JP2858285B2 - Fuel supply control device for internal combustion engine - Google Patents

Fuel supply control device for internal combustion engine

Info

Publication number
JP2858285B2
JP2858285B2 JP5018451A JP1845193A JP2858285B2 JP 2858285 B2 JP2858285 B2 JP 2858285B2 JP 5018451 A JP5018451 A JP 5018451A JP 1845193 A JP1845193 A JP 1845193A JP 2858285 B2 JP2858285 B2 JP 2858285B2
Authority
JP
Japan
Prior art keywords
fuel
pressure
amount
fuel supply
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5018451A
Other languages
Japanese (ja)
Other versions
JPH06229280A (en
Inventor
憲一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP5018451A priority Critical patent/JP2858285B2/en
Publication of JPH06229280A publication Critical patent/JPH06229280A/en
Application granted granted Critical
Publication of JP2858285B2 publication Critical patent/JP2858285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の燃料供給制御
装置に関し、詳しくは、プレッシャレギュレータで燃料
供給圧力を調整しつつ燃料供給量を制御する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply control device for an internal combustion engine, and more particularly to a device for controlling a fuel supply amount while adjusting a fuel supply pressure by a pressure regulator.

【0002】[0002]

【従来の技術】従来から、内燃機関の電子制御燃料噴射
装置においては、燃料噴射弁の開弁制御時間によって機
関への燃料供給量を制御することが行われている。かか
る燃料供給装置では、燃料噴射弁に対する燃料の供給圧
力と、燃料噴射弁の噴孔部付近の吸気圧力との差圧が一
定でないと、噴射弁の開弁時間に対応して一定した燃料
を供給させることができなくなる。そこで、燃料噴射弁
に対して燃料ポンプから吐出される燃料の供給圧力(以
下、単に燃圧という。)を調整するためのプレッシャレ
ギュレータの基準圧力室に、スロットル弁下流側の吸入
負圧を導き、前記基準圧力室内の圧力と燃料ポンプから
の供給圧力との差圧、即ち、噴孔部の吸気圧力と燃圧と
の差圧が所定値以上になると、燃料タンクに燃料を戻す
リターン通路を開いて、前記差圧を一定に保つようにし
ていた(特開昭60−212634号公報等参照)。
2. Description of the Related Art Conventionally, in an electronically controlled fuel injection device for an internal combustion engine, the amount of fuel supplied to the engine is controlled by the valve opening control time of a fuel injection valve. In such a fuel supply device, if the pressure difference between the supply pressure of the fuel to the fuel injection valve and the intake pressure near the injection hole of the fuel injection valve is not constant, the constant fuel corresponding to the valve opening time of the injection valve is generated. It cannot be supplied. Therefore, the suction negative pressure on the downstream side of the throttle valve is led to a reference pressure chamber of a pressure regulator for adjusting a supply pressure (hereinafter, simply referred to as a fuel pressure) of the fuel discharged from the fuel pump to the fuel injection valve, When the pressure difference between the pressure in the reference pressure chamber and the supply pressure from the fuel pump, i.e., the pressure difference between the intake pressure and the fuel pressure of the injection hole portion is equal to or higher than a predetermined value, a return passage for returning fuel to the fuel tank is opened. The differential pressure is kept constant (see Japanese Patent Application Laid-Open No. 60-212634).

【0003】ここで、前記プレッシャレギュレータから
燃料タンクに戻される余剰燃料は、エンジンの熱で暖め
られているために、前記余剰燃料を燃料タンクに戻すこ
とは、燃料タンク内の燃料温度を上昇させることにな
り、燃料タンク内に燃料ベーパを発生させてしまうこと
があった。このため、余剰燃料を極力低減する技術とし
て、プレッシャレギュレータの開弁リフト量を検出する
ことによってプレッシャレギュレータで調圧される燃料
圧力を検出するセンサを設け、該検出された燃料圧力に
応じて燃料ポンプからの吐出量を制御するようにしたも
のがある。
Here, since the excess fuel returned from the pressure regulator to the fuel tank is warmed by the heat of the engine, returning the excess fuel to the fuel tank increases the temperature of the fuel in the fuel tank. As a result, fuel vapor may be generated in the fuel tank. For this reason, as a technique for reducing excess fuel as much as possible, a sensor for detecting the fuel pressure regulated by the pressure regulator by detecting the valve lift of the pressure regulator is provided, and the fuel is detected in accordance with the detected fuel pressure. In some cases, the amount of discharge from a pump is controlled.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ようにプレッシャレギュレータを備え、かつ、余剰燃料
量を低減するように燃料ポンプの吐出量を制御するよう
に構成された燃料供給制御装置にあっては、燃料温度を
低温に保持して蒸発燃料の発生を抑制する目的からプレ
ッシャレギュレータを高温となる機関から離れた所に配
設することが要求されており、その場合、前記プレッシ
ャレギュレータとスロットル弁下流の吸気管とを結ぶ圧
力導入管が長くなってしまうことが避けられなかった。
However, there is provided a fuel supply control device having a pressure regulator as described above and configured to control a discharge amount of a fuel pump so as to reduce a surplus fuel amount. Is required to dispose a pressure regulator at a location away from a high-temperature engine for the purpose of keeping fuel temperature at a low temperature and suppressing the generation of fuel vapor. In this case, the pressure regulator and the throttle valve are required. It was inevitable that the pressure introduction pipe connecting the downstream intake pipe would be long.

【0005】このように、長い導入路を介してプレッシ
ャレギュレータに吸気負圧を導く構成であると、燃料噴
射弁の噴孔部近くの吸気圧力変化に対して、プレッシャ
レギュレータの基準圧力室内の圧力変化に遅れを大きく
生じるため、吸気負圧の変化時に、噴孔部圧力と燃料供
給圧力との差圧が所定値からずれてしまい、プレッシャ
レギュレータ自身での差圧調整が行えず、また、前記セ
ンサにより検出される燃圧にも同様の遅れを生じるた
め、該燃圧検出値そのものに応じた燃料ポンプの吐出量
制御では、やはり差圧調整が行えず燃料供給制御に誤差
が生じてしまい過渡応答性が低下してしまうことがあっ
た。
As described above, the configuration in which the intake negative pressure is guided to the pressure regulator through the long introduction path causes the pressure in the reference pressure chamber of the pressure regulator to change with the intake pressure near the injection hole of the fuel injection valve. Because a large delay occurs in the change, when the intake negative pressure changes, the differential pressure between the injection hole pressure and the fuel supply pressure deviates from a predetermined value, and the pressure difference cannot be adjusted by the pressure regulator itself. Since a similar delay occurs in the fuel pressure detected by the sensor, in the discharge amount control of the fuel pump corresponding to the detected fuel pressure value itself, the differential pressure cannot be adjusted and an error occurs in the fuel supply control. Was sometimes reduced.

【0006】本発明は上記問題点に鑑みなされたもので
あり、燃料タンク内の温度上昇を招くことになる余剰燃
料量を低減しつつ、過渡運転時の燃料供給量を精度良く
制御することができるようにした燃料供給制御装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and it is an object of the present invention to accurately control the fuel supply amount during a transient operation while reducing the surplus fuel amount that would cause the temperature inside the fuel tank to rise. It is an object of the present invention to provide a fuel supply control device capable of being provided.

【0007】[0007]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の燃料供給制御装置は図1に示すように、燃料
ポンプによって燃料タンクから吐出された燃料の圧力と
圧力導入管を介して基準圧力室に導かれる燃料供給部の
吸気圧力との差圧所定値以上であるときに、余剰燃料
を燃料タンクに戻すことによって前記差圧を一定に調整
するプレッシャレギュレータを備え、該プレッシャレギ
ュレータによって調圧された燃料を燃料供給手段に導く
一方、前記プレッシャレギュレータによって調圧される
燃料圧力を検出する燃圧検出手段と、該検出された燃料
圧力に応じて前記余剰燃料量を所定以下に抑えるべく燃
料ポンプによる吐出量を制御する吐出量制御手段を備え
てなる内燃機関の燃料供給制御装置において、前記検出
された燃料圧力の変動量を演算する燃圧変動量演算手段
と、前記演算された燃圧変動量に基づいて前記吸気圧力
の前記基準圧力室への伝達応答遅れ量を演算する吸気圧
力伝達応答遅れ量演算手段と、前記演算された吸気圧力
の伝達応答遅れ量に応じて前記燃料供給手段から機関へ
の燃料供給量を増減制御する燃料供給量増減制御手段
と、を含んで構成した。
Therefore, a fuel supply control device for an internal combustion engine according to the present invention, as shown in FIG. 1, has a pressure of fuel discharged from a fuel tank by a fuel pump and a reference pressure through a pressure introducing pipe. A pressure regulator that adjusts the differential pressure to a constant value by returning surplus fuel to the fuel tank when a differential pressure from an intake pressure of the fuel supply unit guided to the chamber is equal to or more than a predetermined value; Fuel pressure detecting means for detecting a fuel pressure regulated by the pressure regulator while guiding the pressurized fuel to fuel supply means; and a fuel for suppressing the surplus fuel amount to a predetermined value or less according to the detected fuel pressure. In a fuel supply control device for an internal combustion engine comprising discharge amount control means for controlling a discharge amount by a pump, the detected fuel pressure Fuel pressure fluctuation amount calculating means for calculating a dynamic amount; intake pressure transmission response delay amount calculating means for calculating a transmission response delay amount of the intake pressure to the reference pressure chamber based on the calculated fuel pressure fluctuation amount; From the fuel supply means to the engine according to the transmission response delay amount of the intake air pressure
And a fuel supply amount increase / decrease control means for controlling the increase / decrease of the fuel supply amount.

【0008】[0008]

【作用】燃料供給部の吸気圧力が変動すると、プレッシ
ャレギュレータの基準圧力室に導かれる吸気圧力に遅れ
を生じるが、この遅れ量はプレッシャレギュレータによ
って調圧された燃料圧力の変動量の関数として表され
る。そこで、燃圧検出手段で検出された燃料圧力の変動
量を燃圧変動量演算手段によって演算し、その値に基づ
いて吸気圧力伝達応答遅れ量演算手段が前記吸気圧力の
伝達遅れ量を演算する。
When the intake pressure of the fuel supply unit fluctuates, a delay occurs in the intake pressure guided to the reference pressure chamber of the pressure regulator. The amount of the delay is expressed as a function of the fluctuation amount of the fuel pressure regulated by the pressure regulator. Is done. Therefore, the fuel pressure fluctuation detected by the fuel pressure detecting means is calculated by the fuel pressure fluctuation calculating means, and the intake pressure transmission response delay calculating means calculates the transmission delay of the intake pressure based on the calculated value.

【0009】そして、燃料供給量増減制御手段が前記演
算された吸気圧力の伝達遅れ量に応じて燃料ポンプの吐
出量制御手段あるいは燃料供給手段を介して燃料供給量
を増減制御することにより、燃料供給量を遅れなく良好
な値に制御することができ、過渡性能が向上する。
The fuel supply amount increase / decrease control means controls the fuel supply amount via the discharge amount control means of the fuel pump or the fuel supply means in accordance with the calculated delay time of the intake pressure, thereby increasing the fuel supply amount. The supply amount can be controlled to a good value without delay, and the transient performance is improved.

【0010】[0010]

【実施例】以下に、本発明の実施例を図面に基づいて説
明する。一実施例の燃料供給制御装置を示す図2におい
て、内燃機関1には、エアクリーナ2から吸気ダクト
3,スロットルチャンバ4,吸気コレクタ5及び吸気マ
ニホールド6を介して空気が供給される。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2 showing a fuel supply control device according to one embodiment, air is supplied to an internal combustion engine 1 from an air cleaner 2 via an intake duct 3, a throttle chamber 4, an intake collector 5 and an intake manifold 6.

【0011】吸気マニホールド6のブランチ部には、各
気筒毎に燃料供給手段としての燃料噴射弁7が設けられ
ている。前記燃料噴射弁7は、ソレノイドに通電されて
開弁し、通電停止されて閉弁する電磁式燃料噴射弁であ
り、後述するコントロールユニット16から送られる駆動
パルス信号のパルス幅に応じて開弁制御され、所定圧力
に調整された燃料を吸気マニホールド6の各ブランチ部
に噴射供給する。
A fuel injection valve 7 as a fuel supply means is provided for each cylinder in a branch portion of the intake manifold 6. The fuel injection valve 7 is an electromagnetic fuel injection valve that is energized by a solenoid and opens, and is deenergized and closed by a solenoid, and opens according to the pulse width of a drive pulse signal sent from a control unit 16 described later. The fuel that is controlled and adjusted to a predetermined pressure is injected and supplied to each branch of the intake manifold 6.

【0012】燃料タンク8には、燃料ポンプ9が内設さ
れており、該燃料ポンプ9により吸引されて吐出される
燃料は、燃料フィルタ10,プレッシャレギュレータ11を
介装した燃料供給管12を経由して前記各燃料噴射弁7に
分配供給されるようになっている。前記プレッシャレギ
ュレータ11は、その基準圧力室11aに、吸気コレクタ5
から圧力導入管13を介して機関1の吸気負圧 (燃料噴射
弁7の噴孔部の吸気圧力に一致する) が導入されるよう
になっており、燃料ポンプ9から送られる燃料の圧力
と、基準圧力室11aの圧力との差圧が所定値以上になる
と、リターン通路14を開いて、燃料を燃料タンク8に戻
すことにより、前記差圧が一定になるように燃料供給圧
を調整する。前記差圧を一定にすれば、燃料噴射弁7の
開弁時間に対して噴射供給される燃料量がリニアな特性
となるから、噴射量を開弁時間として制御できる。
A fuel pump 9 is provided in the fuel tank 8, and fuel sucked and discharged by the fuel pump 9 passes through a fuel supply pipe 12 provided with a fuel filter 10 and a pressure regulator 11. Then, the fuel is distributed and supplied to each of the fuel injection valves 7. The pressure regulator 11 has an intake collector 5 in its reference pressure chamber 11a.
, An intake negative pressure of the engine 1 (corresponding to the intake pressure of the injection hole of the fuel injection valve 7) is introduced through the pressure introducing pipe 13, and the pressure of the fuel sent from the fuel pump 9 is When the pressure difference from the pressure in the reference pressure chamber 11a exceeds a predetermined value, the fuel supply pressure is adjusted so that the pressure difference becomes constant by opening the return passage 14 and returning the fuel to the fuel tank 8. . If the differential pressure is kept constant, the amount of fuel injected and supplied with respect to the valve opening time of the fuel injection valve 7 has a linear characteristic, so that the injection amount can be controlled as the valve opening time.

【0013】また、前記プレッシャレギュレータ11に
は、弁体の開弁リフト量を検出することによってプレッ
シャレギュレータ11で調圧された燃料圧力を検出する燃
圧検出手段としての燃圧センサ15が設けられている。該
燃圧センサ15で検出された燃圧PT は、前記燃料ポンプ
9を駆動制御するコントロールユニット16に送られる。
前記コントロールユニット16には、前記燃圧センサ6か
らの検出信号の他、エアフローメータ17からの吸入空気
流量検出信号Q、クランク角センサ18からの回転速度信
号Neなどが入力されるようになっている。
The pressure regulator 11 is provided with a fuel pressure sensor 15 as a fuel pressure detecting means for detecting the fuel pressure regulated by the pressure regulator 11 by detecting the valve lift of the valve body. . The fuel pressure PT detected by the fuel pressure sensor 15 is sent to a control unit 16 for controlling the driving of the fuel pump 9.
In addition to the detection signal from the fuel pressure sensor 6, an intake air flow rate detection signal Q from an air flow meter 17, a rotation speed signal Ne from a crank angle sensor 18, and the like are input to the control unit 16. .

【0014】そして、マイクロコンピュータを内蔵した
コントロールユニット16では、前記吸入空気流量Qと回
転速度Neとに基づいて機関の要求燃料量に対応する基
本噴射パルス幅Tp(基本開弁時間)を演算する一方、
冷却水温度Tw等の情報から各種補正係数COEFを設
定し、前記基本噴射パルス幅Tpを各種補正係数COE
F等で補正して最終的な噴射パルス幅Tiを設定する。
そして、前記噴射パルス幅Tiの駆動パルス信号を燃料
噴射弁4に対して所定タイミングで出力することで、機
関の要求に見合った量の燃料を、噴射弁4の開弁制御時
間によってエンジンに間欠的に噴射供給させるようにし
てある。
The control unit 16 incorporating a microcomputer calculates a basic injection pulse width Tp (basic valve opening time) corresponding to the required fuel amount of the engine based on the intake air flow rate Q and the rotational speed Ne. on the other hand,
Various correction coefficients COEF are set from information such as the cooling water temperature Tw, and the basic injection pulse width Tp is set to various correction coefficients COE.
The final injection pulse width Ti is set by correcting with F or the like.
By outputting a drive pulse signal having the injection pulse width Ti to the fuel injection valve 4 at a predetermined timing, an amount of fuel corresponding to the demand of the engine is intermittently supplied to the engine by the valve opening control time of the injection valve 4. Injection and supply are performed.

【0015】ここで、上記のように、燃料噴射弁4の開
弁時間によって噴射量を制御するためには、燃圧PT
運転条件(吸気負圧)に見合った目標値(吸気負圧に対
する差圧が一定となる燃圧)に制御する必要があり、そ
のためにコントロールユニット16では、図3のフローチ
ャートに示すようにして、燃料ポンプ9の必要吐出量
(制御値)を決定し、該吐出量に基づいて燃料ポンプ9
の印加電圧(又は制御デューティなどの制御値)を制御
するようにしてある。
Here, as described above, in order to control the injection amount based on the valve opening time of the fuel injection valve 4, the fuel pressure PT is set to a target value (in relation to the intake negative pressure) corresponding to the operating condition (intake negative pressure). Therefore, the control unit 16 determines the required discharge amount (control value) of the fuel pump 9 as shown in the flowchart of FIG. Based on the fuel pump 9
Is controlled (or a control value such as a control duty).

【0016】尚、本実施例において、燃圧変動量演算手
段,吸気圧力伝達応答遅れ量演算手段,燃料供給量増減
制御手段としての機能は、図3のフローチャートに示す
ようにコントロールユニット16が備えている。図3のフ
ローチャートにおいて、まず、ステップ1(図中ではS
1としてある。以下同様)では、前記燃圧センサ15によ
って検出された燃料圧力PT を読み込む。
In this embodiment, the control unit 16 has functions as a fuel pressure fluctuation amount calculation means, an intake pressure transmission response delay amount calculation means, and a fuel supply amount increase / decrease control means as shown in the flowchart of FIG. I have. In the flowchart of FIG. 3, first, step 1 (S in the figure)
There is one. In the following, the fuel pressure PT detected by the fuel pressure sensor 15 is read.

【0017】ステップ2では、前記燃圧センサ15によっ
て検出された燃料圧力PT を目標値(プレッシャレギュ
レータの開弁リフト量の目標値) PT0と比較する。そし
て、PT =PT0の場合は、現状を維持すべくこのルーチ
ンを終了するが、PT >PT0のときにはステップ3へ進
み、PT の変動量ΔPT (単位時間当りの変化量) を演
算し、所定以上の過渡状態か否かを前記変動量ΔPT
基準値と比較することによって判別する。所定未満の過
渡状態とは運転条件が緩やかに変化して要求燃料量に対
して燃料ポンプ9からの吐出量が相対的に大き過ぎ、そ
の結果プレッシャレギュレータ11の開弁リフト量が減少
したような場合であり、その場合は圧力導入管13による
吸気圧力の伝達遅れは無視でき該開弁リフト量の増大に
よって差圧の調整は行われ燃料供給量の制御は良好に行
われるが、燃料ポンプ9からの吐出量が無駄に大き過ぎ
る。
In step 2, the fuel pressure P T detected by the fuel pressure sensor 15 is compared with a target value (a target value of the valve lift of the pressure regulator) P T0 . Then, in the case of P T = P T0, but terminates this routine to maintain the status quo, P T> proceeds to Step 3 when the P T0, variation [Delta] P T (per unit time variation) of P T Is calculated, and it is determined whether or not the transition state is a predetermined or more transient state by comparing the fluctuation amount ΔP T with a reference value. The transient state less than the predetermined state is such that the operating condition changes slowly and the discharge amount from the fuel pump 9 is too large relative to the required fuel amount, and as a result, the valve opening lift amount of the pressure regulator 11 decreases. In this case, the transmission delay of the intake pressure by the pressure introducing pipe 13 can be neglected, and the differential pressure is adjusted by increasing the valve opening lift amount, and the fuel supply amount is controlled well. Is too large.

【0018】そこで、ステップ3で所定未満の過渡状態
と判別された場合は、ステップ4で後述する吸気圧力の
伝達遅れ補正係数K1及び燃圧センサ15の応答遅れ補正
係数K2を共に0とした上でステップ7へ進み、燃料ポ
ンプ9の吐出量の制御値FPCONを、リターン燃料量
を一定とすべく減少補正するだけの補正量FPCI (デ
ューティ値) のみを現状値FPCONOLD から減少補正
する。
Therefore, if it is determined in step 3 that the transient state is less than the predetermined state, in step 4 both the intake pressure transmission delay correction coefficient K1 and the response delay correction coefficient K2 of the fuel pressure sensor 15, which will be described later, are set to 0. Proceeding to step 7, only the correction amount FPCI (duty value) for reducing the control value FPCON of the discharge amount of the fuel pump 9 to keep the return fuel amount constant is reduced from the current value FPCON OLD .

【0019】一方、ステップ3で所定以上の過渡状態と
判定された場合は、吸気圧力の変動量が大きく、圧力導
入管13を介しての基準圧力室11aへの伝達遅れ量が大き
い場合であり、その場合はステップ5へ進む。ステップ
5では、前記燃圧PT の変動量ΔPT に対する吸気圧力
の伝達遅れに対する伝達遅れ補正係数K1を予め実験的
又は解析的に求められROMに記憶されたマップからの
検索等により設定する。ここで、圧力伝達の遅れ量は、
ΔPT× (圧力導入管8の開口面積) × (圧力導入管8
の長さ) として求められる値に比例した値で定まり、し
たがって前記伝達遅れ補正係数K1は、ΔPT の関数と
して求められる。
On the other hand, if it is determined in step 3 that the transient state is equal to or more than the predetermined transient state, the fluctuation of the intake pressure is large and the transmission delay to the reference pressure chamber 11a via the pressure introducing pipe 13 is large. In that case, go to step 5. In step 5, set by the retrieval or the like from previously experimentally or analytically sought map stored in the ROM of the transmission delay correction coefficient K1 relative transmission delay of the intake air pressure to the change amount [Delta] P T of the fuel pressure P T. Here, the delay amount of the pressure transmission is
ΔP T × (opening area of pressure introducing pipe 8) × (pressure introducing pipe 8
Obligatory in value proportional to the value obtained as the length), the transmission delay correction factor K1 is therefore determined as a function of [Delta] P T.

【0020】次いで、ステップ6へ進み、燃圧センサ15
の作動応答遅れに対する作動遅れ補正係数K2を求め
る。これは、基準圧力室11aに圧力変化が伝達された
後、該圧力変化に感応してプレッシャレギュレータ11の
開弁リフト量が変化するまでの応答遅れに対する補正で
あり、該応答遅れ量は、機関の負荷例えば絞り弁開度T
VO, 基本燃料噴射量TP , 吸入空気流量Qの変化量Δ
TVO, ΔTP , ΔQの増大に応じて増大するため、こ
れらのパラメータに対して予め実験的又は解析的に求め
られROMに記憶されたマップからの検索等により設定
する。
Next, the routine proceeds to step 6, where the fuel pressure sensor 15
An operation delay correction coefficient K2 for the operation response delay of is obtained. This is a correction for a response delay after the pressure change is transmitted to the reference pressure chamber 11a until the valve opening lift amount of the pressure regulator 11 changes in response to the pressure change. Load of throttle valve opening T
VO, basic fuel injection quantity T P, the amount of change in the intake air flow rate Q delta
Since these parameters increase as TVO , ΔT P, and ΔQ increase, these parameters are set in advance by experiment or analysis, for example, by searching a map stored in a ROM.

【0021】その後ステップ7へ進み、燃料ポンプ9の
吐出量の制御値FPCONを現状値FPCONOLD から
前記補正量FPCI (デューティ値) の他、前記吸気圧
力の伝達応答遅れ補正係数K1と燃圧センサ15の作動応
答遅れ補正係数K2とを減少した値に制御する。その結
果、これら応答遅れにより吸気圧力と燃料圧力との差圧
が増大しようとする場合でも燃料ポンプ9の吐出量がそ
れに応じて減少補正される結果、燃料供給量が過剰に増
大することを防止でき、空燃比のリッチ化, 排気エミッ
ションの悪化を防止できる。
Thereafter, the routine proceeds to step 7, in which the control value FPCON of the discharge amount of the fuel pump 9 is changed from the current value FPCON OLD to the correction amount FPCI (duty value), the transmission response delay correction coefficient K1 of the intake pressure, the fuel pressure sensor 15 Is controlled to a reduced value. As a result, even when the differential pressure between the intake pressure and the fuel pressure tends to increase due to these response delays, the discharge amount of the fuel pump 9 is corrected to decrease accordingly, thereby preventing the fuel supply amount from excessively increasing. As a result, it is possible to prevent the air-fuel ratio from becoming rich and the exhaust emission from becoming worse.

【0022】以上は燃圧PT が目標値PT0より増大して
差圧が増大した場合であるが、ステップ2で燃圧PT
目標値PT0より小さいと判定された場合も、全く同様に
して燃料吐出量の増量補正制御が行われる。即ち、ステ
ップ8で所定以上の過渡状態か否かを判別し、所定未満
の過渡状態と判定されたときは、ステップ9でK1,K
2=0として応答遅れによる補正を行うことなくステッ
プ12へ進み、燃料供給量は一定のまま燃料吐出量を所定
の補正量FPCI分増大させる制御を行う。燃料吐出量
を一定のリターン燃料量を得るべく確保して、その後の
要求燃料量の急激な増大に対応できるようにするためで
ある。
The above is the case where the fuel pressure P T increases from the target value P T0 and the differential pressure increases. However, the same applies when the fuel pressure P T is determined to be smaller than the target value P T0 in step 2. Thus, the increase correction control of the fuel discharge amount is performed. That is, it is determined in step 8 whether or not the transient state is equal to or greater than a predetermined state.
The process proceeds to step 12 without performing the correction due to the response delay as 2 = 0, and controls to increase the fuel discharge amount by a predetermined correction amount FPCI while keeping the fuel supply amount constant. This is because the fuel discharge amount is secured so as to obtain a constant return fuel amount, and it is possible to cope with a sudden increase in the required fuel amount thereafter.

【0023】また、ステップ8で所定以上の過渡状態と
判定されたときには、吸気圧力の増大に対して圧力導入
管13を介しての吸気圧力の伝達応答遅れ及び燃圧センサ
15の作動応答遅れによる燃圧増大の遅れによって差圧が
減少するのを抑制すべく、ステップ10, 11で前記同様に
して伝達遅れ補正係数K1, 作動遅れ補正係数K2を設
定し、これら補正係数K1, K2を用いてステップ12で
燃料吐出量の制御値FPCONを現状値FPCONOLD
に前記補正量FPCI (デューティ値) の他、前記補正
係数K1及びK2を加算した値に制御する。
If it is determined in step 8 that the transient state is equal to or more than the predetermined transient state, the transmission response delay of the intake pressure via the pressure introducing pipe 13 with respect to the increase of the intake pressure and the fuel pressure sensor
In order to suppress the decrease in the differential pressure due to the delay of the fuel pressure increase due to the operation response delay in step 15, the transmission delay correction coefficient K1 and the operation delay correction coefficient K2 are set in the same manner as described above in steps 10 and 11, and these correction coefficients K1 , K2, the control value FPCON of the fuel discharge amount is changed to the current value FPCON OLD in step 12.
Is controlled by adding the correction coefficients K1 and K2 in addition to the correction amount FPCI (duty value).

【0024】その結果、これら応答遅れにより吸気圧力
と燃料圧力との差圧が減少しようとする場合でも燃料ポ
ンプ9の吐出量がそれに応じて増大補正される結果、燃
料供給量の減少を防止でき、空燃比のリーン化, 運転性
の悪化を防止できる。また、本実施例では燃圧センサ15
の作動応答遅れに対する補正も同時に行われて、過渡状
態における空燃比を可及的に安定化することができる。
なお、燃圧センサとしてプレッシャレギュレータ11の開
弁リフト量を検出する他、直接燃料圧力を検出するセン
サを使用することもでき、その場合、作動応答遅れが充
分小さい場合には、かかる補正は不要である。
As a result, even when the pressure difference between the intake pressure and the fuel pressure is about to decrease due to these response delays, the discharge amount of the fuel pump 9 is corrected to increase accordingly, so that a decrease in the fuel supply amount can be prevented. In addition, the air-fuel ratio can be made lean and the drivability can be prevented from deteriorating. In this embodiment, the fuel pressure sensor 15
The correction of the operation response delay is also performed at the same time, and the air-fuel ratio in the transient state can be stabilized as much as possible.
In addition, besides detecting the valve opening lift amount of the pressure regulator 11 as the fuel pressure sensor, a sensor for directly detecting the fuel pressure can also be used. In this case, if the operation response delay is sufficiently small, such correction is unnecessary. is there.

【0025】更に、本実施例では、燃料ポンプ9の吐出
量の増減補正によって差圧を一定化することにより燃料
供給量の応答遅れ補正を行う構成としたが、燃料噴射弁
4の開弁時間 (パルス幅) を増減補正することで燃料供
給量の応答遅れ補正を行うようにすることもできる。即
ち、図3のステップ5, , 10, 11において基本燃料噴
射量TP に乗じられる補正係数項として前記同様にして
吸気圧力の伝達応答遅れ補正係数k1と燃圧センサ15の
作動応答遅れ補正係数k2とを求め、ステップ6, 11に
おいて、夫々次式に従って燃料噴射量TI を設定して制
御する。
Further, in this embodiment, the response delay correction of the fuel supply amount is performed by making the differential pressure constant by correcting the increase / decrease of the discharge amount of the fuel pump 9, but the valve opening time of the fuel injection valve 4 is set. The response delay of the fuel supply amount can be corrected by increasing or decreasing the (pulse width). That is, Step 5, 6, 10, operation response delay correction coefficients of the transfer response delay correction factor k1 and the fuel pressure sensor 15 of the Likewise intake pressure as a correction coefficient term to be multiplied to the basic fuel injection quantity T P In 11 of FIG. 3 seeking and k2, in step 6, 11, controlled by setting the fuel injection amount T I in accordance with respective following formula.

【0026】 TI =TP ・ (COEF−k1−k2) +TSI =TP ・ (COEF+k1+k2) +TS 但し、COEFは水温等による各種補正係数,TS はバ
ッテリ電圧による無効噴射分である。上記のように燃料
噴射弁4の開弁時間を制御すれば、燃料供給量をより応
答性良く補正できるが、差圧を常時安定化できる点では
前記燃料ポンプ9の吐出量を補正する方が優れている。
[0026] T I = T P · (COEF -k1-k2) + T S T I = T P · (COEF + k1 + k2) + T S , however, COEF various correction coefficient by the water temperature, T S is invalid injection caused by the battery voltage is there. If the valve opening time of the fuel injection valve 4 is controlled as described above, the fuel supply amount can be corrected with higher responsiveness, but it is better to correct the discharge amount of the fuel pump 9 in that the differential pressure can be constantly stabilized. Are better.

【0027】また、燃料ポンプ9による燃料吐出量補正
と燃料噴射弁4の開弁時間補正とを併用する構成として
もよい。
The correction of the fuel discharge amount by the fuel pump 9 and the correction of the valve opening time of the fuel injection valve 4 may be combined.

【0028】[0028]

【発明の効果】以上説明してきたように本発明によれ
ば、燃料供給部の吸気圧力の変化時に圧力導入管の経由
による圧力伝達の応答遅れに対してプレッシャレギュレ
ータにより調圧された燃料圧力の変動量に基づいて燃料
供給量を増減補正する構成としたため、過渡状態におい
ても燃料供給量を適切に制御することができ、以て空燃
比が安定化して排気エミッション,運転性を良好に維持
することができる。
As described above, according to the present invention, when the intake pressure of the fuel supply unit changes, the response of the fuel pressure regulated by the pressure regulator to the response delay of the pressure transmission via the pressure introducing pipe is reduced. Since the fuel supply amount is increased or decreased based on the fluctuation amount, the fuel supply amount can be appropriately controlled even in a transient state, so that the air-fuel ratio is stabilized and the exhaust emission and drivability are maintained satisfactorily. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の実施例のシステム構成を示す図。FIG. 2 is a diagram showing a system configuration according to an embodiment of the present invention.

【図3】実施例における燃料ポンプの吐出量制御を示す
フローチャート。
FIG. 3 is a flowchart showing a discharge amount control of a fuel pump in the embodiment.

【符号の説明】[Explanation of symbols]

1 内燃機関 7 燃料噴射弁 8 燃料タンク 9 燃料ポンプ 11 プレッシャレギュレータ 11a 基準圧力室 13 圧力導入管 DESCRIPTION OF SYMBOLS 1 Internal combustion engine 7 Fuel injection valve 8 Fuel tank 9 Fuel pump 11 Pressure regulator 11a Reference pressure chamber 13 Pressure introduction pipe

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F02D 41/00 - 41/40 F02M 37/08 F02M 69/00Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) F02D 41/00-41/40 F02M 37/08 F02M 69/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料ポンプによって燃料タンクから吐出さ
れた燃料の圧力と圧力導入管を介して基準圧力室に導か
れる燃料供給部の吸気圧力との差圧所定値以上である
ときに、余剰燃料を燃料タンクに戻すことによって前記
差圧を一定に調整するプレッシャレギュレータを備え、
該プレッシャレギュレータによって調圧された燃料を燃
料供給手段に導く一方、前記プレッシャレギュレータに
よって調圧される燃料圧力を検出する燃圧検出手段と、
該検出された燃料圧力に応じて前記余剰燃料量を所定以
下に抑えるべく燃料ポンプによる吐出量を制御する吐出
量制御手段を備えてなる内燃機関の燃料供給制御装置に
おいて、 前記検出された燃料圧力の変動量を演算する燃圧変動量
演算手段と、 前記演算された燃圧変動量に基づいて前記吸気圧力の前
記基準圧力室への伝達応答遅れ量を演算する吸気圧力伝
達応答遅れ量演算手段と、 前記演算された吸気圧力の伝達応答遅れ量に応じて前記
燃料供給手段から機関への燃料供給量を増減制御する燃
料供給量増減制御手段と、 を含んで構成したことを特徴とする内燃機関の燃料供給
制御装置。
When a pressure difference between a pressure of fuel discharged from a fuel tank by a fuel pump and an intake pressure of a fuel supply section led to a reference pressure chamber via a pressure introducing pipe is equal to or higher than a predetermined value, an excess A pressure regulator for adjusting the differential pressure to a constant value by returning fuel to the fuel tank;
Fuel pressure detecting means for guiding the fuel regulated by the pressure regulator to fuel supply means, while detecting fuel pressure regulated by the pressure regulator;
A fuel supply control device for an internal combustion engine, comprising: a discharge amount control unit configured to control a discharge amount of a fuel pump in order to suppress the surplus fuel amount to a predetermined value or less according to the detected fuel pressure. Fuel pressure fluctuation amount calculating means for calculating the fluctuation amount of, and intake pressure transmission response delay amount calculating means for calculating a transmission response delay amount of the intake pressure to the reference pressure chamber based on the calculated fuel pressure fluctuation amount, in response to said transmitted response delay amount of the computed intake pressure
A fuel supply control device for an internal combustion engine, comprising: a fuel supply amount increase / decrease control unit that controls increase / decrease of a fuel supply amount from the fuel supply unit to the engine .
JP5018451A 1993-02-05 1993-02-05 Fuel supply control device for internal combustion engine Expired - Lifetime JP2858285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018451A JP2858285B2 (en) 1993-02-05 1993-02-05 Fuel supply control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018451A JP2858285B2 (en) 1993-02-05 1993-02-05 Fuel supply control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06229280A JPH06229280A (en) 1994-08-16
JP2858285B2 true JP2858285B2 (en) 1999-02-17

Family

ID=11971998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018451A Expired - Lifetime JP2858285B2 (en) 1993-02-05 1993-02-05 Fuel supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2858285B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350887B1 (en) * 1996-08-30 2002-11-18 기아자동차주식회사 Fuel supply apparatus for cng engine
JP5045640B2 (en) * 2008-10-27 2012-10-10 株式会社デンソー Fuel injection control device for in-cylinder internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108427A (en) * 1980-12-26 1982-07-06 Nissan Motor Co Ltd Controller of delivery fuel from motor-driven fuel pump
JPS62171661U (en) * 1986-04-22 1987-10-30
JPS6371445U (en) * 1986-10-29 1988-05-13
JP3154331B2 (en) * 1990-07-03 2001-04-09 国産電機株式会社 Fuel injection device
JPH04232371A (en) * 1990-12-28 1992-08-20 Sanshin Ind Co Ltd Method for driving fuel pump
JP2864796B2 (en) * 1991-07-15 1999-03-08 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP2567320Y2 (en) * 1993-01-18 1998-04-02 株式会社ユニシアジェックス Fuel supply device for internal combustion engine

Also Published As

Publication number Publication date
JPH06229280A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
US6223731B1 (en) Fuel feeding apparatus with response delay compensation
US6230697B1 (en) Integrated internal combustion engine control system with high-precision emission controls
US5727528A (en) Control apparatus and control method of internal combustion engine
US5704340A (en) Excess air rate detecting apparatus and an excess air rate control apparatus for an engine
US5694902A (en) Fuel supply control with fuel pressure adjustment during fuel cut-off delay period
JP3154038B2 (en) Apparatus for estimating intake pressure of internal combustion engine and fuel supply apparatus
US6450148B2 (en) Fuel pressure control device of engine
US7021288B2 (en) Injection control apparatus for an engine
US7047123B2 (en) Engine air-fuel ratio control system
JP3378640B2 (en) Idling control method
US5440877A (en) Air-fuel ratio controller for an internal combustion engine
JPS5932645A (en) Idling speed controlling apparatus for engine
US7181331B2 (en) Engine air-fuel ratio control system
US7127344B2 (en) Engine air-fuel ratio control system
JP2858285B2 (en) Fuel supply control device for internal combustion engine
JPH06173805A (en) Fuel feeding device for internal combustion engine
JP2001107776A (en) Fuel injection control system of internal combustion engine
JPH08210195A (en) Exhaust rotary flow control device of diesel engine
JP2987675B2 (en) Intake control device for internal combustion engine
JP3277304B2 (en) Fuel supply device for internal combustion engine
JP3767063B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08218946A (en) Exhaust gas recirculation controller for diesel engine
JP2757097B2 (en) Fuel supply control device for internal combustion engine with assist air supply device
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPH10274108A (en) Evaporated fuel purging device for engine