが19.3[%]の燃料極の電極触媒層を作製した。
電極触媒層の厚さLを30〜350[μm]に変化させ
て作製した。これらの燃料極の電極触媒層にカーボンペ
ーパを接合して燃料極の電極とした。
Embodiment 6 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. The catalyst powder contains 20 platinum by weight.
[%], A carbon carrier of 72 [%] and an ash containing nickel as a main component of 8 [%] were used. As the carbon carrier, heat-treated carbon was used. Catalyst powder / PTFE by weight ratio
= 60/40, basis weight 15.0 [mg / cm 2 ], porosity ε 6
5%, the volume ratio C of the carbon carrier is 19.3%
The electrode catalyst layer of the air electrode was prepared. Carbon paper was joined to the electrode catalyst layer of the air electrode to form an air electrode.
Similarly, in a weight ratio, catalyst powder / PTFE = 60 /
An electrode catalyst layer of a fuel electrode having a porosity of 40 [%] and a carbon carrier volume ratio C of 19.3 [%] was prepared.
It was manufactured by changing the thickness L of the electrode catalyst layer to 30 to 350 [μm]. Carbon paper was bonded to the electrode catalyst layers of these fuel electrodes to form fuel electrode electrodes.

【0070】さらに、上記燃料極と空気極を用いて実施
例1と同じ条件でセルを組み立ててセルの運転を行っ
た。200[℃]で運転して特性が安定してから電流密
度Iが300[mA/cm2]の状態で燃料極のガス拡散性
の指標であるH2ゲインΔEH2及び燃料極の電極触媒層
の電圧降下IRcを測定した。その結果を図19及び図
20に示す。セル電圧を高めるために、電極触媒層の厚
さを厚くして白金量を増加させる方法が従来より知られ
ている。図19及び図20はそれに対応するものであ
る。図19によれば燃料極の電極触媒層の厚さLに比例
して燃料極の電極触媒層の電圧降下IRcは大きくなっ
ている。一方、セルのH2ゲインΔEH2は電極触媒層の
厚さLが200〜250[μm]以上で急増している。
Further, a cell was assembled using the above fuel electrode and air electrode under the same conditions as in Example 1, and the cell was operated. After operating at 200 ° C. and stabilizing the characteristics, when the current density I is 300 [mA / cm 2 ], the H 2 gain ΔE H2 which is an index of the gas diffusion property of the fuel electrode and the electrode catalyst layer of the fuel electrode Was measured for the voltage drop IRc. The results are shown in FIGS. Conventionally, a method of increasing the amount of platinum by increasing the thickness of an electrode catalyst layer to increase the cell voltage has been known. 19 and 20 correspond to this. According to FIG. 19, the voltage drop IRc of the electrode catalyst layer of the fuel electrode increases in proportion to the thickness L of the electrode catalyst layer of the fuel electrode. On the other hand, the H 2 gain ΔE H2 of the cell increases rapidly when the thickness L of the electrode catalyst layer is 200 to 250 [μm] or more.

【0071】以上の関係を総合的に調べたものが図20
である。図20によれば、燃料極の電極触媒層の厚さL
が200〜250[μm]以上で、燃料極の電極触媒層
の電圧降下IRcとセルのH2ゲインΔEH2の和が急増
している。燃料極の電極触媒層の厚さを厚くしてセル電
圧を高くすることを期待しているわけであるが、上記の
理由により、セル電圧は燃料極の電極触媒層の厚さLが
50〜250[μm]程度の範囲で高くなっている。特
に、燃料極の電極触媒層の厚さLが100〜200[μ
m]程度の範囲では650[mv]前後の高い値となって
おり好ましい。したがって、燃料極の電極触媒層の厚さ
Lを50〜250[μm]程度(好ましくは100〜2
00[μm]程度)の範囲に制御することにより高いセ
ル電圧のものが得られ、本発明の効果をより高めること
ができる。また、燃料極の電極触媒層の必要な触媒量を
適正化することにより触媒の使用にむだがなくなり、セ
ルのコスト低減に貢献できる効果がある。
FIG. 20 shows a comprehensive examination of the above relationship.
It is. According to FIG. 20, the thickness L of the electrode catalyst layer of the fuel electrode
Is 200 to 250 [μm] or more, the sum of the voltage drop IRc of the electrode catalyst layer of the fuel electrode and the H 2 gain ΔE H2 of the cell sharply increases. It is expected that the cell voltage is increased by increasing the thickness of the electrode catalyst layer of the fuel electrode. It is high in the range of about 250 [μm]. In particular, when the thickness L of the electrode catalyst layer of the fuel electrode is 100 to 200 [μ
In the range of about [m], a high value of around 650 [mv] is preferable. Therefore, the thickness L of the electrode catalyst layer of the fuel electrode is set to about 50 to 250 μm (preferably 100 to 2 μm).
By controlling to within the range of about 00 [μm], a high cell voltage can be obtained, and the effect of the present invention can be further enhanced. Further, by optimizing the required amount of the catalyst in the electrode catalyst layer of the fuel electrode, the use of the catalyst becomes useless, which has the effect of contributing to a reduction in the cost of the cell.

【0072】実施例7.実施例1と同様な方法で7種の
電極触媒層を作製した。原料の触媒粉末は組成の重量比
で次のものを用いた。白金濃度は5〜50[%]であ
る。カーボン担体は熱処理カーボンを用いた。灰分はニ
ッケルを主成分とする金属である。試料Eは白金 5
[%]、カーボン担体93[%]、灰分 2[%]、試
料Fは白金10[%]、カーボン担体86[%]、灰分
4[%]、試料Gは白金15[%]、カーボン担体7
9[%]、灰分 6[%]、試料Hは白金20[%]、
カーボン担体72[%]、灰分 8[%]、試料Iは白
金30[%]、カーボン担体58[%]、灰分12
[%]、試料Jは白金40[%]、カーボン担体44
[%]、灰分16[%]、試料Kは白金50[%]、カ
ーボン担体30[%]、灰分20[%]を含む。
Embodiment 7 FIG. Seven types of electrode catalyst layers were produced in the same manner as in Example 1. The following catalyst powder was used in a weight ratio of the composition. The platinum concentration is 5 to 50 [%]. As the carbon carrier, heat-treated carbon was used. Ash is a metal mainly composed of nickel. Sample E is platinum 5
[%], Carbon carrier 93 [%], ash 2 [%], sample F is platinum 10 [%], carbon carrier 86 [%], ash 4 [%], sample G is platinum 15 [%], carbon carrier 7
9 [%], ash content 6 [%], sample H was platinum 20 [%],
72% carbon support, 8% ash content, sample I was 30% platinum, 58% carbon support, 12 ash content
[%], Sample J was platinum 40 [%], carbon carrier 44
[%], Ash content 16 [%], Sample K contains platinum 50 [%], carbon carrier 30 [%], and ash content 20 [%].

【0073】重量比で触媒粉末/PTFE=60/4
0、坪量15.0[mg/cm2]の空気極の電極触媒層を作
製した。これらの電極触媒層は気孔率εを変化させ、こ
のときの電極触媒層の電気抵抗率ρ及び電気抵抗Rcを
測定した。その結果を図21及び図22に示す。図21
によれば、空気極の電極触媒層の触媒粉末の白金濃度が
大きくなるにつれて電極触媒層の電気抵抗率ρが大きく
なっており、その程度は気孔率εの大きいものほど大き
い。触媒粉末の白金濃度が40[%]以上で電極触媒層
の電気抵抗率ρが急増する傾向にある。
Catalyst powder / PTFE = 60/4 by weight ratio
An electrode catalyst layer of an air electrode having a basis weight of 15.0 [mg / cm 2 ] was prepared. The porosity ε of these electrode catalyst layers was changed, and the electric resistivity ρ and the electric resistance Rc of the electrode catalyst layers at this time were measured. The results are shown in FIGS. FIG.
According to the above, as the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode increases, the electric resistivity ρ of the electrode catalyst layer increases, and the degree thereof increases as the porosity ε increases. When the platinum concentration of the catalyst powder is 40% or more, the electric resistivity ρ of the electrode catalyst layer tends to increase rapidly.

【0074】さらに、図22によれば、空気極の電極触
媒層の触媒粉末の白金濃度が大きくなるにつれて、空気
極の電極触媒層の電気抵抗Rcが大きくなっており、そ
の程度は気孔率εの大きいものほど大きい。触媒粉末の
白金濃度が30〜40[%]程度以上で電極触媒層の電
気抵抗Rcが急増する傾向にある。したがって、空気極
の電極触媒層の触媒粉末の白金濃度が40[%]程度以
下(好ましくは30[%]程度以下)の範囲のものを使
用することにより電極触媒層の電気抵抗率ρ及び電気抵
抗Rcを小さくできるのでセル内部の電流分布を均一化
し、ジュール損を小さく抑制でき、本発明の効果をより
高めることができる。
Further, according to FIG. 22, the electric resistance Rc of the electrode catalyst layer of the air electrode increases as the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode increases. Larger ones are larger. When the platinum concentration of the catalyst powder is about 30 to 40% or more, the electric resistance Rc of the electrode catalyst layer tends to increase rapidly. Therefore, by using a catalyst powder having a platinum concentration of about 40% or less (preferably about 30% or less) in the catalyst powder of the electrode catalyst layer of the air electrode, the electric resistivity ρ and the electric resistance of the electrode catalyst layer are reduced. Since the resistance Rc can be reduced, the current distribution inside the cell can be made uniform, the Joule loss can be reduced, and the effect of the present invention can be further enhanced.

【0075】また、空気極の電極触媒層の触媒粉末の白
金濃度を適正化することにより、高コストの必要以上の
高白金濃度の触媒を使用するむだがなくなりセルのコス
ト低減に貢献できる効果がある。これらの空気極の電極
触媒層のうち、気孔率εが65[%]のものに、カーボ
ンペーパを接合して空気極の電極とした。さらに実施例
1で作製した燃料極と上記空気極を用いて実施例1と同
じ条件でセルを組み立ててセルの運転を行った。200
[℃]で運転して特性が安定してから電流密度Iが30
0[mA/cm2]の状態でセル電圧E、空気極のガス拡散
性の指標であるO2ゲインΔEo2及び空気極の電極触媒
層の電圧降下IRcを測定した。その結果を図23及び
図24に示す。
Further, by optimizing the platinum concentration of the catalyst powder in the electrode catalyst layer of the air electrode, the use of a catalyst having a higher platinum concentration than necessary at a high cost is unavoidable, and the effect of contributing to a reduction in cell cost can be obtained. is there. Of the electrode catalyst layers of these air electrodes, those having a porosity ε of 65 [%] were bonded with carbon paper to form electrodes of the air electrode. Further, a cell was assembled and operated under the same conditions as in Example 1 using the fuel electrode prepared in Example 1 and the air electrode. 200
After operating at [° C.] and the characteristics were stabilized, the current density I was 30
In the state of 0 [mA / cm 2 ], the cell voltage E, the O 2 gain ΔEo 2, which is an index of gas diffusivity at the air electrode, and the voltage drop IRc of the electrode catalyst layer at the air electrode were measured. The results are shown in FIGS.

【0076】図23によれば、空気極の電極触媒層の触
媒粉末の白金濃度が大きくなるにつれて、空気極の電極
触媒層の電圧降下IRcが大きくなり、触媒粉末の白金
濃度が30〜40[%]程度以上で急増する傾向にあ
る。また、空気極の電極触媒層の触媒粉末の白金濃度が
大きくなるにつれて、セル運転時の空気極のガス拡散性
指標のO2ゲインΔEo2が大きくなっており、空気極の
電極触媒層の触媒粉末の白金濃度が30〜40[%]程
度以上で急増する傾向にある。以上により、図23から
は空気極の電極触媒層の触媒粉末の白金濃度40[%]
程度以下、好ましくは30[%]以下が望ましいことが
分かる。
According to FIG. 23, as the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode increases, the voltage drop IRc of the electrode catalyst layer of the air electrode increases, and the platinum concentration of the catalyst powder becomes 30 to 40 [ %] Or more. Further, as the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode increases, the O 2 gain ΔEo 2 of the gas diffusion index of the air electrode during cell operation increases, and the catalyst of the electrode catalyst layer of the air electrode increases. When the platinum concentration of the powder is about 30 to 40% or more, it tends to increase rapidly. As described above, from FIG. 23, the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode is 40 [%].
It is understood that the content is desirably about 30% or less, preferably about 30% or less.

【0077】以上の関係を総合的に調べたものが図24
である。図24によれば、空気極の電極触媒層の触媒粉
末の白金濃度が30〜40[%]程度以上で空気極の電
極触媒層の電圧降下IRcとセルのO2ゲインΔEo2
和が急増している。以上に対応して空気極の電極触媒層
の触媒粉末の白金濃度が30〜40[%]程度以下でセ
ル電圧が高くなっている。触媒粉末の白金濃度が10
[%]程度以下では電極触媒層中の白金量が少ないた
め、セル電圧は低くなっている。空気極の電極触媒層の
触媒粉末の白金濃度を大きくしてセル電圧を高くするこ
とを期待しているわけであるが、上記の理由によりセル
電圧は空気極の電極触媒層の触媒粉末の白金濃度が10
〜40[%]程度の範囲で高くなっている。特に、空気
極の電極触媒層の触媒粉末の白金濃度が15〜30
[%]程度の範囲では650[mv]前後の高い値となっ
ており好ましい。
FIG. 24 shows a comprehensive examination of the above relationship.
It is. According to FIG. 24, when the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode is about 30 to 40% or more, the sum of the voltage drop IRc of the electrode catalyst layer of the air electrode and the O 2 gain ΔEo 2 of the cell sharply increases. doing. Correspondingly, the cell voltage is high when the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode is about 30 to 40% or less. When the platinum concentration of the catalyst powder is 10
Below about [%], the cell voltage is low because the amount of platinum in the electrode catalyst layer is small. It is expected that the cell voltage will be increased by increasing the platinum concentration of the catalyst powder in the electrode catalyst layer of the air electrode. Concentration 10
It is high in the range of about 40%. In particular, the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode is 15 to 30.
In the range of about [%], a high value of about 650 [mv] is preferable.

【0078】したがって、空気極の電極触媒層の触媒粉
末の白金濃度を10〜40[%]程度(好ましくは、1
5〜30[%]程度)の範囲にすることにより高いセル
電圧のものが得られ、本発明の効果をより高めることが
できる。また、空気極の電極触媒層の触媒粉末の白金濃
度を適正化することにより、高コストの必要以上の高白
金濃度の触媒を使用するむだがなくなり、セルのコスト
低減に貢献できる効果がある。
Accordingly, the platinum concentration of the catalyst powder in the electrode catalyst layer of the air electrode is set to about 10 to 40% (preferably 1 to 40%).
With a range of about 5 to 30%, a high cell voltage can be obtained, and the effect of the present invention can be further enhanced. Further, by optimizing the platinum concentration of the catalyst powder in the electrode catalyst layer of the air electrode, it is unavoidable to use a catalyst having a higher platinum concentration than necessary at a high cost, which has the effect of contributing to a reduction in cell cost.

【0079】実施例8.実施例1と同様な方法で電極触
媒層を作製した。触媒粉末は重量比で白金が20
[%]、カーボン担体が72[%]、ニッケルを主成分
とする灰分が8[%]のものを用いた。カーボン担体は
熱処理カーボンを用いた。重量比で触媒粉末/PTFE
=100/0〜10/90に変化させ白金量が1.8[m
g/cm2]の空気極の電極触媒層を作製した。触媒粉末/
PTFE=60/40の場合に、電極触媒層の坪量が1
5[mg/cm2]であり、気孔率εが65[%]のとき、
カーボン担体の体積比率が19.3[%]である。これ
らの電極触媒層は気孔率εを変化させ、このときの電極
触媒層の電気抵抗率ρ及び電極触媒層の厚さLを測定し
た。その結果を図25〜図30に示す。
Embodiment 8 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. The catalyst powder contains 20 platinum by weight.
[%], A carbon carrier of 72 [%] and an ash containing nickel as a main component of 8 [%] were used. As the carbon carrier, heat-treated carbon was used. Catalyst powder / PTFE by weight ratio
= 100/0 to 10/90 and the amount of platinum was 1.8 [m
g / cm 2 ] of the air electrode. Catalyst powder /
When PTFE = 60/40, the basis weight of the electrode catalyst layer is 1
5 [mg / cm 2 ], and when the porosity ε is 65 [%],
The volume ratio of the carbon carrier is 19.3 [%]. The porosity ε of these electrode catalyst layers was changed, and the electrical resistivity ρ of the electrode catalyst layer and the thickness L of the electrode catalyst layer at this time were measured. The results are shown in FIGS.

【0080】図25によれば、空気極の電極触媒層のP
TFE含有率が大きくなるにつれて、電極触媒層の電気
抵抗率ρが大きくなっており、その程度は気孔率εの大
きいものほど大きい。電極触媒層のPTFE含有率が5
0〜60[%]程度以上で電極触媒層の電気抵抗率ρが
急増する傾向にある。また、図26によれば空気極の電
極触媒層のPTFE含有率が大きくなるにつれて、電極
触媒層の厚さLが大きくなっており、その程度は気孔率
εの大きいものほど大きい。電極触媒層のPTFE含有
率が50〜60[%]程度以上で電極触媒層の厚さLが
急増する傾向にある。
According to FIG. 25, P of the electrode catalyst layer of the air electrode
As the TFE content increases, the electric resistivity ρ of the electrode catalyst layer increases, and the degree thereof increases as the porosity ε increases. When the PTFE content of the electrode catalyst layer is 5
At about 0 to 60% or more, the electric resistivity ρ of the electrode catalyst layer tends to rapidly increase. According to FIG. 26, as the PTFE content of the electrode catalyst layer of the air electrode increases, the thickness L of the electrode catalyst layer increases, and the degree increases as the porosity ε increases. When the PTFE content of the electrode catalyst layer is about 50 to 60% or more, the thickness L of the electrode catalyst layer tends to increase rapidly.

【0081】さらに、図27によれば、空気極の電極触
媒層のPTFE含有率が大きくなるにつれて、電極触媒
層の電気抵抗Rcが大きくなっており、その程度は気孔
率εの大きいものほど大きい。電極触媒層のPTFE含
有率が50〜60[%]程度以上で電極触媒層の電気抵
抗Rcが著しく急増する傾向にある。図28〜図30に
よれば、空気極の電極触媒層の気孔率εが大きくなるに
つれて、電極触媒層の電気抵抗率ρ、電極触媒層の厚さ
L、電極触媒層の電気抵抗Rcが大きくなっており、そ
の程度は電極触媒層のPTFE含有率が大きいものほど
大きい。電極触媒層の気孔率εが70〜75[%]程度
以上で電極触媒層の電気抵抗率ρ、電極触媒層の厚さ
L、電極触媒層の電気抵抗Rcが急増する傾向にある。
Further, according to FIG. 27, as the PTFE content of the electrode catalyst layer of the air electrode increases, the electric resistance Rc of the electrode catalyst layer increases, and the degree thereof increases as the porosity ε increases. . When the PTFE content of the electrode catalyst layer is about 50 to 60% or more, the electric resistance Rc of the electrode catalyst layer tends to increase sharply. According to FIGS. 28 to 30, as the porosity ε of the electrode catalyst layer of the air electrode increases, the electric resistivity ρ of the electrode catalyst layer, the thickness L of the electrode catalyst layer, and the electric resistance Rc of the electrode catalyst layer increase. The larger the PTFE content of the electrode catalyst layer, the greater the degree. When the porosity ε of the electrode catalyst layer is about 70 to 75% or more, the electric resistivity ρ of the electrode catalyst layer, the thickness L of the electrode catalyst layer, and the electric resistance Rc of the electrode catalyst layer tend to increase rapidly.

【0082】したがって、空気極の電極触媒層のPTF
E含有率を60[%]程度(好ましくは50[%]程
度)以下、気孔率εを70[%]程度以下にすることに
より、電極触媒層の電気抵抗率ρを小さくできるので、
セル内部の電流分布を均一化し、ジュール損を小さく抑
制でき、本発明の効果をより高めることができる。ま
た、空気極の電極触媒層のPTFE含有率を60[%]
程度(好ましくは50[%]程度)以下、気孔率εを7
0[%]程度以下にすることにより、電極触媒層の厚さ
Lを薄くできセル及び燃料電池スタックのコンパクト化
に貢献できる効果がある。
Therefore, the PTF of the electrode catalyst layer of the air electrode is
By setting the E content to about 60% (preferably about 50%) or less and the porosity ε to about 70% or less, the electrical resistivity ρ of the electrode catalyst layer can be reduced.
The current distribution inside the cell can be made uniform, the Joule loss can be reduced, and the effect of the present invention can be further enhanced. Further, the PTFE content of the electrode catalyst layer of the air electrode was set to 60%.
Degree (preferably about 50%) or less, and a porosity ε of 7
By setting the value to about 0 [%] or less, the thickness L of the electrode catalyst layer can be reduced, which has an effect of contributing to downsizing of the cell and the fuel cell stack.

【0083】さらに、空気極の電極触媒層のPTFE含
有率を60[%]程度(好ましくは50[%]程度)以
下、気孔率εを70[%]程度以下にすることにより、
電極触媒層の電気抵抗Rc及びその電圧降下IRcを小
さくできる効果がある。尚、空気極の電極触媒層のPT
FE含有率の下限値については実施例4の図13〜図1
6より20[%]程度(好ましくは30[%]程度)以
上が望ましい。また、フッ素樹脂の例としてPTFEに
ついて述べたが、フッ素樹脂がテトラフルオロエチレン
−ヘキサフルオロプロピレン共重合体、テトラフルオロ
エチレン−パーフルオロアルキルビニルエーテル共重合
体などであっても同様の効果を奏するのは勿論である。
Further, by setting the PTFE content of the electrode catalyst layer of the air electrode to about 60% (preferably about 50%) and the porosity ε to about 70% or less,
There is an effect that the electric resistance Rc of the electrode catalyst layer and the voltage drop IRc thereof can be reduced. In addition, PT of the electrode catalyst layer of the air electrode
13 to 1 of Example 4 for the lower limit of the FE content.
The ratio is preferably about 20% (preferably about 30%) or more than 6. Although PTFE has been described as an example of the fluororesin, the same effect can be obtained even if the fluororesin is a tetrafluoroethylene-hexafluoropropylene copolymer, a tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, or the like. Of course.

【0084】実施例9.実施例1と同様な方法で8種の
電極触媒層を作製した。原料の触媒粉末は、組成の重量
比で次のものを用いた。白金濃度は20[%]、灰分は
ニッケルを主成分とする金属であり、カーボン担体は熱
処理カーボンを用いた。試料Lは白金20[%]、カー
ボン担体80[%]、灰分 0[%]、試料Mは白金2
0[%]、カーボン担体76[%]、灰分 4[%]、
試料Nは白金20[%]、カーボン担体72[%]、灰
分 8[%]、試料Oは白金20[%]、カーボン担体
68[%]、灰分12[%]、試料Pは白金20
[%]、カーボン担体64[%]、灰分16[%]、試
料Qは白金20[%]、カーボン担体60[%]、灰分
20[%]、試料Rは白金20[%]、カーボン担体5
6[%]、灰分24[%]、試料Sは白金20[%]、
カーボン担体52[%]、灰分28[%]を含む。
Embodiment 9 FIG. Eight types of electrode catalyst layers were produced in the same manner as in Example 1. The following catalyst powder was used as a raw material in terms of composition weight ratio. The platinum concentration was 20 [%], the ash was a metal mainly composed of nickel, and the carbon carrier used was heat-treated carbon. Sample L was platinum 20 [%], carbon carrier 80 [%], ash 0 [%], and sample M was platinum 2 [%].
0 [%], carbon carrier 76 [%], ash content 4 [%],
Sample N is platinum 20 [%], carbon carrier 72 [%], ash 8 [%], sample O is platinum 20 [%], carbon carrier 68 [%], ash 12 [%], and sample P is platinum 20 [%].
[%], Carbon carrier 64 [%], ash content 16 [%], sample Q is platinum 20 [%], carbon carrier 60 [%], ash content 20 [%], sample R is platinum 20 [%], carbon carrier 5
6%, ash content 24%, sample S was platinum 20%,
Contains 52% carbon carrier and 28% ash.

【0085】重量比で触媒粉末/PTFE=60/4
0、坪量15.0[mg/cm2]、白金量1.8[mg/cm2
の空気極の電極触媒層を作製した。これらの電極触媒層
は気孔率εを変化させ、このときの電極触媒層の電気抵
抗率ρ及び電気抵抗Rcを測定した。その結果を図31
及び図32に示す。図31によれば、空気極の電極触媒
層の灰分含有率が大きくなるにつれて、電極触媒層の電
気抵抗率ρが大きくなっており、その程度は気孔率εの
大きいものほど大きい。電極触媒層の灰分含有率が10
〜15[%]程度以上で電極触媒層の電気抵抗率ρが急
増する傾向にある。また、図32によれば、空気極の電
極触媒層の灰分含有率が大きくなるにつれて、電極触媒
層の電気抵抗Rcが大きくなっており、その程度は気孔
率εの大きいものほど大きい。電極触媒層の灰分含有率
が10〜15[%]程度以上で電極触媒層の電気抵抗R
cが急増する傾向にある。
Catalyst powder / PTFE = 60/4 by weight
0, basis weight 15.0 [mg / cm 2 ], platinum amount 1.8 [mg / cm 2 ]
The electrode catalyst layer of the air electrode was prepared. The porosity ε of these electrode catalyst layers was changed, and the electric resistivity ρ and the electric resistance Rc of the electrode catalyst layers at this time were measured. The result is shown in FIG.
32 and FIG. According to FIG. 31, as the ash content of the electrode catalyst layer of the air electrode increases, the electric resistivity ρ of the electrode catalyst layer increases, and the degree thereof increases as the porosity ε increases. The ash content of the electrode catalyst layer is 10
Above about 15%, the electrical resistivity ρ of the electrode catalyst layer tends to increase rapidly. According to FIG. 32, as the ash content of the electrode catalyst layer of the air electrode increases, the electric resistance Rc of the electrode catalyst layer increases, and the degree thereof increases as the porosity ε increases. When the ash content of the electrode catalyst layer is about 10 to 15% or more, the electric resistance R of the electrode catalyst layer
c tends to increase sharply.

【0086】したがって、空気極の電極触媒層の灰分含
有率を15[%]程度(好ましくは10[%]程度)以
下にすることにより電極触媒層の電気抵抗率ρを小さく
できるのでセル内部の電流分布を均一化し、ジュール損
を小さく抑制でき、本発明の効果をより高めることがで
きる。また、空気極の電極触媒層の灰分含有率を15
[%]程度(好ましくは10[%]程度)以下にするこ
とにより電極触媒層の電気抵抗Rc、さらには電極触媒
層の電圧降下IRcを小さくできる効果がある。なお、
本実施例では灰分としてニッケルの場合について述べた
が、灰分が、クロム、鉄、コバルト、銅、ルテニウム、
パラジウムやそれらの合金であっても同様の効果を奏す
るのは勿論である。
Therefore, the electric resistivity ρ of the electrode catalyst layer can be reduced by setting the ash content of the electrode catalyst layer of the air electrode to about 15% (preferably about 10%) or less, so that the inside of the cell can be reduced. The current distribution can be made uniform, the Joule loss can be reduced, and the effect of the present invention can be further enhanced. Further, the ash content of the electrode catalyst layer of the air electrode was set to 15
By setting it to not more than about [%] (preferably about 10%), the electric resistance Rc of the electrode catalyst layer and the voltage drop IRc of the electrode catalyst layer can be reduced. In addition,
In the present embodiment, the case of nickel as the ash has been described, but the ash is chromium, iron, cobalt, copper , ruthenium,
Needless to say, palladium and alloys thereof exhibit the same effect.

【0087】比較例 比較のために、図44に示す従来の電極触媒層の構成図
を用いて、従来技術により電極触媒層を作成した。図4
4に示す斜線の領域内のほぼ中央になるように仕様を決
めた。図44において、触媒粉末の白金濃度(白金担持
、重量比)を30[%]、電極触媒層のPTFE含有
率(重量比)を50[%]、電極触媒層の白金量を2.
7[mg/cm2]、厚さを110[μm]とした。 比較例A. 触媒粉末は重量比で白金が30[%]、カーボン担体が
58[%]、ニッケルを主成分とする灰分が12[%]
のものを用いた。カーボン担体は熱処理カーボンを用い
た。作製した電極触媒層の体積比率は次のようであっ
た。
Comparative Example For comparison, an electrode catalyst layer was formed by a conventional technique using the configuration diagram of the conventional electrode catalyst layer shown in FIG. FIG.
The specifications were determined so as to be almost at the center of the hatched area shown in FIG. In FIG. 44, the platinum concentration of the catalyst powder (platinum loaded with platinum)
Amount , weight ratio) is 30%, the PTFE content (weight ratio) of the electrode catalyst layer is 50%, and the platinum amount of the electrode catalyst layer is 2.%.
7 [mg / cm 2 ] and the thickness was 110 [μm]. Comparative Example A. In the catalyst powder, platinum was 30 [%], carbon carrier was 58 [%], and ash mainly composed of nickel was 12 [%] by weight ratio.
Was used. As the carbon carrier, heat-treated carbon was used. The volume ratio of the produced electrode catalyst layer was as follows.

【0088】[0088]

【表1】 [Table 1]

【0089】気孔率εは33.6[%]、電気抵抗率ρ
は1.04[Ωcm]であった。 比較例B.触媒粉末は重量比で白金が30[%]、カー
ボン担体が70[%]、灰分を含まないものを用いた。
カーボン担体は熱処理カーボンを用いた。作製した電極
触媒層の体積比率は次のようであった。
The porosity ε is 33.6% and the electrical resistivity ρ
Was 1.04 [Ωcm]. Comparative Example B. As the catalyst powder, a platinum powder having a weight ratio of 30 [%], a carbon carrier of 70 [%] and containing no ash was used.
As the carbon carrier, heat-treated carbon was used. The volume ratio of the produced electrode catalyst layer was as follows.

【0090】[0090]

【表2】 [Table 2]

【0091】気孔率εは29.3[%]、電気抵抗率ρ
は0.68[Ωcm]であった。以上のように比較例A及
びBでは、電極触媒層中の灰分の有無にかかわらず、従
来技術によって作製した電極触媒層の気孔率εは非常に
小さく約30[%]であった。また、電極触媒層中に灰
分を含むものは含まないものよりも電気抵抗率ρが大き
くなっていた。
The porosity ε is 29.3% and the electrical resistivity ρ
Was 0.68 [Ωcm]. As described above, in Comparative Examples A and B, regardless of the presence or absence of ash in the electrode catalyst layer, the porosity ε of the electrode catalyst layer manufactured by the conventional technique was very small, and was about 30%. Further, the electric resistivity ρ was higher than that of the electrode catalyst layer containing no ash.

【0092】実施例10.比較例と比較するために本発
明の方法で電極触媒層を作製した。仕様は実施例1〜9
の結果より次のように決めた。触媒粉末の白金濃度を2
0[%]、電極触媒層のPTFE含有率(重量比)を4
0[%]、電極触媒層の白金量を1.8[mg/cm2]、厚
さを185[μm]とした。触媒粉末は重量比で白金が
20[%]、カーボン担体が72[%]、ニッケルを主
成分とする灰分が8[%]のものを用いた。カーボン担
体は熱処理カーボンを用いた。作製した電極触媒層の体
積比率は次のようであった。
Embodiment 10 FIG. For comparison with a comparative example, an electrode catalyst layer was prepared by the method of the present invention. Specifications are Examples 1 to 9
Based on the results, we decided as follows. When the platinum concentration of the catalyst powder is 2
0 [%], the PTFE content (weight ratio) of the electrode catalyst layer was 4
0 [%], the platinum amount of the electrode catalyst layer was 1.8 [mg / cm 2 ], and the thickness was 185 [μm]. The catalyst powder used was 20 [%] of platinum, 72 [%] of a carbon carrier, and 8 [%] of ash containing nickel as a main component in weight ratio. As the carbon carrier, heat-treated carbon was used. The volume ratio of the produced electrode catalyst layer was as follows.

【0093】[0093]

【表3】 [Table 3]

【0094】この実施例では坪量は15.0[mg/c
m2]、気孔率εは64.7[%]、電気抵抗率ρは2.0
7[Ωcm]であった。本実施例のものは比較例に比較し
て電気抵抗率ρが若干大きいものの、気孔率εが約2倍
となっていた。本実施例及び比較例Aの空気極の電極触
媒層にカーボンペーパを接合して空気極の電極とした。
さらに、実施例1で作製した燃料極と上記2種の空気極
を用いて実施例1と同じ条件でセルを組み立ててセルの
運転を行った。セルの組み立て前に上記2種の空気極の
電極触媒層及び燃料極の電極触媒層にリン酸を塗布し
た。リン酸は各々の電極触媒層の空孔容積の約40
[%]を占有する量を塗布した。リン酸は濃度が約10
0[%]、温度が約120[℃]のものを塗布した。
In this embodiment, the basis weight is 15.0 [mg / c
m 2 ], the porosity ε is 64.7%, and the electrical resistivity ρ is 2.0.
7 [Ωcm]. In this example, the electrical resistivity ρ was slightly larger than that of the comparative example, but the porosity ε was about twice as large. Carbon paper was bonded to the electrode catalyst layer of the air electrode of this example and Comparative Example A to form an air electrode.
Further, a cell was assembled and operated under the same conditions as in Example 1 using the fuel electrode prepared in Example 1 and the two types of air electrodes. Before assembling the cells, phosphoric acid was applied to the electrode catalyst layers of the two air electrodes and the electrode catalyst layer of the fuel electrode. Phosphoric acid is about 40% of the pore volume of each electrode catalyst layer.
An amount occupying [%] was applied. Phosphoric acid has a concentration of about 10
0% and a temperature of about 120 ° C. were applied.

【0095】リン酸塗布後、燃料極の電極触媒層には約
1[h]で含浸が完了した。また、本実施例により作製
した電極触媒層には約2[h]で含浸が完了したが、比
較例Aにより作製した電極触媒層には20[h]以上の
時間を含浸に要した。これは比較例Aにより作製した電
極触媒層はPTFE含有率が50[%]と高く、はっ
性が強く、かつ気孔率が33.6[%]と小さく緻密で
あり、リン酸が含浸しにくかったためである。一方、本
実施例により作製した電極触媒層はPTFE含有率が4
0[%]とはっ水性が適正であり、気孔率も64.7
[%]と適正な値であり、短時間でリン酸の含浸が完了
したためである。200[℃]で電流密度Iが300
[mA/cm2]の状態で約2500[h]運転後セル電圧
−電流密度特性をとった。さらに、電流密度Iが300
[mA/cm2]の状態で、継続して運転して2種のセルの
セル電圧−運転時間特性及びO2ゲイン−運転時間特性
を評価した。これらの結果を図33〜35に示す。
After the phosphoric acid application, the impregnation of the electrode catalyst layer of the fuel electrode was completed in about 1 [h]. The impregnation of the electrode catalyst layer manufactured according to the present example was completed at about 2 [h], but the impregnation time required for the electrode catalyst layer manufactured according to Comparative Example A was 20 [h] or more. This is because the electrode catalyst layer prepared according to Comparative Example A has a high PTFE content of 50%, a high water repellency , a small porosity of 33.6%, and a high density. This is because phosphoric acid was difficult to impregnate. On the other hand, the electrode catalyst layer produced according to this example has a PTFE content of 4%.
0 [%] and the water repellency is appropriate, porosity also 64.7
[%], Which is an appropriate value, because the impregnation with phosphoric acid was completed in a short time. Current density I is 300 at 200 [° C]
After operation for about 2500 [h] in the state of [mA / cm 2 ], the cell voltage-current density characteristics were obtained. Further, when the current density I is 300
The cells were continuously operated in the state of [mA / cm 2 ], and the cell voltage-operating time characteristics and O 2 gain-operating time characteristics of the two cells were evaluated. These results are shown in FIGS.

【0096】図33は、燃料(H2:CO2=80:2
0)及び空気のガス利用率をそれぞれ80[%]及び6
0[%]に調整しつつセル電圧−電流密度特性をとった
ものであり、セルの空気極の電極触媒層を比較例Aによ
り作製したものはセル電圧が低電流密度で高く、高電流
密度で低くなっている。また、本実施例により作製した
ものはセル電圧が低電流密度で低く、高電流密度で高く
なっている。これはセルの空気極の電極触媒層を比較例
Aにより作製したものは空気極の電極触媒層の白金量が
2.7[mg/cm2]と多いので、低電流密度でセル電圧
高い気孔率33.6[%]と低く、ガス拡散性が悪
いので、高電流密度ではセル電圧が低くなっている。一
方、電極触媒層を本実施例により作製したものは、空気
極の電極触媒層の白金量が1.8[mg/cm2]と少ないの
で、低電流密度でセル電圧が低いが気孔率が64.7
[%]と高く、ガス拡散性が良いので高電流密度ではセ
ル電圧が高くなっている。
FIG. 33 shows the fuel (H 2 : CO 2 = 80: 2).
0) and the gas utilization rate of air were 80 [%] and 6 respectively.
The cell voltage-current density characteristics were adjusted while adjusting to 0 [%]. The electrode catalyst layer of the air electrode of the cell prepared by Comparative Example A had a low cell density, a high cell voltage, and a high current density. Is low. Further, the cell fabricated according to this example has a low cell voltage at a low current density and a high cell voltage at a high current density. This is platinum content of the electrode catalyst layer of the air electrode is that the electrode catalyst layer of the air electrode was prepared by Comparative Example A cell is large and 2.7 [mg / cm 2], the cell voltage at a low current density < Although it is high , the porosity is as low as 33.6 [%], and the gas diffusivity is poor. Therefore, the cell voltage is low at a high current density. On the other hand, in the electrode catalyst layer prepared according to the present embodiment, the platinum amount of the electrode catalyst layer of the air electrode was as small as 1.8 [mg / cm 2 ], so that the cell voltage was low at a low current density, but the porosity was low. 64.7
[%], And the gas diffusion property is good, so that the cell voltage is high at a high current density.

【0097】図34によれば、セルの空気極の電極触媒
層を比較例Aにより作製したものは本実施例により作製
したものに比較してセル電圧が運転初期では高いが約2
000[h]後には反転して低くなり、その後のセル電
圧の経時特性が悪くなっている。一方、電極触媒層を本
実施例で作製したものはセル電圧が運転初期では若干低
いものの約2000[h]以降は極めて安定な経時特性
を示している。これらに対応して図35によれば、セル
の空気極の電極触媒層を比較例Aにより作製したもの
は、空気極のガス拡散性の指標であるO2ゲインが経時
的に増加している。一方、電極触媒層を本実施例で作製
したものは、空気極のガス拡散性の指標であるO2ゲイ
ンの経時的増加が少ない。したがって、本実施例により
作製した空気極の電極触媒層を用いると電極触媒層内の
構造が適正化されているので、セル電圧−電流密度特性
が高くなるとともに、空気極のガス拡散性の指標である
2ゲインの経時的増加が少ないという効果がある。
According to FIG. 34, when the electrode catalyst layer of the air electrode of the cell was prepared according to Comparative Example A, the cell voltage was higher in the early stage of operation than that prepared according to this example, but it was about 2%.
After 000 [h], the cell voltage is inverted and becomes lower, and the aging characteristics of the cell voltage thereafter are deteriorated. On the other hand, the electrode catalyst layer produced in this example shows a very low aging characteristic after about 2000 [h] although the cell voltage is slightly low in the initial stage of operation. According to FIG. 35 corresponding to these, in the case where the electrode catalyst layer of the air electrode of the cell was manufactured according to Comparative Example A, the O 2 gain, which is an index of gas diffusivity of the air electrode, increased with time. . Meanwhile, those producing an electrode catalyst layer in this embodiment, O 2 gain over time increase of less is indicative of a gas diffusion resistance of the air electrode. Therefore, when the electrode catalyst layer of the air electrode manufactured according to the present embodiment is used, the structure in the electrode catalyst layer is optimized, so that the cell voltage-current density characteristics are increased and the index of the gas diffusion property of the air electrode is increased. There is an effect that the increase with time of the O 2 gain is small.

【0098】実施例11.実施例1と同様の方法で電極
触媒層を作製した。触媒粉末は重量比で白金が20
[%]、カーボン担体が72[%]、ニッケルを主成分
とする灰分が8[%]のものを用いた。カーボン担体は
熱処理カーボンを用いた。重量比で触媒粉末/PTFE
=60/40、坪量15[mg/cm2]、気孔率が約90
[%]のものを作製した。この電極触媒層を5分割し、
プレス成形した。プレスは温度が20[℃]から300
[℃]まで変えられるものを準備した。電極触媒層の仕
上がり寸法で気孔率εやカーボン担体の体積比率Cが計
画値になるように電極触媒層の周囲にスペーサ用のシム
を入れて各々の電極触媒層を20、50、100、20
0、300[℃]の5条件でプレス成形した。プレス圧
力は10〜100[kgf/cm2]の範囲で調整した。
Embodiment 11 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. The catalyst powder contains 20 platinum by weight.
[%], A carbon carrier of 72 [%] and an ash containing nickel as a main component of 8 [%] were used. As the carbon carrier, heat-treated carbon was used. Catalyst powder / PTFE by weight ratio
= 60/40, basis weight 15 [mg / cm 2 ], porosity of about 90
[%] Was prepared. This electrode catalyst layer is divided into 5 parts,
Press molded. Press temperature from 20 [℃] to 300
What was changed to [° C] was prepared. A shim for a spacer is put around the electrode catalyst layer so that the porosity ε and the volume ratio C of the carbon carrier are the planned values in the finished dimensions of the electrode catalyst layer, and each of the electrode catalyst layers is 20, 50, 100, 20
Press molding was performed under five conditions of 0 and 300 ° C. The pressing pressure was adjusted in the range of 10 to 100 [kgf / cm 2 ].

【0099】例えば、プレス温度が20[℃]のものは
100[kgf/cm2]、50[℃]のものは50[kgf/c
m2]、100[℃]のものは30[kgf/cm2]、200
[℃]のものは20[kgf/cm2]、300[℃]のもの
は10[kgf/cm2]程度の面圧でそれぞれ5分間加圧し
てプレス成形した。プレス成形後の電極触媒層の気孔率
εやカーボン担体の体積比率Cが計画値とあっているこ
とを確認した後、電気抵抗率ρを測定した。その結果を
図36に示す。図36によれば、電極触媒層を50〜3
00[℃]の温度でプレス成形すれば、カーボン担体の
体積比率Cが同じであるにもかかわらず、電極触媒層の
電気抵抗率ρが20[℃]程度の室温でプレス成形する
場合より小さくなっている。
For example, a press temperature of 20 ° C. is 100 [kgf / cm 2 ] and a press temperature of 50 [° C.] is 50 [kgf / cm 2 ].
m 2 ], 100 [° C.] are 30 [kgf / cm 2 ], 200
Press molding was carried out by applying a surface pressure of about 20 [kgf / cm 2 ] for [° C.] and about 10 [kgf / cm 2 ] for 300 [° C.] for 5 minutes. After confirming that the porosity ε of the electrode catalyst layer after press molding and the volume ratio C of the carbon carrier were the same as planned values, the electric resistivity ρ was measured. The result is shown in FIG. According to FIG. 36, the electrode catalyst layer is
Press molding at a temperature of 00 [° C.] is smaller than when pressing at room temperature where the electric resistivity ρ of the electrode catalyst layer is about 20 [° C.], even though the volume ratio C of the carbon carrier is the same. Has become.

【0100】これはプレス成形温度を室温以上にあげる
ことにより、プレス成形時に電極触媒層中のPTFEが
流動しやすくなる等、PTFEの挙動に差が生じている
ためと考えられる。以上のように、室温以上の温度、例
えば、50〜300[℃]の温度で電極触媒層をプレス
成形することにより、電極触媒層をプレスする圧力を1
0〜50[kgf/cm2]に低くすることができるととも
に、カーボン担体の体積比率Cや気孔率εが一定である
条件下で電極触媒層の電気抵抗率ρを小さくでき、本発
明の効果をより高めることができる。
This is presumably because the PTFE behavior in the electrode catalyst layer is likely to flow during press molding by increasing the press molding temperature to room temperature or higher, causing a difference in PTFE behavior. As described above, by pressing the electrode catalyst layer at a temperature equal to or higher than room temperature, for example, at a temperature of 50 to 300 [° C.], the pressure for pressing the electrode catalyst layer is reduced to 1
0 to 50 [kgf / cm 2 ], and the electrical resistivity ρ of the electrode catalyst layer can be reduced under the condition that the volume ratio C and the porosity ε of the carbon carrier are constant. Can be further enhanced.

【0101】実施例12.実施例1と同様の方法で電極
触媒層を作製した。触媒粉末は重量比で白金が20
[%]、カーボン担体が72[%]、ニッケルを主成分
とする灰分が8[%]のものを用いた。ただし、カーボ
ン担体は熱処理カーボンであるものと熱処理を施してい
ないカーボン(非熱処理カーボンと略す)の2種を用い
た。重量比で触媒粉末/PTFE=60/40、坪量1
5[mg/cm2]、気孔率が約65[%]のものを作製し
た。この種の電極触媒層にカーボンペーパを接合して空
気極の電極とした。さらに実施例1で作製した燃料極と
上記2種の空気極を用いて実施例1と同じ条件でセルを
組み立ててセルの運転を行った。200[℃]で電流密
度Iが300[mA/cm2]の状態で約10,000[h]
運転し、セル電圧Eの経時変化を測定した。
Embodiment 12 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. The catalyst powder contains 20 platinum by weight.
[%], A carbon carrier of 72 [%] and an ash containing nickel as a main component of 8 [%] were used. However, two types of carbon carriers, heat-treated carbon and non-heat-treated carbon (abbreviated as non-heat-treated carbon), were used. Catalyst powder / PTFE = 60/40 by weight ratio, basis weight 1
5 mg / cm 2 and a porosity of about 65 [%] were prepared. Carbon paper was bonded to this type of electrode catalyst layer to form an air electrode. Furthermore, a cell was assembled and operated under the same conditions as in Example 1 using the fuel electrode prepared in Example 1 and the above two types of air electrodes. About 10,000 [h] at 200 [° C.] and a current density I of 300 [mA / cm 2 ]
The cell was operated and the change over time in the cell voltage E was measured.

【0102】図37に示すように、空気極の電極触媒層
のカーボン担体に熱処理カーボンを用いたものは初期6
50[mv]、途中660[mv]まで上昇し、最終655
[mv]、非熱処理カーボンを用いたものは初期660
[mv]、最終600[mv]程度であった。また、参考の
ため、図38に示すように、途中セルのO2ゲインΔE
2の経時変化を測定した。この運転試験前と運転試験
後に上記セルの空気極の電極触媒層の厚さL及び電気抵
抗率ρ、電気抵抗Rcを測定した。これらの結果を図3
9−図41に示す。
As shown in FIG. 37, when the heat-treated carbon was used as the carbon carrier for the electrode catalyst layer of the air electrode,
50 [mv], rising to 660 [mv] on the way, and last 655
[Mv], those using non-heat treated carbon have an initial 660
[Mv], and the final value was about 600 [mv]. For reference, as shown in FIG. 38, the O 2 gain ΔE
to measure the time-dependent change of o 2. Before and after the operation test, the thickness L, the electric resistivity ρ, and the electric resistance Rc of the electrode catalyst layer of the air electrode of the cell were measured. These results are shown in FIG.
9-shown in FIG.

【0103】運転試験の前後でカーボン担体の減量を分
析したところ、空気極の電極触媒層のカーボン担体に熱
処理カーボンを用いたものはほとんど減量がなかった
が、非熱処理カーボンを用いたものは重量で25[%]
以上減量していて、カーボン担体の体積比率Cが減少し
ていた。これは非熱処理カーボンが熱処理カーボンに比
較してセル運転中に腐食して消失しやすいためである。
このため、図39に示すように、空気極の電極触媒層の
カーボン担体に熱処理カーボンを用いたものが運転試験
の前後で電極触媒層の厚さLがほぼ一定なのに対し、非
熱処理カーボンを用いたものは電極触媒層の厚さLが2
0[%]近く薄くなっている。これは実質的に電極触媒
層の気孔に占めるリン酸の占有率が上昇しガスの拡散性
が低下することを意味しており、図37や図38に示す
ようにセル電圧Eの低下や空気極のガス拡散性の指標で
あるO2ゲインΔEo2の増加の原因となっている。
When the weight loss of the carbon carrier was analyzed before and after the operation test, the carbon carrier of the air electrode catalyst layer using heat-treated carbon hardly lost weight, but the carbon carrier using non-heat-treated carbon had a weight loss. 25%
As a result, the volume ratio C of the carbon carrier was reduced. This is because non-heat-treated carbon is more likely to be corroded and lost during cell operation than heat-treated carbon.
For this reason, as shown in FIG. 39, while the thickness L of the electrode catalyst layer was substantially constant before and after the operation test in the case where the heat treatment carbon was used as the carbon carrier of the electrode catalyst layer of the air electrode, the non-heat treatment carbon was used. The thickness L of the electrode catalyst layer was 2
It is thin near 0 [%]. This means that the occupation ratio of phosphoric acid in the pores of the electrode catalyst layer substantially increases and the gas diffusivity decreases, and as shown in FIG. 37 and FIG. This causes an increase in the O 2 gain ΔEo 2 , which is an index of the gas diffusion property of the pole.

【0104】図40によれば、空気極の電極触媒層のカ
ーボン担体に熱処理カーボンを用いたものが運転試験の
前後で電極触媒層の電気抵抗率ρがほぼ一定であるのに
対し、非熱処理カーボンを用いたものは運転試験前の電
気抵抗率ρが大きく、運転試験後はさらに大きくなって
いる。図41の電極触媒層の電気抵抗Rcについても同
様なことがいえる。本発明の効果を有効に引き出すため
には、運転前のセルの電極触媒層のカーボン担体の体積
比率C、気孔率ε、電気抵抗率ρ等で表される電極触媒
層の内部構造や物性が運転中経時的にあまり変化しない
ことが重要である。したがって、本実施例では、電極触
媒層のカーボン担体に熱処理カーボンを用いて、セル運
転中のカーボン担体の腐食による消失を抑制することに
より、電極触媒層の内部構造や物性の経時変化少なく
できるので、セル電圧EやO2ゲインΔEo2の経時変化
が改善され、本発明の効果をより高めることができる。
According to FIG. 40, when the heat treatment carbon was used as the carbon carrier of the electrode catalyst layer of the air electrode, the electrical resistivity ρ of the electrode catalyst layer before and after the operation test was almost constant, Those using carbon had a large electric resistivity ρ before the operation test, and further increased after the operation test. The same can be said for the electric resistance Rc of the electrode catalyst layer in FIG. In order to effectively bring out the effects of the present invention, the internal structure and physical properties of the electrode catalyst layer represented by the volume ratio C, the porosity ε, the electric resistivity ρ, etc. of the carbon support of the electrode catalyst layer of the cell before operation are described. It is important that it does not change much over time during operation. Thus, in this embodiment, by using a heat treatment of carbon to carbon carrier of the electrode catalyst layer, by suppressing the loss due to corrosion of the carbon support in the cell operation, it can be reduced the time course of the internal structure and properties of the electrode catalyst layer Therefore, the change over time in the cell voltage E and the O 2 gain ΔEo 2 is improved, and the effect of the present invention can be further enhanced.

【0105】実施例13. 実施例1と同様の方法で電極触媒層を作製した。触媒粉
末は重量比で白金が20[%]、カーボン担体が72
[%]、ニッケルを主成分とする灰分が8[%]のもの
を用いた。カーボンブラック担体は熱処理カーボンを用
いた。仕込みベースで重量比で触媒粉末/PTFE=6
0/40、坪量15[mg/cm2]のものを計画した。電
極触媒層は作製途中に分散剤等の有機物の添加剤が加え
られているのでこれらの影響について検討してみた。ま
ず、電極触媒層の熱処理前にアセトンで上記添加剤を洗
浄したものと洗浄しないものの2種を作製した。アセト
ンの洗浄は電極触媒層をアセトンに20[h]浸漬し、
次いで、アセトンに超音波振動を与えながら行った。
Embodiment 13 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. The catalyst powder contained 20% platinum by weight and 72% carbon support by weight.
% And an ash containing nickel as a main component of 8% were used. Heat-treated carbon was used as the carbon black carrier. Catalyst powder / PTFE = 6 by weight on a charge basis
It was planned to have a ratio of 0/40 and a basis weight of 15 [mg / cm 2 ]. Since an additive of an organic substance such as a dispersant was added to the electrode catalyst layer during the production , the influence of these additives was examined. First, two types were prepared, one in which the above additive was washed with acetone before heat treatment of the electrode catalyst layer and the other in which the additive was not washed. For washing acetone, the electrode catalyst layer was immersed in acetone for 20 hours.
Next, the ultrasonic vibration was applied to acetone.

【0106】約360[℃]の最終焼成後、完成した上
記2種の電極触媒層の電気抵抗率ρを測定した。その結
果を図42に示す。また、電極触媒層作製途中の熱処理
前にアセトン洗浄をしなかったものはアセトン洗浄した
ものの約70[%]にカーボン担体の重量及び体積が減
少していた。一方、アセトン洗浄したものは計画通りの
坪量となっていた。図42によれば、電極触媒層の作製
途中にアセトン洗浄しないものはアセトンで洗浄したも
のに比較して電気抵抗率ρが1〜2[Ωcm]程度大きく
なっている。
After the final baking at about 360 ° C., the electrical resistivity ρ of the completed two types of electrode catalyst layers was measured. The result is shown in FIG. In the case where the acetone cleaning was not performed before the heat treatment during the preparation of the electrode catalyst layer, the weight and volume of the carbon carrier were reduced to about 70% of those cleaned with acetone. On the other hand, those washed with acetone had the basis weight as planned. According to FIG. 42, those without washing with acetone during the preparation of the electrode catalyst layer have an electrical resistivity ρ about 1 to 2 [Ωcm] larger than those with washing with acetone.

【0107】これは、電極触媒層の作製途中にアセトン
で洗浄していないものは、最終焼成時に電極触媒層に含
まれている白金と有機物の添加剤が反応してカーボン担
体の一部を消失させたためである。一方、アセトンで洗
浄したものは、残存している有機物の添加剤の量が減少
しているため最終焼成等の熱処理でカーボン担体の消失
が抑制されているため、電極触媒層の体積比率Cが大き
く維持されている。本発明の効果を引き出すためには電
極触媒層の内部構造を計画通りに実現させることが重要
である。したがって、本実施例では、電極触媒層の作製
途中の熱処理前にアセトン洗浄を実施して電極触媒層中
の有機物の添加剤の残存量を減少させ、電極触媒層のカ
ーボン担体の体積比率Cを適正な状態に維持できるので
本発明の効果をより高めることができる。尚、本実施例
ではアセトンを使用したが、その他の有機溶も使用で
きるのは勿論である。
In the case where the electrode catalyst layer has not been washed with acetone during the production thereof, platinum contained in the electrode catalyst layer reacts with an organic additive during the final baking so that a part of the carbon carrier disappears. That is because On the other hand, in the case of washing with acetone, the volume ratio C of the electrode catalyst layer is reduced because the amount of the remaining organic additives is reduced and the loss of the carbon carrier is suppressed by heat treatment such as final baking. Largely maintained. In order to bring out the effects of the present invention, it is important to realize the internal structure of the electrode catalyst layer as planned. Therefore, in this embodiment, acetone cleaning is performed before the heat treatment during the preparation of the electrode catalyst layer to reduce the residual amount of the organic additive in the electrode catalyst layer, and the volume ratio C of the carbon carrier in the electrode catalyst layer is reduced. Since the proper state can be maintained, the effect of the present invention can be further enhanced. In the present embodiment it has been using acetone, also can be used other organic Solvent of course.

【0108】実施例14.実施例1と同様の方法で電極
触媒層を作製した。実施例2と同じく触媒粉末は重量比
で白金が20[%]、カーボン担体が72[%]、ニッ
ケルを主成分とする灰分が8[%]のものを用いた。カ
ーボン担体は熱処理カーボンを用いた。重量比で触媒粉
末/PTFE=60/40、坪量6.0[mg/cm2]の燃
料極の電極触媒層、及び重量比で触媒粉末/PTFE=
60/40、坪量15.0[mg/cm2]の空気極の電極触
媒層を作製した。上記燃料極及び空気極の電極触媒層の
気孔率εを65[%]にしてカーボンペーパに接合し
て、それぞれ、燃料極及び空気極の電極とした。
Embodiment 14 FIG. An electrode catalyst layer was produced in the same manner as in Example 1. As in Example 2, the catalyst powder used had a weight ratio of platinum of 20 [%], a carbon carrier of 72 [%], and an ash containing nickel as a main component of 8 [%]. As the carbon carrier, heat-treated carbon was used. Electrode catalyst layer of fuel electrode with weight ratio of catalyst powder / PTFE = 60/40, basis weight 6.0 [mg / cm 2 ], and catalyst powder / PTFE = weight ratio
An electrode catalyst layer of a 60/40 air electrode having a basis weight of 15.0 [mg / cm 2 ] was prepared. The fuel electrode and the air electrode were bonded to carbon paper with the porosity ε of the electrode catalyst layers being 65%, thereby forming the fuel electrode and the air electrode, respectively.

【0109】さらに、実施例1と同じ条件でセルを組み
立ててセルの運転を行った。ただし、空気極の電極触媒
層のリン酸塗布量は、空気極の電極触媒層のリン酸占有
率を10〜90[%]に変化させた。温度200
[℃]、電流密度Iが300[mA/cm2]で運転し、特
性が安定してから、燃料(H2:CO2=80:20)及
び空気をガス利用率をそれぞれ80[%]、及び60
[%]に調整しつつ、電流密度Iを100〜800[mA
/cm2]に変化させその時のセル電圧Eを測定した。こ
れを図43に示す。リン酸占有率が小さ過ぎるとリン酸
が不足し、反対に大き過ぎるとガスの拡散が悪くなるの
で、これがセル電圧に反映している。図43によれば、
空気極の電極触媒層のリン酸占有率が30〜70[%]
の範囲ではセル電圧が高い。特に、リン酸占有率が40
〜60[%]の範囲ではセル電圧が最大値を示しており
好ましい。リン酸占有率のかわりに空隙率で表示したの
が図44である。
Further, the cell was assembled and operated under the same conditions as in Example 1. However, the phosphoric acid application amount of the electrode catalyst layer of the air electrode changed the phosphoric acid occupancy of the electrode catalyst layer of the air electrode to 10 to 90 [%]. Temperature 200
After operating at [° C.] and a current density I of 300 [mA / cm 2 ] and the characteristics were stabilized, the fuel (H 2 : CO 2 = 80: 20) and air were used at a gas utilization rate of 80% each. , And 60
[%] While adjusting the current density I to 100 to 800 [mA
/ Cm 2 ] and the cell voltage E at that time was measured. This is shown in FIG. If the phosphoric acid occupation ratio is too small, phosphoric acid becomes insufficient, and if it is too large, gas diffusion deteriorates, and this is reflected in the cell voltage. According to FIG.
The phosphoric acid occupancy of the electrode catalyst layer of the air electrode is 30 to 70%.
In the range, the cell voltage is high. In particular, the phosphate occupancy is 40
In the range of 〜60 [%], the cell voltage shows the maximum value, which is preferable. FIG. 44 shows the porosity instead of the phosphoric acid occupancy.

【0110】図44によれば、リン酸含浸後の空気極の
電極触媒層の空隙率が20〜45[%]の範囲ではセル
電圧が高い。特に、空隙率が25〜40[%]の範囲で
はセル電圧が最大値を示しており好ましく、燃料電池の
コスト低減のためには、電流密度を高くとれることが必
要であり、本実施例のように、400[mA/cm2]以上
の高電流密度でも電極触媒層の空隙率を20〜45
[%](好ましくは25〜40[%])に制御すること
により安定して負荷をとれることは、本発明の効果をよ
り高めることができる。
According to FIG. 44, the cell voltage is high when the porosity of the electrode catalyst layer of the air electrode after phosphoric acid impregnation is in the range of 20 to 45 [%]. In particular, when the porosity is in the range of 25% to 40%, the cell voltage shows the maximum value, which is preferable. To reduce the cost of the fuel cell, it is necessary to increase the current density. Thus, even at a high current density of 400 [mA / cm 2 ] or more, the porosity of the electrode catalyst
[%] (Preferably 25 to 40 [%]), and the ability to stably take a load can further enhance the effect of the present invention.

【0111】なお、この実施例では、空気極について述
べたが、燃料極についても応用できることは勿論であ
る。また、この発明の実施例について、主として空気極
について述べたが、燃料極に対しても同様に適用応用で
きることは勿論である。さらに、触媒金属として白金に
ついて述べたが、白金以外のパラジウム、ロジウム、イ
リジウム、ルテニウム、オスミウム等の触媒金属を含有
する場合についても同様に適用応用できることは勿論で
ある。
In this embodiment, the air electrode has been described. However, it is needless to say that the present invention can be applied to a fuel electrode. Although the embodiment of the present invention has been described mainly with respect to the air electrode, it is needless to say that the present invention can be similarly applied to the fuel electrode. Furthermore, although platinum has been described as a catalyst metal, it is needless to say that the present invention can be similarly applied to a case where a catalyst metal such as palladium, rhodium, iridium, ruthenium, and osmium other than platinum is contained.

【0112】[0112]

【発明の効果】以上説明したとおり、この発明の請求項
第1項は、電解質を含浸したマトリックスと、このマト
リックスの両側に設けられた一対の燃料極及び空気極か
らなる電極と、これらの電極の外側に形成された一対の
燃料流路及び空気流路とから構成される単位セルをセパ
レータを介して複数個積層して形成された燃料電池の電
極において、上記燃料極及び空気極の少なくとも一方の
電極触媒層は、カーボンブラック担体に白金及び白金を
除く1種以上の金属元素である灰分を担持した触媒粉末
と、フッ素樹脂とからなり、上記カーボンブラック担体
の体積比率は、上記電極触媒層に対して10〜25
[%](好ましくは15〜20[%])としたので、セ
ル電圧−電流密度特性および、セル電圧の経時特性をよ
り高めることができるとともに、電極触媒層へのリン酸
等の電解質の含浸が速やかになるという効果を奏する。
さらに、電気抵抗による電圧降下をO2ゲインの和を小
さくできセル電圧を高くできるという効果を奏する。
As described above, the first aspect of the present invention relates to a matrix impregnated with an electrolyte, a pair of fuel and air electrodes provided on both sides of the matrix, and an electrode comprising these electrodes. In a fuel cell electrode formed by stacking a plurality of unit cells each including a pair of fuel flow paths and an air flow path formed outside the fuel cell via a separator, at least one of the fuel electrode and the air electrode The electrode catalyst layer comprises a catalyst powder in which platinum and ash, which is one or more metal elements other than platinum, are supported on a carbon black carrier, and a fluororesin, and the volume ratio of the carbon black carrier is 10-25
[%] (Preferably 15 to 20 [%]), the cell voltage-current density characteristics and the aging characteristics of the cell voltage can be further improved, and the electrode catalyst layer is impregnated with an electrolyte such as phosphoric acid. This has the effect of speeding up.
Further, there is an effect that the voltage drop due to the electrical resistance can be reduced by reducing the sum of the O 2 gains and the cell voltage can be increased.

【0113】この発明の請求項第2項は、電極触媒層の
気孔率を50〜80[%](好ましくは60〜70
[%])としたので、電気抵抗による電圧降下、H2
イン、O2ゲインが小さくなり、セル電圧を高くできる
という効果を奏する。
According to a second aspect of the present invention, the porosity of the electrode catalyst layer is set to 50 to 80% (preferably 60 to 70%).
[%]), The voltage drop due to electric resistance, the H 2 gain, and the O 2 gain are reduced, and the cell voltage can be increased.

【0114】この発明の請求項第3項は、電極触媒層の
フッ素樹脂含有率を20〜60[%](好ましくは30
〜50[%])としたので、電気抵抗による電圧降下と
2ゲインの和を小さくできセル電圧を高くできるとい
う効果を奏する。
A third aspect of the present invention is that the content of the fluororesin in the electrode catalyst layer is 20 to 60% (preferably 30%).
50 since the [%]), an effect that a small can cell voltage the sum of the voltage drop and O 2 gain due to electrical resistance can be increased.

【0115】この発明の請求項第4項は、電極触媒層の
触媒粉末の白金濃度(含有率)を10〜40[%](好
ましくは15〜30[%])としたので、電気抵抗によ
る電圧降下とO2ゲインの和を小さくできセル電圧を高
くできるという効果を奏する。
According to a fourth aspect of the present invention, the platinum concentration (content ) of the catalyst powder in the electrode catalyst layer is set to 10 to 40% (preferably 15 to 30%). This has the effect that the sum of the voltage drop and the O 2 gain can be reduced and the cell voltage can be increased.

【0116】この発明の請求項第5項は、電極触媒層の
触媒粉末の灰分含有率を15[%](好ましくは10
[%])以下としたので、電気抵抗率および電気抵抗を
小さくできるという効果を奏する。
A fifth aspect of the present invention is that the ash content of the catalyst powder in the electrode catalyst layer is 15% (preferably 10%).
[%]), The effect of reducing the electric resistivity and electric resistance can be achieved.

【0117】この発明の請求項第6項は、電極触媒層の
空隙率を20〜45[%](好ましくは25〜40
[%])としたので、セル電圧を高くできるという効果
を奏する。
According to a sixth aspect of the present invention, the porosity of the electrode catalyst layer is set to 20 to 45% (preferably 25 to 40%).
[%]), The cell voltage can be increased.

【0118】この発明の請求項第7項は、電極触媒層の
触媒粉末のカーボンブラック担体を密度1.8[g/c
m3]以上の熱処理カーボン担体としたので、セル電圧や
2ゲインの経時特性が改善されるという効果を奏す
る。
A seventh aspect of the present invention is that the carbon black carrier of the catalyst powder of the electrode catalyst layer has a density of 1.8 [g / c.
m 3 ] or more as a heat-treated carbon support, the effect of improving the aging characteristics of cell voltage and O 2 gain is obtained.

【0119】この発明の請求項第8項は、空気極触媒層
の厚さを100〜350[μm](好ましくは150〜
300[μm])としたので、電気抵抗による電圧降下
とO2ゲインの和を小さくでき、セル電圧を高くできる
という効果を奏する。
The eighth aspect of the present invention is that the thickness of the air electrode catalyst layer is 100 to 350 [μm] (preferably 150 to 350 μm).
300 [μm]), the sum of the voltage drop due to electric resistance and the O 2 gain can be reduced, and the cell voltage can be increased.

【0120】この発明の請求項第9項は、燃料極触媒層
の厚さを50〜250[μm](好ましくは100〜2
00[μm])としたので、電気抵抗による電圧降下と
2ゲインの和を小さくできセル電圧を高くすることが
できるという効果を奏する。
According to a ninth aspect of the present invention, the fuel electrode catalyst layer has a thickness of 50 to 250 μm (preferably 100 to 2 μm).
00 since the [μm]), an effect that the sum of the voltage drop and H 2 gain due to electrical resistance can be increased less able cell voltage.

【0121】この発明の請求項第10項は、電極触媒層
を50〜300[℃]の範囲の温度、10〜50[kgf
/cm2]の範囲の圧力でプレス成形する工程を含むの
で、電極触媒層の電気抵抗率を低くできるという効果を
奏する。
A tenth aspect of the present invention is that the electrode catalyst layer is formed at a temperature in the range of 50 to 300 ° C. and a temperature of 10 to 50 kgf.
/ Cm 2 ], which has the effect of reducing the electrical resistivity of the electrode catalyst layer.

【0122】この発明の請求項第11項は、プレス成形
前にアセトン等の有機溶剤に浸漬して超音波振動を与え
ながら、有機物を抽出除去する工程を含むので、電極触
媒層の電気抵抗率を低くできしたがって、低コストで高
信頼性の燃料電池を提供できるという効果を奏する。
The eleventh aspect of the present invention includes a step of extracting and removing organic substances while applying ultrasonic vibration by immersion in an organic solvent such as acetone before press molding. Therefore, there is an effect that a low-cost and highly reliable fuel cell can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1におけるプレス圧力と空気
極の電極触媒層のカーボン担体の体積比率との関係を示
す線図である。
FIG. 1 is a diagram showing a relationship between a pressing pressure and a volume ratio of a carbon carrier of an electrode catalyst layer of an air electrode in Example 1 of the present invention.

【図2】この発明の実施例1における空気極の電極触媒
層のカーボン担体の体積比率と気孔率および厚さとの関
係を示す線図である。
FIG. 2 is a diagram showing a relationship between a volume ratio of a carbon carrier, a porosity, and a thickness of an electrode catalyst layer of an air electrode in Example 1 of the present invention.

【図3】この発明の実施例1における空気極の電極触媒
層のカーボン担体の体積比率と電気抵抗率および電気抵
抗との関係を示す線図である。
FIG. 3 is a diagram showing a relationship between a volume ratio of a carbon carrier in an electrode catalyst layer of an air electrode, an electric resistivity, and an electric resistance in Example 1 of the present invention.

【図4】この発明の実施例1における空気極の電極触媒
層のカーボン担体の体積比率と電圧降下およびセルのO
2ゲインとの関係を示す線図である。
FIG. 4 shows the volume ratio and the voltage drop of the carbon carrier in the electrode catalyst layer of the air electrode and the O drop of the cell in Embodiment 1 of the present invention.
FIG. 3 is a diagram illustrating a relationship with two gains.

【図5】この発明の実施例1における空気極の電極触媒
層のカーボン担体の体積比率と電圧降下+セルのO2
インおよびセル電圧との関係を示す線図である。
FIG. 5 is a diagram showing a relationship between a volume ratio of a carbon carrier in an electrode catalyst layer of an air electrode and a voltage drop + O 2 gain of a cell and a cell voltage in Example 1 of the present invention.

【図6】この発明の実施例2におけるプレス圧力と燃料
極および空気極の電極触媒層の気孔率との関係を示す線
図である。
FIG. 6 is a diagram showing a relationship between a pressing pressure and a porosity of an electrode catalyst layer of a fuel electrode and an air electrode in Embodiment 2 of the present invention.

【図7】この発明の実施例2における燃料極および空気
極の電極触媒層のカーボン担体の体積比率と電気抵抗率
および気孔率との関係を示す線図である。
FIG. 7 is a diagram showing a relationship between a volume ratio of a carbon support in an electrode catalyst layer of a fuel electrode and an air electrode, and an electrical resistivity and a porosity in Example 2 of the present invention.

【図8】この発明の実施例2における燃料極の電極触媒
層の気孔率とセルのH2ゲインおよびカーボン担体の体
積比率との関係を示す線図である。
FIG. 8 is a diagram showing the relationship between the porosity of the electrode catalyst layer of the fuel electrode, the H 2 gain of the cell, and the volume ratio of the carbon carrier in Example 2 of the present invention.

【図9】この発明の実施例2における空気極の電極触媒
層の気孔率とセルのO2ゲインおよびカーボン担体の体
積比率との関係を示す線図である。
FIG. 9 is a diagram showing the relationship between the porosity of the electrode catalyst layer of the air electrode, the O 2 gain of the cell, and the volume ratio of the carbon carrier in Example 2 of the present invention.

【図10】この発明の実施例3における空気極の電極触
媒層の気孔率と電気抵抗率との関係を示す線図である。
FIG. 10 is a diagram showing the relationship between the porosity of the electrode catalyst layer of the air electrode and the electrical resistivity in Embodiment 3 of the present invention.

【図11】この発明の実施例3における空気極の電極触
媒層のカーボン担体の体積比率と電気抵抗率との関係を
示す線図である。
FIG. 11 is a diagram showing a relationship between a volume ratio of a carbon carrier of an electrode catalyst layer of an air electrode and an electric resistivity in Embodiment 3 of the present invention.

【図12】この発明の実施例3における空気極の電極触
媒層の気孔率とセルのO2ゲインとの関係を示す線図で
ある。
FIG. 12 is a diagram showing the relationship between the porosity of the electrode catalyst layer of the air electrode and the O 2 gain of the cell in Embodiment 3 of the present invention.

【図13】この発明の実施例4における空気極の電極触
媒層のPTFE含有率と厚さとの関係を示す線図であ
る。
FIG. 13 is a diagram showing the relationship between the PTFE content and the thickness of the electrode catalyst layer of the air electrode in Example 4 of the present invention.

【図14】この発明の実施例4における空気極の電極触
媒層のカーボン担体の体積比率と電気抵抗率および電気
抵抗との関係を示す線図である。
FIG. 14 is a diagram showing a relationship between a volume ratio of a carbon carrier in an electrode catalyst layer of an air electrode, an electric resistivity and an electric resistance in Embodiment 4 of the present invention.

【図15】この発明の実施例4における空気極の電極触
媒層のカーボン担体の体積比率と電圧降下およびセルの
2ゲインとの関係を示す線図である。
FIG. 15 is a diagram showing a relationship between a volume ratio of a carbon carrier in an electrode catalyst layer of an air electrode, a voltage drop, and an O 2 gain of a cell in Embodiment 4 of the present invention.

【図16】この発明の実施例4における空気極の電極触
媒層のカーボン担体の体積比率と電圧降下+セルのO2
ゲインおよびセル電圧との関係を示す線図である。
FIG. 16 is a graph showing the relationship between the volume ratio of the carbon carrier in the electrode catalyst layer of the air electrode and the voltage drop + O 2 of the cell in Example 4 of the present invention
FIG. 3 is a diagram illustrating a relationship between a gain and a cell voltage.

【図17】この発明の実施例5における空気極の電極触
媒層の厚さと電圧降下およびセルのO2ゲインとの関係
を示す線図である。
FIG. 17 is a diagram showing the relationship between the thickness of the electrode catalyst layer of the air electrode, the voltage drop, and the O 2 gain of the cell in Embodiment 5 of the present invention.

【図18】この発明の実施例5における空気極の電極触
媒層の厚さと電圧降下+セルのO2ゲインおよびセル電
圧との関係を示す線図である。
FIG. 18 is a diagram showing the relationship between the thickness of the electrode catalyst layer of the air electrode and the voltage drop + O 2 gain of the cell and the cell voltage in Example 5 of the present invention.

【図19】この発明の実施例6における燃料極の電極触
媒層の厚さと電圧降下およびセルのH2ゲインとの関係
を示す線図である。
FIG. 19 is a diagram showing the relationship between the thickness of the electrode catalyst layer of the fuel electrode, the voltage drop and the H 2 gain of the cell in Embodiment 6 of the present invention.

【図20】この発明の実施例6における燃料極の電極触
媒層の厚さと電圧降下+セルのH2ゲインおよびセル電
圧との関係を示す線図である。
FIG. 20 is a diagram showing the relationship between the thickness of the electrode catalyst layer of the fuel electrode and the voltage drop + H 2 gain of the cell and the cell voltage in Embodiment 6 of the present invention.

【図21】この発明の実施例7における空気極の電極触
媒層の触媒粉末の白金濃度と電気抵抗率との関係を示す
線図である。
FIG. 21 is a diagram showing the relationship between the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode and the electrical resistivity in Example 7 of the present invention.

【図22】この発明の実施例7における空気極の電極触
媒層の触媒粉末の白金濃度と電気抵抗との関係を示す線
図である。
FIG. 22 is a diagram showing the relationship between the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode and the electric resistance in Example 7 of the present invention.

【図23】この発明の実施例7における空気極の電極触
媒層の触媒粉末の白金濃度と電圧降下およびセルのO2
ゲインとの関係を示す線図である。
FIG. 23 shows the platinum concentration and the voltage drop of the catalyst powder of the electrode catalyst layer of the air electrode and the O 2 of the cell in Example 7 of the present invention.
FIG. 4 is a diagram illustrating a relationship with a gain.

【図24】この発明の実施例7における空気極の電極触
媒層の触媒粉末の白金濃度と電圧降下+セルのO2ゲイ
ンおよびセル電圧との関係を示す線図である。
FIG. 24 is a diagram showing the relationship between the platinum concentration of the catalyst powder of the electrode catalyst layer of the air electrode and the voltage drop + O 2 gain of the cell and cell voltage in Example 7 of the present invention.

【図25】この発明の実施例8における空気極の電極触
媒層のPTFE含有率と電気抵抗率との関係を示す線図
である。
FIG. 25 is a diagram showing the relationship between the PTFE content of the electrode catalyst layer of the air electrode and the electrical resistivity in Example 8 of the present invention.

【図26】この発明の実施例8における空気極の電極触
媒層のPTFE含有率と厚さとの関係を示す線図であ
る。
FIG. 26 is a diagram showing the relationship between the PTFE content and the thickness of the electrode catalyst layer of the air electrode in Example 8 of the present invention.

【図27】この発明の実施例8における空気極の電極触
媒層のPTFE含有率と電気抵抗との関係を示す線図で
ある。
FIG. 27 is a diagram showing the relationship between the PTFE content of the electrode catalyst layer of the air electrode and the electric resistance in Example 8 of the present invention.

【図28】この発明の実施例8における空気極の電極触
媒層の気孔率と電気抵抗率との関係を示す線図である。
FIG. 28 is a diagram showing the relationship between the porosity of the electrode catalyst layer of the air electrode and the electrical resistivity in Example 8 of the present invention.

【図29】この発明の実施例8における空気極の電極触
媒層の気孔率と厚さとの関係を示す線図である。
FIG. 29 is a diagram showing the relationship between the porosity and the thickness of the electrode catalyst layer of the air electrode in Example 8 of the present invention.

【図30】この発明の実施例8における空気極の電極触
媒層の気孔率と電気抵抗との関係を示す線図である。
FIG. 30 is a diagram showing the relationship between the porosity of the electrode catalyst layer of the air electrode and the electric resistance in Example 8 of the present invention.

【図31】この発明の実施例9における空気極の電極触
媒層の灰分含有率と電気抵抗率との関係を示す線図であ
る。
FIG. 31 is a diagram showing the relationship between the ash content of the electrode catalyst layer of the air electrode and the electrical resistivity in Example 9 of the present invention.

【図32】この発明の実施例9における空気極の電極触
媒層の灰分含有率と電気抵抗との関係を示す線図であ
る。
FIG. 32 is a diagram showing the relationship between the ash content of the electrode catalyst layer of the air electrode and the electric resistance in the ninth embodiment of the present invention.

【図33】この発明の実施例10におけるセル電圧−電
流密度特性を示す線図である。
FIG. 33 is a diagram showing cell voltage-current density characteristics in Example 10 of the present invention.

【図34】この発明の実施例10におけるセル電圧−運
転時間特性を示す線図である。
FIG. 34 is a diagram showing cell voltage-operating time characteristics in Embodiment 10 of the present invention.

【図35】この発明の実施例10におけるセルのO2
イン−運転時間特性を示す線図である。
FIG. 35 is a diagram showing O 2 gain-operating time characteristics of a cell according to Embodiment 10 of the present invention.

【図36】この発明の実施例11におけるプレス成形温
度と空気極の電極触媒層の電気抵抗率との関係を示す線
図である。
FIG. 36 is a diagram showing the relationship between the press forming temperature and the electrical resistivity of the electrode catalyst layer of the air electrode in Example 11 of the present invention.

【図37】この発明の実施例12におけるセル電圧−運
転時間特性を示す線図である。
FIG. 37 is a diagram showing cell voltage-operating time characteristics in Embodiment 12 of the present invention.

【図38】この発明の実施例12におけるセルのO2
イン−運転時間特性を示す線図である。
FIG. 38 is a diagram showing O 2 gain-operating time characteristics of a cell according to Embodiment 12 of the present invention.

【図39】この発明の実施例12における空気極の電極
触媒層の厚さを示す線図である。
FIG. 39 is a diagram showing a thickness of an electrode catalyst layer of an air electrode in Embodiment 12 of the present invention.

【図40】この発明の実施例12における空気極の電極
触媒層の電気抵抗率を示す線図である。
FIG. 40 is a diagram showing the electric resistivity of the electrode catalyst layer of the air electrode in Example 12 of the present invention.

【図41】この発明の実施例12における空気極の電極
触媒層の電気抵抗を示す線図である。
FIG. 41 is a diagram showing electric resistance of an electrode catalyst layer of an air electrode in Embodiment 12 of the present invention.

【図42】この発明の実施例13における空気極の電極
触媒層の気孔率と電気抵抗率との関係を示す線図であ
る。
FIG. 42 is a diagram showing the relationship between the porosity of the electrode catalyst layer of the air electrode and the electrical resistivity in Example 13 of the present invention.

【図43】この発明の実施例14における空気極の電極
触媒層のリン酸占有率とセル電圧との関係を示す線図で
ある。
FIG. 43 is a diagram showing a relationship between a phosphoric acid occupancy of an electrode catalyst layer of an air electrode and a cell voltage in Example 14 of the present invention.

【図44】この発明の実施例14における空気極の電極
触媒層の空隙率とセル電圧との関係を示す線図である。
FIG. 44 is a diagram showing the relationship between the porosity of the electrode catalyst layer of the air electrode and the cell voltage in Example 14 of the present invention.

【図45】従来の電極触媒層の白金量と厚さの最適領域
を示す線図である。
FIG. 45 is a diagram showing an optimal region of a platinum amount and a thickness of a conventional electrode catalyst layer.

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解質を含浸したマトリックスと、この
マトリックスの両側に設けられた一対の燃料極および空
気極からなる電極と、これらの電極の外側に形成された
一対の燃料流路および空気流路とから構成される単位セ
ルをセパレータを介して複数個積層して形成された燃料
電池の電極において、 上記燃料極および空気極の少なくとも一方の電極触媒層
は、カーボンブラック担体に白金および白金を除く1種
以上の金属元素である灰分を担持した触媒粉末と、フッ
素樹脂とからなり、上記カーボンブラック担体の体積比
率は、上記電極触媒層に対して10%〜25%であるこ
とを特徴とする燃料電池用電極。
1. A matrix impregnated with an electrolyte, an electrode comprising a pair of fuel electrodes and an air electrode provided on both sides of the matrix, and a pair of fuel channels and an air channel formed outside these electrodes. In the electrode of the fuel cell formed by laminating a plurality of unit cells comprising a separator with a separator, at least one electrode catalyst layer of the fuel electrode and the air electrode, except for platinum and platinum in the carbon black carrier It is composed of a catalyst powder carrying at least one ash as a metal element and a fluororesin, and a volume ratio of the carbon black carrier is 10% to 25% with respect to the electrode catalyst layer. Electrodes for fuel cells.
【請求項2】 電極触媒層の気孔率は、50%〜80%
であることを特徴とする請求項第1項記載の燃料電池用
電極。
2. The porosity of the electrode catalyst layer is 50% to 80%.
The fuel cell electrode according to claim 1, wherein:
【請求項3】 電極触媒層のフッ素樹脂含有率は、20
%〜60%であることを特徴とする請求項第1項記載の
燃料電池用電極。
3. The fluororesin content of the electrode catalyst layer is 20%.
2. The electrode for a fuel cell according to claim 1, wherein the amount is from about 60% to about 60%. 3.
【請求項4】 触媒粉末中の白金含有率は、10%〜4
0%であることを特徴とする請求項第1項記載の燃料電
池用電極。
4. The platinum content in the catalyst powder is from 10% to 4%.
2. The fuel cell electrode according to claim 1, wherein said electrode is 0%.
【請求項5】 触媒粉末中の灰分含有率は、15%以下
であることを特徴とする請求項第1項記載の燃料電池用
電極。
5. The fuel cell electrode according to claim 1, wherein the ash content in the catalyst powder is 15% or less.
【請求項6】 電極触媒層の空隙率は、20%〜45%
であることを特徴とする請求項第1項記載の燃料電池用
電極。
6. The porosity of the electrode catalyst layer is from 20% to 45%.
The fuel cell electrode according to claim 1, wherein:
【請求項7】 カーボンブラック担体は、密度が1.8
/cm3以上の熱処理カーボンであることを特徴とする
請求項第1項記載の燃料電池用電極。
7. The carbon black carrier has a density of 1.8.
2. The fuel cell electrode according to claim 1, wherein the electrode is a heat-treated carbon of g / cm 3 or more.
【請求項8】 空気極の電極触媒層の厚さは、100μ
m〜350μmであることを特徴とする請求項第1項記載
の燃料電池用電極。
8. The thickness of the electrode catalyst layer of the air electrode is 100 μm.
2. The electrode for a fuel cell according to claim 1, wherein the diameter is from m to 350 [mu] m.
【請求項9】 燃料極の電極触媒層の厚さは、50μm
〜250μmであることを特徴とする請求項第1項記載
の燃料電池用電極。
9. The thickness of the electrode catalyst layer of the fuel electrode is 50 μm.
2. The electrode for a fuel cell according to claim 1, wherein the thickness is from 250 to 250 [mu] m.
【請求項10】 カーボンブラック担体に白金および白
金を除く1種以上の金属元素である灰分を担持した触媒
粉末と、フッ素樹脂とからなる電極触媒層を、50℃〜
300℃の範囲の温度および10kgf/cm2〜50kgf/c
m2の範囲の圧力でプレス成形する工程を含むことを特徴
とする燃料電池用電極の製造方法。
10. An electrode catalyst layer comprising a catalyst powder in which a carbon black carrier carries platinum and ash, which is one or more metal elements other than platinum, and a fluororesin, are heated at 50 ° C.
Temperature in the range of 300 ° C. and 10 kgf / cm 2 to 50 kgf / c
A method for producing an electrode for a fuel cell, comprising a step of press molding at a pressure in the range of m 2 .
【請求項11】 プレス成形前の電極触媒層を有機溶
漬し、次いで、上記電極触媒層に超音波振動を加え
ながら電極触媒層中の有機を抽出除去する工程を含む
ことを特徴とする請求項第10項記載の燃料電池用電極
の製造方法。
11. immersing the electrode catalyst layer before press-forming organic Solvent <br/>, then the step of extracting and removing the organic material of the electrode catalyst layer while applying ultrasonic vibration to the electrode catalyst layer The method for producing an electrode for a fuel cell according to claim 10, comprising:
JP5350838A 1993-12-29 1993-12-29 Fuel cell electrode and method of manufacturing the same Expired - Lifetime JP2859531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5350838A JP2859531B2 (en) 1993-12-29 1993-12-29 Fuel cell electrode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5350838A JP2859531B2 (en) 1993-12-29 1993-12-29 Fuel cell electrode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07201334A JPH07201334A (en) 1995-08-04
JP2859531B2 true JP2859531B2 (en) 1999-02-17

Family

ID=18413232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5350838A Expired - Lifetime JP2859531B2 (en) 1993-12-29 1993-12-29 Fuel cell electrode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2859531B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
JP4826057B2 (en) 2003-12-11 2011-11-30 トヨタ自動車株式会社 Fuel cell
KR101147204B1 (en) * 2004-12-14 2012-05-25 삼성에스디아이 주식회사 Electrode for fuel cell, method for preparating the same, membrane-electrode assembly comporising the same, and fuel cell system comprising the same
JP2011023170A (en) * 2009-07-14 2011-02-03 Fuji Electric Holdings Co Ltd Method for manufacturing electrode of fuel cell
EP2774203B8 (en) * 2011-11-04 2016-06-01 Greenerity GmbH Method for the preparation of catalyst-coated membranes

Also Published As

Publication number Publication date
JPH07201334A (en) 1995-08-04

Similar Documents

Publication Publication Date Title
KR100824844B1 (en) Nickel foam and felt-based anode for solid oxide fuel cells
KR101213476B1 (en) Membrane electrode assembly for fuel cell
US20020068213A1 (en) Multiple layer electrode for improved performance
EP3080856A1 (en) A process for the preparation of pbi based membrane electrode assembly (mea) with improved fuel cell performance and stability
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
JP2859531B2 (en) Fuel cell electrode and method of manufacturing the same
CN110364740B (en) Composition and method for manufacturing electrode of membrane-electrode assembly for fuel cell
KR20140065283A (en) Electrode for fuel cell, method for preparing the same, membrane electrode assembly for fuel cell the electrode and fuel cell including the membrane electrode assembly
JP4942362B2 (en) Membrane-electrode assembly and polymer electrolyte fuel cell using the same
KR101763027B1 (en) Method of manufacturing electrode catalyst layer for fuel cell, and electrode catalyst layer for fuel cell
JP2010533941A (en) Cell material variations in SOFC stacks addressing thermal gradients in all planes
JP4428946B2 (en) Fuel electrode for solid oxide fuel cell
JPH06295728A (en) Electrode for solid high polymer type fuel cell and fuel cell using it
KR102299218B1 (en) Ionomer-ionomer support composite, method for preparing the same, and catalyst electrode for fuel cell comprising the ionomer-ionomer support composite
JP2741574B2 (en) Solid polymer electrolyte fuel cell
EP2064764B1 (en) Anode for use in fuel cell and method for making same
JP2002015742A (en) Fuel cell and proton conducting material for fuel cell
KR101165149B1 (en) Electrode for a molten carbonate cell with dual pore structure
JP4008221B2 (en) Method for producing electrode for polymer electrolyte fuel cell
JP2002280004A (en) Method of manufacturing for electrode for fuel cell
KR101298622B1 (en) Electrode Assembly for Fuel cell
JPS6313274A (en) Substrate material of gas diffusion electrode for fuel cell
Ide et al. Durability Investigation on Change in Material and Structure of MEA for Well-Defined PEFC under High Temperature and Low Humidified Operation Condition
Jung et al. Effect of cosintering of anode–electrolyte bilayer on the fabrication of anode-supported solid oxide fuel cells
JPH0548580B2 (en)