JP2854950B2 - Manufacturing method of optical branching coupler - Google Patents

Manufacturing method of optical branching coupler

Info

Publication number
JP2854950B2
JP2854950B2 JP2244258A JP24425890A JP2854950B2 JP 2854950 B2 JP2854950 B2 JP 2854950B2 JP 2244258 A JP2244258 A JP 2244258A JP 24425890 A JP24425890 A JP 24425890A JP 2854950 B2 JP2854950 B2 JP 2854950B2
Authority
JP
Japan
Prior art keywords
optical branching
branching coupler
optical
plastic fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2244258A
Other languages
Japanese (ja)
Other versions
JPH04151111A (en
Inventor
勇人 柚木
武治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Publication of JPH04151111A publication Critical patent/JPH04151111A/en
Application granted granted Critical
Publication of JP2854950B2 publication Critical patent/JP2854950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/69General aspects of joining filaments 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81431General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81457General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a block or layer of deformable material, e.g. sponge, foam, rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81423General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being concave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8163Self-aligning to the joining plane, e.g. mounted on a ball and socket

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光の分岐または結合を行う光分岐結合
器、特にほぼ1:1の分岐比を有する光分岐結合器の製造
方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical splitter / coupler for splitting or coupling light, and more particularly to a method for manufacturing an optical splitter / coupler having a branch ratio of about 1: 1.

(背景技術とその課題) 近年、大容量の情報を高速伝送するために、プラスチ
ックファイバによる情報伝送システムの開発が進められ
ている。
(Background Art and its Problems) In recent years, information transmission systems using plastic fibers have been developed in order to transmit large-capacity information at high speed.

このような情報伝送システムでは、1つの伝送経路を
複数に分岐したり、逆に複数の伝送経路を1つに結合し
たりする必要がある。
In such an information transmission system, it is necessary to divide one transmission path into a plurality of paths, or conversely, to combine a plurality of transmission paths into one.

そこで、このような機能を担う光分岐結合器を従来よ
り周知の熱溶着法により製造する試みが行われてきた。
しかしながら、こうして製造された光分岐結合器は、光
損失が大きく、実使用に耐えるものはなかった。という
のも、以下の理由からである。すなわち、熱溶着法は、
ファイバケーブルのクラッドの一部を除去した後、複数
本のファイバケーブルを集束させ、クラッドを除去した
部分で各ファイバケーブルのコアを相互に熱溶着させる
ものである。したがって、加熱によってコアが熱収縮
し、光損失が大きくなる。また、その加熱最中において
は、熱溶着部分近傍のクラッドにも熱が伝わり、クラッ
ドが溶けてファイバケーブルが変形したり、クラッド材
料がコアに拡散して特性の劣化、特に光損失の増大が生
じることがある。
Therefore, attempts have been made to manufacture an optical branching coupler having such a function by a conventionally well-known thermal welding method.
However, the optical branching coupler manufactured in this way has a large optical loss and there is no one that can withstand practical use. This is for the following reasons. That is, the heat welding method
After removing a part of the cladding of the fiber cable, a plurality of fiber cables are focused, and the cores of the respective fiber cables are thermally welded to each other at the part where the cladding is removed. Therefore, the core thermally contracts due to the heating, and the light loss increases. Also, during the heating, heat is also transmitted to the cladding near the heat-welded portion, which melts the cladding and deforms the fiber cable, and the cladding material diffuses into the core, deteriorating the characteristics, especially increasing the optical loss. May occur.

このような問題を解決すべく、本願発明者は超音波溶
着法による光分岐結合器の製造方法を提案した。この製
造方法では、溶着型を用いて2本のプラスチックファイ
バを所定長さにわたって平行に配置した状態で相互に当
接させ、その当接領域に超音波振動を加える。これによ
り、各プラスチックファイバは加熱されることなく、そ
の当接領域で相互に溶着されて、低損失の光分岐結合器
が製造される。
In order to solve such a problem, the inventor of the present application has proposed a method of manufacturing an optical branching coupler by an ultrasonic welding method. In this manufacturing method, two plastic fibers are brought into contact with each other in a state of being arranged in parallel over a predetermined length using a welding die, and ultrasonic vibration is applied to the contact area. As a result, the plastic fibers are welded to each other in the contact region without being heated, and a low-loss optical branching coupler is manufactured.

ところで、光分岐結合器により1つの信号を2つに分
岐する場合、一般的に分岐比を1:1とすることが望まし
い。上記超音波溶着法を利用する場合、分岐比の調整
は、溶着型によるプラスチックファイバの押圧力を調整
することにより可能となる。しかしながら、分岐比を1:
1に近づけるには溶着型による押圧力を高く設定する必
要があり、押圧力を高めるほどプラスチックファイバが
ダメージを受けて光特性が損なわれ易くなる。したがっ
て、上記超音波溶着法では、良好な光特性を有する等分
配の光分岐結合器を安定して製造することは一般的に困
難であった。
By the way, when one signal is split into two by an optical splitter / coupler, it is generally desirable to set the split ratio to 1: 1. When the above ultrasonic welding method is used, the branching ratio can be adjusted by adjusting the pressing force of the welding type plastic fiber. However, if the branching ratio is 1:
In order to approach 1, it is necessary to set the pressing force by the welding type to be high. As the pressing force is increased, the plastic fiber is damaged, and the optical characteristics are easily damaged. Therefore, it is generally difficult to stably produce an equal distribution optical branching coupler having good optical characteristics by the ultrasonic welding method.

(発明の目的) この発明は、上記課題を解決するためになされたもの
で、光損失が小さくほぼ1:1の分岐比が得られる光分岐
結合器を光特性を損なわずに安定して製造することがで
きる光分岐結合器の製造方法を提供することを目的とす
る。
(Object of the Invention) The present invention has been made to solve the above-mentioned problem, and stably manufactures an optical branching coupler having a small optical loss and a branching ratio of approximately 1: 1 without deteriorating optical characteristics. It is an object of the present invention to provide a method of manufacturing an optical branching coupler that can perform the above operation.

(目的を達成するための手段) 請求項1の発明は、上記目的を達成するために、2本
のプラスチックファイバを少なくとも所定長さにわたっ
て平行に配置する工程と、前記2本のプラスチックファ
イバの平行に配置された所定長さの領域を溶着型で押圧
することにより、その所定長さの領域を前記2本のプラ
スチックファイバを含む仮想平面内で蛇行するようにし
て相互に当接させる工程と、その当接領域を超音波加振
により相互に溶着して分岐結合部分を形成する工程とを
含んでいる。
(Means for Achieving the Object) In order to achieve the above object, the invention according to claim 1 includes a step of arranging two plastic fibers in parallel at least over a predetermined length, and a step of parallelizing the two plastic fibers. Pressing a region of a predetermined length arranged in a welding mold, thereby bringing the region of the predetermined length into contact with each other in a meandering manner in a virtual plane including the two plastic fibers, Welding the contact areas to each other by ultrasonic vibration to form a branch connection portion.

また、請求項2の発明は、上記目的を達成するため
に、2本のプラスチックファイバを少なくとも所定長さ
にわたって平行に配置する工程と、前記2本のプラスッ
チクファイバの平行に配置された所定長さの領域を溶着
型で押圧することにより、その所定長さの領域を前記2
本のプラスチックファイバを含む仮想平面内でファイバ
長手方向に対し直交する方向に湾曲するようにして相互
に当接させる工程と、その当接領域を超音波加振により
相互に溶着して分岐結合部分を形成する工程とを含んで
いる。
According to a second aspect of the present invention, in order to achieve the above object, a step of arranging two plastic fibers in parallel over at least a predetermined length, and a step of arranging the two plastic fibers in parallel at a predetermined length. Area is pressed by a welding die so that the area of a predetermined length is
A step of curving in a direction perpendicular to the longitudinal direction of the fiber in a virtual plane containing the plastic fiber and abutting each other, and welding the abutting regions to each other by ultrasonic vibration to form a branch joint portion Forming a step.

(作用) この発明によれば、分岐結合部分はいわゆる超音波溶
着法によって形成されるので、プラスチックファイバへ
の熱影響はなくなり、プラスチックハァイバの熱収縮等
に起因する光損失が防止される。また、分岐結合部分
は、2本のプラスチックファイバを含む仮想平面内で蛇
行するように仕上げられたり、その仮想平面内でファイ
バ長手方向に対し直交する方向に湾曲するように仕上げ
られているため、低次モードの光が前記分岐結合部分で
比較的分岐されやすい高次モードの光に変換される。そ
の結果、分岐比が1:1に近づく。
(Function) According to the present invention, since the branch joint portion is formed by the so-called ultrasonic welding method, there is no thermal effect on the plastic fiber, and light loss due to thermal shrinkage of the plastic fiber is prevented. Also, since the branch coupling portion is finished so as to meander in a virtual plane including two plastic fibers, or it is finished so as to be curved in a direction orthogonal to the fiber longitudinal direction in the virtual plane. Light of a lower order mode is converted into light of a higher order mode which is relatively easily split at the branching coupling portion. As a result, the branching ratio approaches 1: 1.

(実施例) 以下、この発明の技術背景となる既述の超音波溶着法
による光分岐結合器の製造方法を説明した後で、この発
明の原理および実施例を詳細に説明する。
(Examples) Hereinafter, the principle and examples of the present invention will be described in detail after a method of manufacturing an optical branching coupler by the above-described ultrasonic welding method, which is a technical background of the present invention, is described.

I.超音波溶着法による光分岐結合器の製造 第1図は、既述の超音波溶着法による光分岐結合器の
製造方法を適用可能な光分岐結合器の製造装置(以下に
おいては、単に「装置」という)を示す図であり、第2A
図、第2B図および第3図はそれぞれその実施例を説明す
るための斜視図である。
I. Manufacture of optical branching coupler by ultrasonic welding method FIG. 1 shows an optical branching / coupling manufacturing apparatus to which the above-described method of manufacturing an optical branching coupler by the ultrasonic welding method can be applied (hereinafter simply referred to as a "branch"). 2A).
FIG. 2, FIG. 2B, and FIG. 3 are perspective views for explaining the embodiment.

この装置は、コア10a,11aの外周にクラッド10b,11bを
それぞれ被覆してなる2本のプラスチックファイバ10,1
1を保持するジグ20を備えている。このジグ20は、第2A
図(あるいは第2B図)に示すように、下部溶着型21と、
この下部溶着型21と嵌合可能な形状に仕上げられた上部
溶着型22とで構成されている。なお、上部および下部溶
着型22,21は金属製又は樹脂製である。
This device is composed of two plastic fibers 10, 1 formed by covering cores 10a, 11a with claddings 10b, 11b, respectively.
It has a jig 20 for holding one. This jig 20 is 2A
As shown in the figure (or FIG. 2B), the lower welding die 21
The lower welding mold 21 and the upper welding mold 22 finished in a shape that can be fitted are constituted. The upper and lower welding dies 22, 21 are made of metal or resin.

この下部溶着型21の上面にはX方向に沿って直線上に
伸びた溝部21aが、また上部溶着型22の下面にもX方向
に沿って直線上に伸びた溝部22aがそれぞれ設けられて
いる。したがって、プラスチックファイバ10,11を、そ
の長手方向がX方向に一致するようにして一定間隔をも
って平行に配置した後、そのプラスチックファイバ10,1
1を溝部21a,22aに係合するようにして下部および上部溶
着型21,22をそれぞれ上方および下方に移動させ、下部
および上部溶着型21,22を相互に嵌合させると、第3図
に示すように、プラスチックファイバ10,11が所定位置
で当接保持される。
A groove 21a extending linearly along the X direction is provided on the upper surface of the lower welding die 21, and a groove 22a extending linearly along the X direction is also provided on the lower surface of the upper welding die 22, respectively. . Therefore, after arranging the plastic fibers 10, 11 in parallel with a certain interval so that the longitudinal direction thereof coincides with the X direction, the plastic fibers 10, 1
When the lower and upper welding dies 21 and 22 are moved upward and downward, respectively, so as to engage the grooves 21a and 22a with the grooves 21a and 22a, and the lower and upper welding dies 21 and 22 are fitted to each other, FIG. As shown, the plastic fibers 10, 11 are held in contact at predetermined positions.

なお、23,24はシリコンゴム等の弾性体よりなるスペ
ーサであり、スペーサ23,24が下部および上部溶着型21,
22間にそれぞれ挿入されて、下部および上部溶着型21,2
2の相対的な傾きが防止されるとともに、ファイバ10,11
のずれも防止される。
23 and 24 are spacers made of an elastic body such as silicon rubber, and the spacers 23 and 24 are formed of lower and upper welding dies 21 and 24.
The lower and upper welding dies are inserted between
2 is prevented from tilting, and fibers 10, 11 are prevented.
Misalignment is also prevented.

また、装置には、第1図に示すように、超音波溶着機
構部30が設けられており、超音波溶着機構部30の加振子
31が上部溶着型22の上面22bに当接されている。このた
め、超音波溶着機構部30の作動と同時に、加振子31が上
下方向に超音波振動して、その振動エネルギーが上部溶
着型22を介してプラスチックファイバ10,11の当接部に
与えられる。
Further, as shown in FIG. 1, the apparatus is provided with an ultrasonic welding mechanism 30, and a vibrator of the ultrasonic welding mechanism 30 is provided.
31 is in contact with the upper surface 22b of the upper welding die 22. Therefore, simultaneously with the operation of the ultrasonic welding mechanism 30, the vibrator 31 is ultrasonically vibrated in the vertical direction, and the vibration energy is given to the contact portions of the plastic fibers 10, 11 via the upper welding mold 22. .

さらに、この装置には、超音波溶着機構部30に上方向
から所定の押圧力を印加する圧力印加機構部(図示省
略)が設けられている。したがって、圧力印加機構部が
作動すると、所定の押圧力が超音波溶着機構部30および
上部溶着型22を介してプラスチックファイバ11に与えら
れて、プラスチックファイバ11がプラスチックファイバ
10に圧接される。
Further, the apparatus is provided with a pressure application mechanism (not shown) for applying a predetermined pressing force to the ultrasonic welding mechanism 30 from above. Therefore, when the pressure applying mechanism is operated, a predetermined pressing force is applied to the plastic fiber 11 via the ultrasonic welding mechanism 30 and the upper welding mold 22, and the plastic fiber 11 is
It is pressed against 10.

<A.超音波溶着の第1実施例> 次に、上記装置により、2本の未架橋ポリメチルメタ
クリレート系のプラスチックファイバから1つの光分岐
結合器を製造する方法について説明する。まず、オペレ
ータがプラスチックファイバ10,11を所定位置にセット
した(第2A図)後、上記装置の操作盤(図示省略)を介
して製造開始指令を与えると、上記装置全体を制御する
制御部(図示省略)からの指令にしたがって2本のプラ
スチックファイバ10,11がジグ20により保持される(第
3図)。
<A. First Example of Ultrasonic Welding> Next, a method of manufacturing one optical branching coupler from two uncrosslinked polymethyl methacrylate-based plastic fibers using the above-described apparatus will be described. First, after the operator sets the plastic fibers 10 and 11 at predetermined positions (FIG. 2A) and then gives a production start command through an operation panel (not shown) of the above-mentioned apparatus, a control unit (which controls the entire apparatus) The two plastic fibers 10, 11 are held by the jig 20 in accordance with a command from the jig 20 (FIG. 3).

その後、圧力印加機構部が作動して、所定の抑圧力が
超音波溶着機構部30および上部溶着型22を介してプラス
チックファイバ11に与えられ、プラスチックファイバ11
がプラスチックファイバ10に圧接される。それに続い
て、超音波溶着機構部30が作動して、所定の押圧力が圧
接部に与えられたままの状態で、その振動エネルギーが
プラスチックファイバ10,11の圧接部に与えられる。す
ると、その初期段階で、上記圧接部のクラッド10b,11b
が破壊され、X方向に直交するY方向(第1図)にそれ
ぞれ押しやられる。そして、それに続いて、コア10a,10
bが固相溶着する。
Thereafter, the pressure applying mechanism is operated, and a predetermined suppression force is applied to the plastic fiber 11 via the ultrasonic welding mechanism 30 and the upper welding mold 22, and the plastic fiber 11
Is pressed against the plastic fiber 10. Subsequently, the ultrasonic welding mechanism 30 is operated, and the vibration energy is applied to the press-contact portions of the plastic fibers 10 and 11 while a predetermined pressing force is applied to the press-contact portions. Then, in the initial stage, the clad 10b, 11b
Is destroyed and pushed in the Y direction (FIG. 1) orthogonal to the X direction. And, subsequently, the cores 10a, 10
b is solid-phase welded.

上記のようにして、コア10a,10bの部分溶着が完了す
ると、制御部からの停止指令に応じて、超音波溶着機構
部30および圧力印加機構部が停止し、さらにジグ20から
上記のようにして形成された光分岐結合器40A(第4
図)が取り出される。
As described above, when the partial welding of the cores 10a and 10b is completed, the ultrasonic welding mechanism 30 and the pressure applying mechanism are stopped in response to a stop command from the control unit, and further the jig 20 is operated as described above. Optical branching coupler 40A (4th
Figure) is taken out.

次に、上記の製造方法により光分岐結合器40Aを製造
した場合の光分岐結合器40Aの特性について具体的に説
明する。
Next, the characteristics of the optical branching coupler 40A when the optical branching coupler 40A is manufactured by the above manufacturing method will be specifically described.

本願発明者は、光分岐結合暑旨40Aの特性評価を行う
ために、以下の条件で光分岐結合器40Aを上記のように
して製造した。すなわち、その条件は、 (押圧力)=10kgf (振動周波数):15kHz (振動振幅)=40μm (振動印加時間)=0.5秒 (分岐結合部分41の長さ)l=20mmである。
The inventor of the present application manufactured the optical branching coupler 40A as described above under the following conditions in order to evaluate the characteristics of the optical branching coupling heat source 40A. That is, the conditions are as follows: (pressing force) = 10 kgf (vibration frequency): 15 kHz (vibration amplitude) = 40 μm (vibration application time) = 0.5 second (length of branch coupling portion 41) l = 20 mm.

そして、その光分岐結合器40Aと同じ長さのクラッド
付プラスチックファイバの一方端に安定化光源の出力が
接続されたときには同ファイバの他方端から11.74μW
の赤色出力が得られる光パワー測定系を用いて、光分岐
結合器40Aの特性評価を行った。具体的には、製造され
た光分岐結合器40Aの各ファイバ端42〜45を光パワー測
定系の光源に接続し、各ファイバ端42〜45に対向するフ
ァイバ端の出力値(例えば、ファイバ端42に光源を接続
した場合にはファイバ端44,45からの出力値)を測定し
た。さらに、それらの値から光損失および分岐比をそれ
ぞれ求めた。第1表はその結果をまとめたものである。
When the output of the stabilized light source is connected to one end of the clad plastic fiber having the same length as the optical branching coupler 40A, 11.74 μW from the other end of the same fiber.
The characteristics of the optical branching / coupling device 40A were evaluated using an optical power measurement system capable of obtaining a red output. Specifically, each of the fiber ends 42 to 45 of the manufactured optical branching coupler 40A is connected to the light source of the optical power measurement system, and the output value of the fiber end facing each of the fiber ends 42 to 45 (for example, fiber end When a light source was connected to 42, the output values from fiber ends 44 and 45) were measured. Further, the optical loss and the branching ratio were obtained from these values. Table 1 summarizes the results.

例えば、4ch(ファイバ端45)に赤外LED光を入力した場
合には、同表からわかるように、1ch,2ch(ファイバ端4
2,43)からの出力値はそれぞれ4,767μW,5.020μWであ
り、分岐比は1.0:1.1となる。また、過剰損失LSは、 である。この表に示すように、上記製造方法によれば、
低損失の光分岐結合器40Aを製造することができる。
For example, when infrared LED light is input to 4ch (fiber end 45), as can be seen from the table, 1ch and 2ch (fiber end 4
The output values from (2,43) are 4,767 μW and 5.020 μW, respectively, and the branching ratio is 1.0: 1.1. Excess loss LS is It is. As shown in this table, according to the above manufacturing method,
The low-loss optical branching coupler 40A can be manufactured.

以上のように、この第1実施例によれば、以下の効果
が得られる。
As described above, according to the first embodiment, the following effects can be obtained.

(1) この第1実施例では、いわゆる超音波溶着法に
より光分岐結合器40Aを製造しているので、プラスチッ
クファイバ10、11への熱影響がなく、ファイバ10,11の
熱収縮による光損失の劣化はない。事実、第1表に示す
ように、この実施例によれば、低損失の光分岐結合器40
Aを製造することができた。
(1) In the first embodiment, since the optical branching coupler 40A is manufactured by the so-called ultrasonic welding method, there is no thermal effect on the plastic fibers 10 and 11, and light loss due to thermal contraction of the fibers 10 and 11 is obtained. There is no deterioration. In fact, as shown in Table 1, according to this embodiment, the low-loss optical branching coupler 40
A could be manufactured.

(2) また、上記と同様の理由から、プラスチックフ
ァイバ10,11の熱変形やクラッド材料のコア10a,11aへの
拡散は生じない。そのため、光分岐結合器40Aの特性を
劣化させることなく、光分岐結合器40Aを製造すること
ができる。
(2) For the same reason as described above, thermal deformation of the plastic fibers 10 and 11 and diffusion of the clad material into the cores 10a and 11a do not occur. Therefore, the optical branching coupler 40A can be manufactured without deteriorating the characteristics of the optical branching coupler 40A.

(3) クラッド10b,11bの除去工程が不要となり、光
分岐結合器40Aの製造工程が簡素化される。
(3) The step of removing the claddings 10b and 11b becomes unnecessary, and the manufacturing process of the optical branching coupler 40A is simplified.

(4) プラスチックファイバ10,11の溶着に要する時
間は1秒以内(上記実施例では0.5秒)であり、短時間
で光分岐結合器40Aを製造することができる。
(4) The time required for welding the plastic fibers 10 and 11 is within 1 second (0.5 seconds in the above embodiment), and the optical branching coupler 40A can be manufactured in a short time.

<B.超音波溶着の第2実施例> 次に、上記装置により、2本のポリカーボネート系の
プラスチックファイバから1つの光分岐結合器を製造す
る方法について説明する。まず、プラスチックファイバ
10,11のクラッド10b,11bを所定長さにわたって除去す
る。クラッド除去は、メタクリル酸メチル等の薬品を用
いる化学的手法、あるいは研削等の機械約手法によって
行う。これによって、プラスチックファイバ10,11のコ
ア10a,11aの一部がそれぞれ露出される。なお、以下の
説明の便宜から、その露出した部分を露出コア部10
a′、11a′と称する。
<B. Second Example of Ultrasonic Welding> Next, a method of manufacturing one optical branching coupler from two polycarbonate-based plastic fibers by the above-described apparatus will be described. First, plastic fiber
The claddings 10b and 11b are removed over a predetermined length. The removal of the clad is performed by a chemical method using a chemical such as methyl methacrylate or a mechanical reduction method such as grinding. Thereby, the cores 10a and 11a of the plastic fibers 10 and 11 are partially exposed. Note that, for convenience of the following description, the exposed portion is
a 'and 11a'.

そして、上記クラッド除去処理が完了したプラスチッ
クファイバ10,11をオペレータが所定位置にセットした
(第2B図)後、上記装置の操作盤(図示省略)を介して
製造開始指令を与えると、上記装置全体を制御する制御
部(図示省略)からの指令にしたがって2本のプラスチ
ックファイバ10,11がジグ20により保持される(第3
図)。
When the operator sets the plastic fibers 10 and 11 after the completion of the cladding removal processing at predetermined positions (FIG. 2B) and gives a production start command through an operation panel (not shown) of the apparatus, The two plastic fibers 10 and 11 are held by the jig 20 in accordance with a command from a control unit (not shown) for controlling the whole (third embodiment).
Figure).

その後、圧力印加機構部が作動して、所定の抑圧力が
超音波溶着機構部30および上部溶着型22を介してプラス
チックファイバ11に与えられ、露出コア部11a′が露出
コア部10a′に圧接される。それに続いて、超音波溶着
機構部30が作動して、所定の押圧力が露出コア部10a′,
11b′の圧接部に与えられたままの状態で、その振動エ
ネルギーがその圧接部に与えられる。すると、露出コア
部10a′,11b′同士が相互に固相溶着する。
Thereafter, the pressure applying mechanism is operated, and a predetermined suppression force is applied to the plastic fiber 11 via the ultrasonic welding mechanism 30 and the upper welding mold 22, and the exposed core 11a 'is pressed against the exposed core 10a'. Is done. Subsequently, the ultrasonic welding mechanism 30 is operated, and a predetermined pressing force is applied to the exposed core 10a ′,
The vibration energy is applied to the pressure-contact portion while being applied to the pressure-contact portion of 11b '. Then, the exposed core portions 10a 'and 11b' are solid-phase welded to each other.

上記のようにして、露出コア部10a′,11b′の溶着が
完了すると、制御部からの停止指令に応じて、超音波溶
着機構部30および圧力印加機構部が停止し、さらにジグ
20から上記のようにして形成された光分岐結合器40B
(第4図)が取り出される。
When the welding of the exposed cores 10a 'and 11b' is completed as described above, the ultrasonic welding mechanism 30 and the pressure applying mechanism are stopped in response to a stop command from the controller, and the jig is further stopped.
Optical branching coupler 40B formed as described above from 20
(FIG. 4) is taken out.

次に、上記の製造方法により光分岐結合器40Bを製造
した場合の光分岐結合器40Bの特性について具体的に説
明する。
Next, characteristics of the optical branching coupler 40B when the optical branching coupler 40B is manufactured by the above manufacturing method will be specifically described.

本願発明者は、光分岐結合器40Bの特性評価を行うた
めに、以下の条件で光分岐結合器40Bを上記のようにし
て製造した。すなわち、その条件は、 (露出コア部の長さ)=20mm (押圧力)=10kgf (振動周波数)=15kHz (振動振幅)140μm (振動印加時間)=0.5秒 (分岐結合部分41の長さ)l=20mm である。
The present inventor manufactured the optical branching coupler 40B as described above under the following conditions in order to evaluate the characteristics of the optical branching coupler 40B. That is, the condition is as follows: (length of the exposed core) = 20 mm (pressing force) = 10 kgf (vibration frequency) = 15 kHz (vibration amplitude) 140 μm (vibration application time) = 0.5 seconds (length of the branch coupling portion 41) 1 = 20 mm.

そして、光パワー測定系を用いて、光分岐結合器40B
の特性評価を行った。具体的には、製造された光分岐結
合器40Bのファイバ端42を光パワー測定系の光源に接続
して波長660nmのLED光(P42=13μW)をそのアァイバ
端42に入力し、それに対向するファイバ端44,45の出力
値P44,P45をそれぞれ測定した。その結果、出力値
44,P45はそれぞれ3.95μW,4・55μWであり、分岐比
は1.0:1.1であった。また、この場合の過剰損失LSは、 である。
Then, using the optical power measurement system, the optical branching coupler 40B
Was evaluated. Specifically, the fiber end 42 of the manufactured optical splitter / coupler 40B is connected to a light source of an optical power measurement system, and an LED light (P 42 = 13 μW) having a wavelength of 660 nm is input to the fiber end 42 of the optical branching coupler 40B. The output values P 44 and P 45 of the fiber ends 44 and 45 were measured, respectively. As a result, the output values P 44 and P 45 were 3.95 μW and 4.55 μW, respectively, and the branch ratio was 1.0: 1.1. The excess loss LS in this case is It is.

また、上記と同様にして、ファイバ端43にLED光(P
43=13μW)を入力し、それに対向するファイバ端44,4
5の出力値P44,P45をそれぞれ求めた結果、出力値P44,
P45はそれぞれ3.73μW,4.87μWであり、分岐比は1.0:
1.3であった。また、この場合の過剰損失LSは、 である。
In the same manner as above, LED light (P
43 = 13μW), and the opposite fiber ends 44,4
The output value P 44 5, the results of obtaining the P 45, respectively, the output value P 44,
P 45 is 3.73 μW and 4.87 μW, respectively, and the branching ratio is 1.0:
1.3. The excess loss LS in this case is It is.

これらの結果からわかるように、上記製造方法によれ
ば、低損失の光分岐結合器40Bを製造することができ
る。また、このようにして製造された光分岐結合器40B
はほぼ等分配の光受動デバイスとなる。
As can be seen from these results, according to the above manufacturing method, a low-loss optical branching coupler 40B can be manufactured. Further, the optical splitter / coupler 40B manufactured as described above is used.
Becomes an optically passive device with approximately equal distribution.

以上のように、この第2実施例においても、いわゆる
超音波溶着法により光分岐結合器40Bを製造しているの
で、第1実施例と同様に、ファイバ10,11の熱収縮によ
る光損失の劣化はなく、低損失の光分岐結合器40Bを製
造することができた。また、光分岐結合器40Bの特性を
劣化させることなく、光分岐結合器40Bを製造すること
ができる。しかも、プラスチックファイバ10,11の溶着
に要する時間は1秒以内(上記第2実施例でも0.5秒)
であり、短時間で光分岐結合器40Bを製造することがで
きる。
As described above, also in the second embodiment, since the optical branching coupler 40B is manufactured by the so-called ultrasonic welding method, the optical loss due to the heat shrinkage of the fibers 10 and 11 is reduced as in the first embodiment. There was no deterioration, and a low-loss optical branching coupler 40B could be manufactured. Further, the optical branching coupler 40B can be manufactured without deteriorating the characteristics of the optical branching coupler 40B. In addition, the time required for welding the plastic fibers 10 and 11 is within 1 second (0.5 seconds in the second embodiment).
Therefore, the optical branching coupler 40B can be manufactured in a short time.

さらに、上記第2実施例では、いわゆる耐熱樹脂ファ
イバとして一般的に知られているポリカーボネート系の
プラスチックファイバ10,11より光分岐結合器40Bを製造
しているために、比較的高い温度範囲においても光分岐
結合器40Bを使用することができるという効果も同時に
奏する。
Furthermore, in the second embodiment, since the optical branching coupler 40B is manufactured from the polycarbonate plastic fibers 10, 11 generally known as so-called heat-resistant resin fibers, even in a relatively high temperature range. The effect that the optical branching coupler 40B can be used is also exerted at the same time.

<C.超音波溶着の第3実施例> 次に、上記装置により、2本の架橋ポリメチルメタク
リレート系のプラスチックファイバから1つの光分岐結
合器の製造する方法について説明する。具体的な製造方
法は、第2実施例と同様である。したがって、ここで
は、その詳細な説明は省略する。
<C. Third Example of Ultrasonic Welding> Next, a method of manufacturing one optical branching coupler from two cross-linked polymethyl methacrylate-based plastic fibers using the above apparatus will be described. The specific manufacturing method is the same as in the second embodiment. Therefore, a detailed description thereof is omitted here.

次に、第2実施例と同様の製造方法により光分岐結合
器40Cを製造した場合の光分岐結合器40Cの特性について
具体的に説明する。
Next, the characteristics of the optical branching coupler 40C when the optical branching coupler 40C is manufactured by the same manufacturing method as in the second embodiment will be specifically described.

本願発明者は、光分岐結合器40Cの特性評価を行うた
めに、以下の条件で光分岐結合器40Cを上記のようにし
て3つサンプルを製造した。すなわち、その条件は、 (露出コア部の長さ)=20mm (押圧力)=10kgf (振動周波数)=15kHz (振動振幅)=40μm (振動印加時間)=0.5秒 (分岐結合部分41の長さ)l=20mm である。
The present inventor manufactured three samples of the optical branching coupler 40C as described above under the following conditions in order to evaluate the characteristics of the optical branching coupler 40C. That is, the condition is as follows: (length of exposed core portion) = 20 mm (pressing force) = 10 kgf (vibration frequency) = 15 kHz (vibration amplitude) = 40 μm (vibration application time) = 0.5 second (length of branch coupling portion 41) ) L = 20 mm.

そして、光パワー測定系を用いて、各光分岐結合器40
Cの特性評価を行った。具体的には、製造された光分岐
結合器40Cの各ファイバ端42,43を光パワー測定系の光源
に接続して赤色LED光(=17μW)を入力する一方、各
ファイバ端42,43に対向するファイバ端44,45の出力値を
測定した。さらに、それらの値から過剰損失LSおよび分
岐比をそれぞれ求めた。第2表ないし第4表は各光分岐
結合器40Cの結果をまとめたものである。
Then, by using the optical power measurement system, each optical branching coupler 40
C characteristics were evaluated. Specifically, each of the fiber ends 42 and 43 of the manufactured optical splitter / coupler 40C is connected to the light source of the optical power measurement system, and red LED light (= 17 μW) is input. The output values of the facing fiber ends 44 and 45 were measured. Furthermore, the excess loss LS and the branching ratio were determined from those values. Tables 2 to 4 summarize the results of each optical branching coupler 40C.

これらの結果からわかるように、上記製造方法によれ
ば、低損失の光分岐結合器40Cを製造することができ
る。
As can be seen from these results, according to the above manufacturing method, a low-loss optical branching coupler 40C can be manufactured.

以上のように、この第3実施例においても、第2実施
例と同様の効果が得られる。
As described above, also in the third embodiment, the same effects as in the second embodiment can be obtained.

<D.変形例> 上記第1ないし第3実施例においては、コアの外周に
クラッドを被覆してなるプラスチックファイバ10,11を
準備し、それらの2本のプラスチックファイバ10,11よ
り光分岐結合器40A〜40Cを製造する場合についてそれぞ
れ説明したが、3本以上のプラスチックファイバより光
分岐結合器を製造する場合にもこの製造方法を適用する
ことができる。
<D. Modifications> In the first to third embodiments, the plastic fibers 10 and 11 each having the outer periphery of the core covered with the clad are prepared, and the two plastic fibers 10 and 11 are optically branched and coupled. Although the case where the devices 40A to 40C are manufactured has been described, this manufacturing method can be applied to the case where an optical branching coupler is manufactured from three or more plastic fibers.

また、クラッドが被覆されていないプラスチックファ
イバを複数本準備し、上記と同様の方法によって光分岐
結合器を製造することも可能である。
It is also possible to prepare a plurality of plastic fibers not coated with a clad and manufacture an optical branching coupler by the same method as described above.

例えば、ベンゾイルパーオキサイドを開始剤とし、メ
チルメタクリレートを母材とし、エチレングリコールジ
メタクリレート(=重量濃度1.0%)を架橋剤とした混
合モノマーを、内径1.0mmのテフロンチューブに封入し
た後、脱酸素雰囲気下で加熱重合することによってコア
のみからなる熱硬化性樹脂ファイバが得られる。こうし
て製造されたファイバを2本準備し、第1実施例と同様
に予め定めた長さにわたってそれらファイバを相互に所
定の押圧力をもって圧接させ、さらに超音波加振する
と、その圧接領域で各コアが相互に溶着されて、光分岐
結合器が形成される。なお、ファイバからの光の漏れを
防止するために、分岐結合部分および各コアの外周部
に、コアよりも低い屈折率を有する樹脂、例えばトリフ
ルオロエチルメタクリレートのプレポリマをコーティン
グする。
For example, a mixed monomer containing benzoyl peroxide as an initiator, methyl methacrylate as a base material, and ethylene glycol dimethacrylate (= 1.0% by weight) as a cross-linking agent is sealed in a Teflon tube having an inner diameter of 1.0 mm, and then deoxygenated. A thermosetting resin fiber consisting of only the core is obtained by heat polymerization in an atmosphere. Two fibers manufactured in this manner are prepared, and the fibers are pressed against each other with a predetermined pressing force over a predetermined length in the same manner as in the first embodiment. Further, when ultrasonic vibration is applied, each core is pressed in the pressed region. Are welded to each other to form an optical branching coupler. In addition, in order to prevent light from leaking from the fiber, a resin having a lower refractive index than the core, for example, a prepolymer of trifluoroethyl methacrylate is coated on the branch coupling portion and the outer peripheral portion of each core.

実際に上記のようにして製造した光分岐結合器の特性
を、上記と同様の手段によって求めると、過剰損失は3d
B程度であり、分岐比は1.0:1.5程度であった。したがっ
て、上述した変形例によっても光損失が少ない良好な光
分岐結合器が得られる。
When the characteristics of the optical branch coupler actually manufactured as described above are obtained by the same means as above, the excess loss is 3d.
It was about B, and the branching ratio was about 1.0: 1.5. Therefore, even with the above-described modification, a good optical branching coupler having a small optical loss can be obtained.

II.第1および第2の発明の原理 ところで、上記のように、プラスチックファイバをほ
ぼ平行に配置して超音波溶着された光分岐結合器40A〜4
0Cでは、溶着型による押圧力を小さく設定している間は
分岐能が小さく、押圧力を高く設定するにしたがって分
岐能が増して分岐比が1:1に近づく傾向にある。これ
は、分岐結合部分における両プラスチックファイバの単
位長さあたりの接合面積が、押圧力が小さい間は小さ
く、押圧力が増すにしたがって増大するためと考えられ
る。このように、押圧力を高めることにより1:1の分岐
比を有する光分岐結合器が得られるが、押圧力を高く設
定しすぎるとプラスチックファイバがダメージを受けて
光特性が損なわれるおそれが生じる。したがって、超音
波溶着を利用しながら、なおかつ光特性を損なわずに等
分配の光分岐結合器を安定して製造することの可能な方
法の開発が望まれる。
II. Principles of the First and Second Inventions As described above, the optical branch couplers 40A to 40A-4 in which plastic fibers are arranged substantially in parallel and ultrasonically welded.
At 0C, while the pressing force by the welding type is set small, the branching ability is small, and as the pressing force is set high, the branching ability increases and the branching ratio tends to approach 1: 1. It is considered that this is because the joining area per unit length of the two plastic fibers at the branch connection portion is small while the pressing force is small, and increases as the pressing force increases. As described above, by increasing the pressing force, an optical branching coupler having a 1: 1 branching ratio can be obtained.However, if the pressing force is set too high, the plastic fiber may be damaged and optical characteristics may be impaired. . Therefore, it is desired to develop a method capable of stably producing an equal distribution optical branching coupler using ultrasonic welding and without deteriorating optical characteristics.

このような観点にたって、本願発明者は、分岐結合部
分41で低次モード光(光の進行方向Xに対し小さな角度
で反射をしながら伝搬していく光)を高次モード光(光
の進行方向Xに対し大きな角度で反射をしながら伝搬し
ていく光)に変換すれば、分岐比をより1:1に近づける
ことができると考え、以下に説明する技術を発明した。
From this viewpoint, the inventor of the present application has proposed that the lower-order mode light (light propagating while being reflected at a small angle with respect to the traveling direction X of light) at the branch coupling portion 41 is converted into higher-order mode light (light By converting the light into light that propagates while being reflected at a large angle with respect to the traveling direction X), the branching ratio can be made closer to 1: 1 and the technology described below was invented.

第5図は第1の発明にかかる光分岐結合器の製造方法
の一実施例を説明するための図である。第5図と第1図
との比較からわかるように、この実施例(第5図)が先
に説明した実施例(第1図)と異なる点は、この実施例
では、下部および上部溶着型21,22を嵌合させると、2
本のプラスチックファイバ10、11が、X−Z平面内で蛇
行するようにして、所定長さlにわたって相互に当接さ
れるように、下部溶着型21の溝部21aと、上部溶着型22
の溝部22aがそれぞれ仕上られている点である。その他
の点においては、両者は同一である。したがって、第5
図の同一部分には、第1図のそれと同一符号を付して、
各部の構成の説明を省略する。
FIG. 5 is a view for explaining one embodiment of the method of manufacturing the optical branching coupler according to the first invention. As can be seen from a comparison between FIG. 5 and FIG. 1, this embodiment (FIG. 5) is different from the previously described embodiment (FIG. 1) in that in this embodiment, the lower and upper welding types are used. When 21,22 is mated, 2
The grooves 21a of the lower welding mold 21 and the upper welding mold 22 are arranged so that the plastic fibers 10 and 11 meander in the XZ plane and abut each other over a predetermined length l.
Are finished. Otherwise, they are identical. Therefore, the fifth
The same parts as those in FIG.
The description of the configuration of each unit is omitted.

以下、この装置(第5図)により、光分岐結合器を製
造する方法について説明する。まず、2本のプラスチッ
クファイバ10,11を、その長手方向がX方向に一致する
ようにしてほぼ平行に配置する。この状態で上記装置に
製造開始指令を与えると、第5図に示すように、下部お
よび上部溶着型21,22が嵌合し、続いて圧力印加機構部
が作動して、下部および上部溶着型21,22によりプラス
チックファイバ10,11が所定長さlにわたって所定の押
圧力で押圧され、押圧されたファイバ領域がX−Z平面
内で蛇行するようにして相互に圧接される。その後、超
音波溶着機構部30が作動して、所定の押圧力が圧接部に
与えられたままの状態で、ファイバ長手方向に直交する
Z方向に振動エネルギーが与えられ、プラスチックファ
イバ10,11の各コアが所定長さlにわたって相互に固相
溶着する。
Hereinafter, a method for manufacturing an optical branching / coupling device using this apparatus (FIG. 5) will be described. First, the two plastic fibers 10 and 11 are arranged substantially in parallel so that their longitudinal directions coincide with the X direction. When a production start command is given to the above apparatus in this state, as shown in FIG. 5, the lower and upper welding dies 21 and 22 are fitted together, and then the pressure applying mechanism is activated, and the lower and upper welding dies are operated. The plastic fibers 10, 11 are pressed by a predetermined pressing force over a predetermined length l by the 21, 22, and the pressed fiber regions are pressed against each other so as to meander in the XZ plane. Thereafter, the ultrasonic welding mechanism 30 is operated, and vibration energy is applied in the Z direction orthogonal to the longitudinal direction of the fiber while the predetermined pressing force is applied to the press contact portion, so that the plastic fibers 10, 11 The respective cores are solid-phase welded to each other over a predetermined length l.

第6図は、こうして製造された光分岐結合器40′を示
す図である。同図に示すように、この光分岐結合器40′
では、分岐結合部分41が2本のプラスチックファイバ1
0,11を含む仮想平面(X−Z平面)内で蛇行するように
仕上げられている。したがって、低次モード光が、例え
ばファイバ端42を介して分岐結合部分41の溶着部41aに
入射されると、その溶着部41aで比較的分岐されやすい
高次モード光に変換される。そのため、上記のようにし
て製造された光分岐結合器40′の分岐比は1:1に近いも
のとなる。この場合、下部および上部溶着型21,22によ
る押圧力をさほど高く設定しなくてもほぼ1:1の分岐比
を得ることができ、光特性を損なわずに等分配の光分岐
結合器をより安定して製造することが可能となる。
FIG. 6 is a diagram showing the optical branching coupler 40 'manufactured in this manner. As shown in FIG.
Then, the branch connection part 41 is composed of two plastic fibers 1
It is finished so as to meander in a virtual plane (XZ plane) including 0,11. Therefore, when the low-order mode light is incident on the welded portion 41a of the branch coupling portion 41 via, for example, the fiber end 42, the low-order mode light is converted into higher-order mode light that is relatively easily branched at the welded portion 41a. Therefore, the branching ratio of the optical branching coupler 40 'manufactured as described above becomes close to 1: 1. In this case, it is possible to obtain a branching ratio of approximately 1: 1 without setting the pressing force of the lower and upper welding dies 21 and 22 so high, and it is possible to obtain an even distribution optical branching coupler without deteriorating optical characteristics. It becomes possible to manufacture stably.

また、仮想平面(X−Z平面;第6図の紙面)内で分
岐結合部分41が蛇行するように仕上げる代わりに、第7
図に示すように、仮想平面(X−Z平面;第7図の紙
面)内で分岐結合部分41がファイバ長手方向Xに対し直
交する方向、つまりZ方向に湾曲するように仕上げて
も、同様の効果が得られる。すなわち、以下に説明する
第2の発明にかかる光分岐結合器の製造方法によって
も、上記と同様に分岐比が1:1に近い光分岐結合器40″
を光特性を損うことなく安定して製造することができ
る。
Also, instead of finishing the branch connection portion 41 to meander in a virtual plane (XZ plane; paper surface in FIG. 6),
As shown in the drawing, the same applies to the case where the branch coupling portion 41 is finished so as to be curved in the direction orthogonal to the longitudinal direction X of the fiber, that is, in the Z direction in a virtual plane (XZ plane; paper surface in FIG. 7). The effect of is obtained. In other words, according to the method of manufacturing the optical branching coupler according to the second invention described below, similarly to the above, the optical branching coupler 40 ″ having a branching ratio close to 1: 1.
Can be manufactured stably without deteriorating the optical characteristics.

第8図は第2の発明にかかる光分岐結合器の製造方法
の一実施例を説明するための図である。第8図と第5回
との比較からわかるように、この実施例(第8図)が先
に説明した実施例(第5図)と異なる点は、先の実施例
では、プラスチックファイバ10,11が仮想平面(X−Z
平面)内で蛇行するようにして相互に当接されているの
対し、この実施例では、仮想平面(X−Z平面)内でZ
方向に湾曲するようにして当接されている点である。そ
のために、この実施例では、下部溶着型21の溝部21a
と、上部溶着型22の溝部22aが、それぞれ湾曲上に仕上
げられている。その他の点においては、両者は同一であ
る。したがって、各部の構成の説明を省略する。
FIG. 8 is a view for explaining one embodiment of a method for manufacturing an optical branching coupler according to the second invention. As can be seen from a comparison between FIGS. 8 and 5, this embodiment (FIG. 8) is different from the previously described embodiment (FIG. 5) in that 11 is a virtual plane (XZ
In the present embodiment, Z is meandered in a virtual plane (XZ plane).
This is the point that the contact is made so as to bend in the direction. Therefore, in this embodiment, the groove 21a of the lower welding mold 21 is provided.
And the groove 22a of the upper welding mold 22 is finished in a curved shape. Otherwise, they are identical. Therefore, description of the configuration of each unit is omitted.

以下、この装置(第8図)により、光分岐結合器40″
を製造する方法について説明する。まず、2本のプラス
チックファイバ10,11を、その長手方向がX方向に一致
するようにしてほぼ平行に配置する。この状態で上記装
置に製造開始指令を与えると、第8図に示すように、下
部および上部溶着型21,22が嵌合し、続いて圧力印加機
構部が作動して、下部および上部溶着型21,22によりプ
ラスチックファイバ10,11が所定長さlにわたって所定
の押圧力で押圧され、押圧されたファイバ領域がX−Z
平面内でZ方向に湾曲するようにして相互に圧接され
る。その後、上記と同様にして超音波溶着機構部30によ
る超音波溶着が行なわれて、光分岐結合器40″(第7
図)が形成される。
Hereinafter, this device (FIG. 8) uses the optical branching coupler 40 ″.
The method for manufacturing the will be described. First, the two plastic fibers 10 and 11 are arranged substantially in parallel so that their longitudinal directions coincide with the X direction. When a production start command is given to the above apparatus in this state, as shown in FIG. 8, the lower and upper welding dies 21 and 22 are fitted together, and then the pressure applying mechanism is operated to operate the lower and upper welding dies. The plastic fibers 10 and 11 are pressed by a predetermined pressing force over a predetermined length l by 21, 22 and the pressed fiber region is XZ
They are pressed against each other so as to bend in the Z direction in a plane. Thereafter, ultrasonic welding is performed by the ultrasonic welding mechanism 30 in the same manner as described above, and the optical branching coupler 40 ″ (7th
Figure) is formed.

こうして製造された光分岐結合器40″では、第7図に
示すように、分岐結合部分41が2本のプラスチックファ
イバ10,11を含む仮想平面(X−Z平面)内でZ方向に
湾曲するように仕上げられている。したがって、上記実
施例(第6図)と同様、低次モード光がファイバ端42を
介して分岐結合部分41の溶着部41aに入射されると、そ
の溶着部41aで高次モード光に変換され、その光分岐結
合器40″の分岐比は1:1に近いものとなる。
In the optical branching coupler 40 ″ manufactured in this way, as shown in FIG. 7, the branching coupling portion 41 is curved in the Z direction in an imaginary plane (XZ plane) including the two plastic fibers 10 and 11. Therefore, similarly to the above-described embodiment (FIG. 6), when low-order mode light is incident on the welded portion 41a of the branch coupling portion 41 via the fiber end 42, the welded portion 41a is used. The light is converted into higher-order mode light, and the branching ratio of the optical branching coupler 40 ″ becomes close to 1: 1.

III.第1の発明の実施例 次に、上記第1の発明についての具体的な実施例を説
明する。
III. Embodiment of First Invention Next, a specific embodiment of the first invention will be described.

まず、本願発明者は、上記超音波溶着法を用いて以下
の条件で光分岐結合器40′(第6図参照)を製造した。
すなわち、その条件は、 (押圧力)=10kgf (振動周波数)=15kHz (振動振幅):40μm (振動印加時間)=0.5秒 (分岐結合部分41の長さ)l=20mm (凹凸高さ)h=0.7mm である。ここで、『凹凸高さh』とは、上記のように形
成された光分岐結合器40′の分岐結合部分41での蛇行状
態を示す値であり、第6図に示すように、Z方向におけ
る、X方向に伸びたファイバの外周部と蛇行部分(分岐
結合部分41)との最大ギャプを示すものである。
First, the inventor of the present application manufactured the optical branching coupler 40 '(see FIG. 6) using the above-described ultrasonic welding method under the following conditions.
That is, the conditions are as follows: (pressing force) = 10 kgf (vibration frequency) = 15 kHz (vibration amplitude): 40 μm (vibration application time) = 0.5 second (length of branch joint portion 41) l = 20 mm (height of unevenness) h = 0.7 mm. Here, the “roughness height h” is a value indicating the meandering state at the branching coupling portion 41 of the optical branching coupler 40 ′ formed as described above, and as shown in FIG. 5 shows the maximum gap between the outer peripheral portion of the fiber extending in the X direction and the meandering portion (branch coupling portion 41).

そして、上記光パワー測定系を用いて、光分岐結合器
40′の特性について調べた。すなわち、製造された光分
岐結合器40′の各ファイバ端42〜45を光パワー測定系の
光源に接続して波長660nmのLED光(P=16μW)を入力
し、各ファイバ端42〜45に対向するファイバ端の出力値
(例えば、ファイバ端42に光源を接続した場合にはファ
イバ端44,45からの出力値)を測定した。さらに、それ
らの値から光損失および分岐比をそれぞれ求めた。第5
表はその結果をまとめたものである。
Then, using the optical power measurement system, an optical branching coupler
The characteristics of 40 'were investigated. That is, each of the fiber ends 42 to 45 of the manufactured optical branching coupler 40 'is connected to a light source of an optical power measurement system, and an LED light (P = 16 μW) having a wavelength of 660 nm is input. The output value of the opposite fiber end (for example, when a light source is connected to the fiber end 42, the output value from the fiber ends 44 and 45) was measured. Further, the optical loss and the branching ratio were obtained from these values. Fifth
The table summarizes the results.

この結果からわかるように、第1の発明にかかる光分
岐結合器の製造方法によれば、ほぼ等分配の光分岐結合
器401を製造することができる。
As can be seen from the results, according to the method for manufacturing an optical branching coupler according to the first invention, it is possible to manufacture the optical branching coupler 401 having substantially equal distribution.

IV.第2の発明の実施例 次に、上記第2の発明についての具体的な実施例を説
明する。
IV. Embodiment of Second Invention Next, a specific embodiment of the second invention will be described.

まず、本願発明者は、上記超音波溶着法を用いて以下
の条件で光分岐結合器40″(第7図参照)を製造した。
すなわち、その条件は、 (押圧力)=5kgf (振動周波数)=15kHz (振動振幅):40μm (振動印加時間)=0.5秒 (分岐結合部分41の長さ)l=20mm (曲率半径)R=250mm である。ここで、『曲率半径R』とは、上記のように形
成された光分岐結合器40″の分岐結合部分41での湾曲状
態を示す値であり、第7図に示すように、X−Z平面で
のZ方向のおけるファイバの曲率半径である。
First, the inventor of the present application manufactured the optical branching coupler 40 ″ (see FIG. 7) using the above-described ultrasonic welding method under the following conditions.
That is, the conditions are as follows: (pressing force) = 5 kgf (vibration frequency) = 15 kHz (vibration amplitude): 40 μm (vibration application time) = 0.5 seconds (length of branch joint portion 41) l = 20 mm (radius of curvature) R = It is 250mm. Here, the “radius of curvature R” is a value indicating a curved state at the branching / coupling portion 41 of the optical branching / coupling coupler 40 ″ formed as described above, and as shown in FIG. The radius of curvature of the fiber in the Z direction in the plane.

そして、上記光パワー測定系を用いて、光分岐結合記
40″の特性について調べた。すなわち、製造された光分
岐結合器40″のファイバ端42を光パワー測定系の光源に
接続して波長660nmのLED光(P42=15.6μW)を入力
し、ファイバ端42に対向するファイバ端44,45の出力値
44,P45をそれぞれ測定した。その結果、出力値P44,P
45はそれぞれ5.56μW,5.51μWであり、分岐比は約1:1
であった。また、この場合の過剰損失LSは、 である。
Then, using the optical power measurement system, the optical branching coupling
The characteristics of 40 ″ were examined. That is, the fiber end 42 of the manufactured optical branching coupler 40 ″ was connected to the light source of the optical power measurement system, and 660 nm wavelength LED light (P 42 = 15.6 μW) was input. The output values P 44 and P 45 of the fiber ends 44 and 45 facing the fiber end 42 were measured, respectively. As a result, the output values P 44 , P
45 are 5.56 μW and 5.51 μW, respectively, and the branch ratio is about 1: 1.
Met. The excess loss LS in this case is It is.

また、本願発明者は、上記と異なる曲率半径R(=12
5mm)で光分岐結合器40″を製造した。なお、その他の
条件(押圧力等)は同一である。
Further, the inventor of the present application has proposed a curvature radius R (= 12) different from the above.
5 mm) to manufacture the optical branching coupler 40 ″. Other conditions (pressing force, etc.) are the same.

そして、上記と同様に、光パワー測定系によって光分
岐結合器40″の特性について調べた。その結果、製造さ
れた光分岐結合器40″のファイバ端42を光パワー測定系
の光源に接続して波長660nmのLED光(P42=15.17μ
W)を入力した時、ファイバ端42に対向するファイバ端
44,45の出力値P44,P45はそれぞれ5.15μW,4.98μWで
あり、分岐比は約1:1であった。また、この場合の過剰
損失LSは、 である。
Then, in the same manner as above, the characteristics of the optical branching coupler 40 ″ were examined by the optical power measuring system. As a result, the fiber end 42 of the manufactured optical branching coupler 40 ″ was connected to the light source of the optical power measuring system. LED light with a wavelength of 660 nm (P 42 = 15.17μ)
When W) is input, the fiber end facing the fiber end 42
The output values P 44 and P 45 of 44 and 45 were 5.15 μW and 4.98 μW, respectively, and the branch ratio was about 1: 1. The excess loss LS in this case is It is.

この結果からわかるように、第2の発明にかかる光分
岐結合器の製造方法によっても、ほぼ等分配の光分岐結
合器40″を製造することができる。
As can be seen from the result, the optical splitter / coupler 40 ″ having substantially equal distribution can be manufactured by the method of manufacturing the optical splitter / coupler according to the second invention.

(発明の効果) 以上のように、この発明によれば、分岐結合部分を2
本のプラスチックファイバを含む仮想平面内で蛇行する
ように仕上げたり、その仮想平面内でファイバ長手方向
に対し直交する方向に湾曲するように仕上げているの
で、低次モードの光が前記分岐結合部分で比較的分岐さ
れやすい高次モードの光に変換される。その結果、ほぼ
1:1の分岐比が得られかつ光損失が小さい光分岐結合器
を光特性を損なわずに安定して製造することができる。
(Effects of the Invention) As described above, according to the present invention, the number of the branched bond portions is 2
Since it is finished so as to meander in a virtual plane containing the plastic fiber of the present invention, or it is finished so as to be curved in a direction perpendicular to the longitudinal direction of the fiber in the virtual plane, light in a lower-order mode is transmitted to the branch coupling portion. Is converted into higher-order mode light that is relatively easily branched. As a result, almost
An optical branching coupler having a 1: 1 branching ratio and small optical loss can be manufactured stably without deteriorating optical characteristics.

【図面の簡単な説明】[Brief description of the drawings]

第1図は超音波溶着法を利用した光分岐結合器の製造装
置を示す図、第2A図,第2B図および第3図はそれぞれそ
の超音波溶着法を説明するための斜視図、第4図はその
方法により製造された光分岐結合器を示す図、第5図は
第1の発明にかかる光分岐結合器の製造方法の一実施例
を説明するための図、第6図はその方法によって製造さ
れた光分岐結合器を示す図、第7図は第2の発明にかか
る光分岐結合器の製造方法によって製造された光分岐結
合器を示す図、第8図はその方法の一実施例を説明する
ための図である。 10,11……プラスチックファイバ、41……分岐結合部
分、X,Z……方向、l……長さ
FIG. 1 is a view showing an apparatus for manufacturing an optical branching coupler using an ultrasonic welding method. FIGS. 2A, 2B and 3 are perspective views for explaining the ultrasonic welding method, respectively. FIG. 1 is a diagram showing an optical branching coupler manufactured by the method, FIG. 5 is a diagram for explaining an embodiment of a method of manufacturing the optical branching coupler according to the first invention, and FIG. FIG. 7 shows an optical branching coupler manufactured by the method of FIG. 7, FIG. 7 shows an optical branching coupler manufactured by the method of manufacturing an optical branching coupler according to the second invention, and FIG. 8 shows an embodiment of the method. It is a figure for explaining an example. 10, 11 ... plastic fiber, 41 ... branch connection part, X, Z ... direction, l ... length

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平2−208345 (32)優先日 平2(1990)8月6日 (33)優先権主張国 日本(JP) (58)調査した分野(Int.Cl.6,DB名) G02B 6/28 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (31) Priority claim number Japanese Patent Application No. 2-208345 (32) Priority date Hei 2 (August 6, 1990) (33) Priority claim country Japan (JP) (58) Field (Int.Cl. 6 , DB name) G02B 6/28 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2本のプラスチックファイバを少なくとも
所定長さにわたって平行に配置する工程と、 前記2本のプラスチックファイバの平行に配置された所
定長さの領域を溶着型で押圧することにより、その所定
長さの領域を前記2本のプラスチックファイバを含む仮
想平面内で蛇行するようにして、相互に当接させる工程
と、 その当接領域を超音波加振により相互に溶着して分岐結
合部分を形成する工程とを含むことを特徴とする光分岐
結合器の製造方法。
1. A step of arranging two plastic fibers in parallel over at least a predetermined length, and pressing a region of the two plastic fibers having a predetermined length arranged in parallel with a welding die, A step of meandering a region of a predetermined length in an imaginary plane including the two plastic fibers to contact each other, and welding the contact regions to each other by ultrasonic vibration to form a branch joint portion Forming an optical branching coupler.
【請求項2】2本のプラスチックファイバを少なくとも
所定長さにわたって平行に配置する工程と、 前記2本のプラスチックファイバの平行に配置された所
定長さの領域を溶着型で押圧することにより、その所定
長さの領域を前記2本のプラスチックファイバを含む仮
想平面内でファイバ長手方向に対し直交する方向に湾曲
するようにして、相互に当接させる工程と、 その当接領域を超音波加振により相互に溶着して分岐結
合部分を形成する工程とを含むことを特徴とする光分岐
結合器の製造方法。
2. A step of arranging two plastic fibers in parallel over at least a predetermined length, and pressing a region of the two plastic fibers having a predetermined length arranged in parallel with a welding die. A step of bending a region of a predetermined length in a virtual plane including the two plastic fibers in a direction perpendicular to the longitudinal direction of the fiber so as to be brought into contact with each other; And forming a branch coupling portion by welding with each other.
JP2244258A 1990-01-26 1990-09-14 Manufacturing method of optical branching coupler Expired - Lifetime JP2854950B2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP1755490 1990-01-26
JP13196290 1990-05-21
JP13796490 1990-05-28
JP2-137964 1990-08-06
JP20834590 1990-08-06
JP2-17554 1990-08-06
JP2-208345 1990-08-06
JP2-131962 1990-08-06

Publications (2)

Publication Number Publication Date
JPH04151111A JPH04151111A (en) 1992-05-25
JP2854950B2 true JP2854950B2 (en) 1999-02-10

Family

ID=27456799

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2219643A Expired - Lifetime JP2854942B2 (en) 1990-01-26 1990-08-20 Manufacturing method of optical branching coupler
JP2219642A Expired - Lifetime JP2854941B2 (en) 1990-01-26 1990-08-20 Manufacturing method of optical branching coupler
JP2219644A Pending JPH04151109A (en) 1990-01-26 1990-08-20 Optical branching/coupling device
JP2230344A Expired - Lifetime JP2854943B2 (en) 1990-01-26 1990-08-30 Manufacturing method of optical branching coupler
JP2244258A Expired - Lifetime JP2854950B2 (en) 1990-01-26 1990-09-14 Manufacturing method of optical branching coupler
JP2284640A Expired - Lifetime JP2854956B2 (en) 1990-01-26 1990-10-22 Star coupler manufacturing method
JP10233895A Pending JPH11119052A (en) 1990-01-26 1998-08-20 Manufacture of optical branching and coupling unit

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2219643A Expired - Lifetime JP2854942B2 (en) 1990-01-26 1990-08-20 Manufacturing method of optical branching coupler
JP2219642A Expired - Lifetime JP2854941B2 (en) 1990-01-26 1990-08-20 Manufacturing method of optical branching coupler
JP2219644A Pending JPH04151109A (en) 1990-01-26 1990-08-20 Optical branching/coupling device
JP2230344A Expired - Lifetime JP2854943B2 (en) 1990-01-26 1990-08-30 Manufacturing method of optical branching coupler

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2284640A Expired - Lifetime JP2854956B2 (en) 1990-01-26 1990-10-22 Star coupler manufacturing method
JP10233895A Pending JPH11119052A (en) 1990-01-26 1998-08-20 Manufacture of optical branching and coupling unit

Country Status (5)

Country Link
US (1) US5146520A (en)
EP (1) EP0439125B1 (en)
JP (7) JP2854942B2 (en)
CA (1) CA2034175C (en)
DE (1) DE69105283T2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300162A (en) * 1990-11-29 1994-04-05 Hoechst Aktiengesellschaft Process for the production of an optical coupler for polymeric optical fibers
DE4121216A1 (en) * 1991-06-27 1993-01-07 Kabelmetal Electro Gmbh METHOD FOR PRODUCING A CONNECTING ELEMENT FOR PLASTIC LIGHT-CONDUCTING FIBERS
JP3175559B2 (en) * 1995-07-03 2001-06-11 住友電装株式会社 Manufacturing method of optical branching coupler
JP2817778B2 (en) * 1995-08-21 1998-10-30 日本電気株式会社 Optical module and manufacturing method thereof
JPH1123884A (en) * 1997-07-08 1999-01-29 Alps Electric Co Ltd Photocoupler
JPH11183749A (en) * 1997-12-22 1999-07-09 Hitachi Chem Co Ltd Optical circuit board and manufacture therefor
JP3473389B2 (en) 1998-04-03 2003-12-02 住友電装株式会社 Optical star coupler
DE19849026A1 (en) * 1998-10-23 2000-04-27 Bayerische Motoren Werke Ag Method for fastening an optical fiber end in a plastic contact sleeve and correspondingly produced plastic contact
WO2011033563A1 (en) * 2009-09-16 2011-03-24 三菱レイヨン株式会社 Method of manufacturing hollow continuous body

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114031A (en) * 1974-07-25 1976-02-04 Mitsubishi Rayon Co Kogakusenino setsuzokuhoho
US4265689A (en) * 1978-04-15 1981-05-05 Plessey Handel Und Investments Ag Methods of joining glass objects
US4556279A (en) * 1981-11-09 1985-12-03 Board Of Trustees Of The Leland Stanford Junior University Passive fiber optic multiplexer
US4560427A (en) * 1984-12-03 1985-12-24 Branson Ultrasonics Corporation Ultrasonic seal and cut method and apparatus
US4686136A (en) * 1985-11-18 1987-08-11 Allied Corporation Laminated fabrics and fiber mats and method for their manufacture
JPS62153906A (en) * 1985-12-27 1987-07-08 Toshiba Corp Optical branching and coupling device
US4772085A (en) * 1986-10-28 1988-09-20 Gould Inc. Multimode fiber optic coupler and method for making
US4869570A (en) * 1987-02-21 1989-09-26 Nippon Telegraph And Telephone Corporation Fiber coupler and method and apparatus for manufacturing the same
JPH03500216A (en) * 1987-09-14 1991-01-17 アスター・コーポレーション fiber optic coupler
US4923268A (en) * 1987-09-14 1990-05-08 Aster Corporation Fiber optic coupler
US4997247A (en) * 1987-09-17 1991-03-05 Aster Corporation Fiber optic coupler and method for making same
FR2625815B1 (en) * 1988-01-08 1990-05-04 Cit Alcatel N BY N OPTICAL DIFFUSER
DE3834336A1 (en) * 1988-10-08 1990-04-12 Licentia Gmbh FIBER OPTICAL STAR COUPLER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
繊維学会シンポジウム予稿集1990(A)柚木勇人、河村誠人、森佳彦 PA−96−A−98

Also Published As

Publication number Publication date
JPH04151110A (en) 1992-05-25
JPH04151107A (en) 1992-05-25
CA2034175A1 (en) 1991-07-27
US5146520A (en) 1992-09-08
DE69105283T2 (en) 1995-06-08
JPH11119052A (en) 1999-04-30
DE69105283D1 (en) 1995-01-12
JPH04151111A (en) 1992-05-25
JP2854941B2 (en) 1999-02-10
JPH04151112A (en) 1992-05-25
JP2854942B2 (en) 1999-02-10
JPH04151109A (en) 1992-05-25
JPH04151108A (en) 1992-05-25
JP2854956B2 (en) 1999-02-10
CA2034175C (en) 1995-07-18
EP0439125A1 (en) 1991-07-31
EP0439125B1 (en) 1994-11-30
JP2854943B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP2764141B2 (en) How to connect waveguides
JP2854950B2 (en) Manufacturing method of optical branching coupler
JPH04258903A (en) Product comprising passive optical waveguide
JPH10133055A (en) Photocoupler and its production
MXPA06007898A (en) Lensed tip optical fiber and method of making the same.
JPS608481B2 (en) Optical fiber connection method
KR100479371B1 (en) Connector body
JPS62253105A (en) Single mode optical fiber coupler and manufacture thereof
JP2023054292A (en) optical connection structure
JP2887962B2 (en) Y-type optical splitter / coupler, method of manufacturing the same, and optical signal amplification method using the Y-type optical splitter / coupler
JPH09159865A (en) Connection structure of optical waveguide
JP3450068B2 (en) Optical waveguide coupling structure
JPH11211929A (en) Optical fiber connector and production thereof
JPH0477286B2 (en)
JP2749842B2 (en) Multiplexer / demultiplexer
JPH0424604A (en) Production of optical branching coupler
JP3018536B2 (en) Ultrasonic welding type for star coupler and its production
EP0480477B1 (en) Coupling of optical fiber to optical waveguide device
JPH03282405A (en) Manufacture of plastic optical fiber coupler and device used for same method
JP3159022B2 (en) Optical fiber coupler and manufacturing method thereof
JPS593410A (en) Optical branching device
JP2001166178A (en) Plastic optical fiber coupler and its manufacturing method
JP3077472B2 (en) Manufacturing method of optical branching coupler
JP3066444B2 (en) Manufacturing method of broadband optical fiber coupler
JPH06289247A (en) Optical fiber coupler and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

EXPY Cancellation because of completion of term