JP2854171B2 - Makeup water recovery equipment for fuel cell power generators - Google Patents

Makeup water recovery equipment for fuel cell power generators

Info

Publication number
JP2854171B2
JP2854171B2 JP3243870A JP24387091A JP2854171B2 JP 2854171 B2 JP2854171 B2 JP 2854171B2 JP 3243870 A JP3243870 A JP 3243870A JP 24387091 A JP24387091 A JP 24387091A JP 2854171 B2 JP2854171 B2 JP 2854171B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
gas
air
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3243870A
Other languages
Japanese (ja)
Other versions
JPH0582147A (en
Inventor
邦博 西崎
信弘 岩佐
弘正 吉田
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA GASU KK
Fuji Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
OOSAKA GASU KK
Fuji Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA GASU KK, Fuji Electric Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical OOSAKA GASU KK
Priority to JP3243870A priority Critical patent/JP2854171B2/en
Publication of JPH0582147A publication Critical patent/JPH0582147A/en
Application granted granted Critical
Publication of JP2854171B2 publication Critical patent/JP2854171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、燃料改質装置を含む
燃料電池発電装置の排気中の水分を回収して水処理装置
に供給する補給水回収装置、ことに燃焼排ガスから回収
された回収水中の炭酸ガス濃度を低減する機能を備えた
補給水回収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a make-up water recovery system for recovering water in exhaust gas from a fuel cell power generator including a fuel reformer and supplying the recovered water to a water treatment system, and more particularly to a recovery system recovered from combustion exhaust gas. The present invention relates to a makeup water recovery device having a function of reducing the concentration of carbon dioxide in water.

【0002】[0002]

【従来の技術】電解液にりん酸を用いたりん酸形燃料電
池はメタンガス等の源燃料を水蒸気改質して得られた燃
料ガス中の水素と、空気中の酸素とを燃料電池の燃料電
極および空気電極にそれぞれ供給し、電気化学反応に基
づいて発電を行う。源燃料を燃料ガスに改質するには、
源燃料としてのメタンに水蒸気を加えて水とメタンとの
反応を触媒で促進して行う燃料改質装置が用いられる。
したがって、燃料改質装置には燃料の改質に使用した水
蒸気量に対応して水を補給する必要がある。この水はイ
オン交換式水処理装置等で不純物を除去したイオン交換
水が用いられるが、燃料電池の電気化学反応で生じた発
電生成水や燃料改質器バ−ナの燃焼排ガス中の水分(燃
焼生成水)を凝縮した回収水を用いた方が水道水よりも
不純物が少なく、その分イオン交換式水処理装置の負荷
を軽くできるので、燃料電池発電装置に補給水回収装置
を付加して排気中の水分を回収する対策が採られてい
る。
2. Description of the Related Art Phosphoric acid type fuel cells using phosphoric acid as an electrolytic solution convert the hydrogen in the fuel gas obtained by steam reforming a source fuel such as methane gas and the oxygen in the air with the fuel in the fuel cell. The power is supplied to the electrode and the air electrode, respectively, and power is generated based on an electrochemical reaction. To reform the source fuel into fuel gas,
A fuel reformer is used in which steam is added to methane as a source fuel to promote the reaction between water and methane with a catalyst.
Therefore, it is necessary to supply water to the fuel reformer in accordance with the amount of steam used for reforming the fuel. As this water, ion-exchanged water from which impurities have been removed by an ion-exchange type water treatment device or the like is used. The use of recovered water obtained by condensing combustion water) has less impurities than tap water, and the load on the ion-exchange type water treatment device can be reduced accordingly. Measures have been taken to recover the moisture in the exhaust.

【0003】図4は燃料電池発電装置における従来の補
給水の回収および処理系を示す構成図であり、りん酸形
燃料電池1はりん酸を保持するマトリックスを挟んで燃
料電極および空気電極を配した単位セルの積層体からな
り、燃料電極に燃料改質装置2で生成した燃料ガスを供
給し,空気電極に空気を供給することにより、電気化学
反応に基づいて発電が行われる。燃料ガスのオフガスは
燃料改質バ−ナ2Bに送られて残存する水素が燃焼し、
その燃焼熱が燃料改質反応の反応熱として利用される。
残存する水素の燃焼により生じた水(燃焼生成水)を含
む燃焼排ガス2G、および発電によって生成した水(発
電生成水)を含む空気オフガス1Aは、補給水回収装置
3に送られて水分の回収が行われる。補給水回収装置3
は、例えば水分回収塔4内に水冷式の熱交換器5を収納
した構造であり、熱交換器5で凝縮した水は水分回収塔
4の底部に回収水6として貯留される。回収水6はポン
プ7Aでイオン交換式水処理装置8に送られて不純物が
除去された補給水10として水タンク9に蓄積され、必
要に応じてポンプ7Bにより燃料改質装置2に送られて
源燃料に高温の水蒸気として添加され、源燃料の水蒸気
改質に必要な反応水として利用される。
FIG. 4 is a block diagram showing a conventional make-up water recovery and treatment system in a fuel cell power generator. In a phosphoric acid fuel cell 1, a fuel electrode and an air electrode are arranged with a matrix holding phosphoric acid therebetween. By supplying a fuel gas generated by the fuel reformer 2 to the fuel electrode and supplying air to the air electrode, power generation is performed based on an electrochemical reaction. The off-gas of the fuel gas is sent to the fuel reforming burner 2B to burn the remaining hydrogen,
The combustion heat is used as reaction heat of the fuel reforming reaction.
The combustion exhaust gas 2G containing water (combustion water) generated by the combustion of the remaining hydrogen and the air off-gas 1A containing water generated by power generation (power generation water) are sent to the makeup water recovery device 3 to recover moisture. Is performed. Makeup water recovery device 3
Has a structure in which, for example, a water-cooled heat exchanger 5 is housed in a water recovery tower 4, and water condensed in the heat exchanger 5 is stored as recovered water 6 at the bottom of the water recovery tower 4. The recovered water 6 is sent to an ion-exchange type water treatment device 8 by a pump 7A, accumulated in a water tank 9 as makeup water 10 from which impurities are removed, and sent to a fuel reforming device 2 by a pump 7B as necessary. It is added to the source fuel as high-temperature steam and is used as reaction water required for steam reforming of the source fuel.

【0004】[0004]

【発明が解決しようとする課題】燃焼排ガスを熱交換器
で凝縮して得られる回収水には、燃焼排ガス中の炭酸ガ
ス濃度に比例した飽和濃度の炭酸ガスが含まれている。
したがって、燃焼排ガスと空気オフガスとが混合した排
ガス中の水分を一つの熱交換器で凝縮して得られる従来
の回収水6には多量の炭酸ガスが溶解した状態となる。
このような回収水をイオン交換式水処理装置に供給する
と、炭酸ガスがイオン交換樹脂の負荷となり、イオン交
換樹脂の再生サイクルが短くなるため、その再生処理費
用が嵩むばかりか、その保守作業工数も増大するという
問題が発生する。また、回収水を脱気処理して炭酸ガス
を除去するよう構成すれば、イオン交換樹脂の再生サイ
クルを延ばすことができるが、そのためには脱気のため
の装置や動力を必要とし、設備の複雑化,大型化や経済
的不利益を招くとともに、発電装置の補機損失が増大し
て効率が低下するという問題も発生する。
The recovered water obtained by condensing flue gas with a heat exchanger contains carbon dioxide having a saturation concentration proportional to the carbon dioxide concentration in the flue gas.
Therefore, a large amount of carbon dioxide gas is dissolved in the conventional recovered water 6 obtained by condensing the moisture in the exhaust gas in which the combustion exhaust gas and the air off-gas are mixed by one heat exchanger.
When such recovered water is supplied to an ion-exchange type water treatment apparatus, carbon dioxide gas acts as a load on the ion-exchange resin, and the regeneration cycle of the ion-exchange resin is shortened. Is also increased. If the recovered water is configured to be degassed to remove carbon dioxide, the regeneration cycle of the ion-exchange resin can be extended, but this requires equipment and power for degassing, and equipment In addition to the increase in complexity, size, and economic disadvantage, there is a problem in that the auxiliary equipment loss of the power generation device increases and the efficiency decreases.

【0005】この発明の目的は、設備の複雑化,大型化
や発電効率の低下を招くことなく炭酸ガスの少ない回収
水を生成でき、したがってイオン交換樹脂の再生サイク
ルを延長できる補給水回収装置を備えた燃料電池発電装
置を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a make-up water recovery apparatus which can generate recovered water with a small amount of carbon dioxide gas without increasing the complexity and size of the equipment and lowering the power generation efficiency, and therefore can extend the regeneration cycle of the ion exchange resin. To provide a fuel cell power generation device provided with the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、燃料電池から排出される空気オ
フガスと、燃料改質器から排出される燃焼排ガスとに含
まれる水分を回収し、回収水をイオン交換式水処理装置
に供給して燃料改質用の補給水とするものにおいて、前
記燃焼排ガス中の水分を凝縮する熱交換器の後段に前記
空気オフガス中の水分を凝縮する熱交換器を連接して設
け、燃焼排ガスからの凝縮水を前記後段に配された熱交
換器の空気オフガス側熱交換面に沿って通水し、凝縮水
を炭酸ガス濃度の低い前記空気オフガスと向流接触さ
せ、炭酸ガス濃度を低減した回収水を生成するものとす
る。
According to the present invention, in order to solve the above-mentioned problems, water contained in air off-gas discharged from a fuel cell and flue gas discharged from a fuel reformer is recovered. Then, the recovered water is supplied to an ion-exchange type water treatment device to be used as a makeup water for fuel reforming, wherein the water in the air off-gas is condensed at a stage subsequent to a heat exchanger that condenses the water in the combustion exhaust gas. A heat exchanger is provided in series, and condensed water from the flue gas is passed along the air-off gas side heat exchange surface of the heat exchanger disposed in the latter stage, and the condensed water is cooled by the air having a low carbon dioxide gas concentration. It is to be brought into countercurrent contact with off-gas to generate recovered water with reduced carbon dioxide gas concentration.

【0007】また、燃焼排ガス側の熱交換器および空気
オフガス側の熱交換器が直接式熱交換器として一つの水
分回収塔に収納され、回収した回収水を冷却水として燃
焼排ガスおよび空気オフガスと向流接触させるものとす
る。
A heat exchanger on the flue gas side and a heat exchanger on the air offgas side are housed in a single moisture recovery tower as a direct heat exchanger, and the recovered water is used as cooling water for the combustion exhaust gas and the air offgas. It should be in countercurrent contact.

【0008】さらに、燃焼排ガス側の熱交換器と空気オ
フガス側の熱交換器とが、それぞれの回収水を冷却水と
して別体に形成された水分回収塔に収納され、燃焼排ガ
ス側の熱交換器で回収した回収水を空気オフガス側の熱
交換器に通流して空気オフガスと向流接触させるものと
する。
Further, the heat exchanger on the flue gas side and the heat exchanger on the air off-gas side are housed in separately formed water recovery towers using the respective recovered water as cooling water. It is assumed that the recovered water collected by the vessel is passed through the heat exchanger on the air off-gas side to make countercurrent contact with the air off-gas.

【0009】[0009]

【作用】この発明の構成において、燃焼排ガス中の水分
を凝縮する熱交換器の後段に空気オフガス中の水分を凝
縮する熱交換器を連接して設け、燃焼排ガスからの凝縮
水をその後段に配された熱交換器の空気オフガス側熱交
換面に沿って通水し、凝縮水を炭酸ガス濃度の低い前記
空気オフガスと向流接触させるよう構成したことによ
り、前段の熱交換器で凝縮した状態では燃焼排ガスと接
触して高い溶解炭酸ガス量を保持していた凝縮水が、後
段の熱交換器の熱交換面に広く広がって空気オフガスと
向流接触しすることにより、その炭酸ガス溶解量が空気
オフガスの炭酸ガス濃度に比例した低い飽和溶解度にま
で低減され、後段の熱交換器で凝縮した空気オフガス中
水分の凝縮水と混合して炭酸ガスの少ない回収水を生成
するので、この回収水を浄化するイオン交換樹脂の再生
サイクルを延長する機能が得られる。また、二つの熱交
換器の冷却水温度を後段側で高くなるよう構成すれば、
炭酸ガスの飽和溶解度が温度に逆比例して小さくなる水
の性質を利用して、炭酸ガス量がより少ない回収水を生
成することができる。
In the structure of the present invention, a heat exchanger for condensing moisture in the air off-gas is provided in a subsequent stage of a heat exchanger for condensing moisture in the flue gas, and condensed water from the flue gas is provided in a subsequent stage. Water was passed along the air-off gas side heat exchange surface of the arranged heat exchanger, and condensed water was configured to be brought into countercurrent contact with the air-off gas having a low carbon dioxide concentration, so that the condensed water was condensed in the heat exchanger at the preceding stage. In this state, the condensed water, which had been in contact with the combustion exhaust gas and had retained a high amount of dissolved carbon dioxide, spread widely on the heat exchange surface of the subsequent heat exchanger and was brought into countercurrent contact with the air off-gas. The amount is reduced to a low saturation solubility in proportion to the concentration of carbon dioxide in the air offgas, and mixed with the condensed water of the water in the air offgas condensed in the subsequent heat exchanger to produce recovered water with little carbon dioxide. Collection Ability to extend to obtain a regeneration cycle of the ion exchange resin to purify. Also, if the cooling water temperature of the two heat exchangers is configured to be higher in the subsequent stage,
By utilizing the property of water in which the saturation solubility of carbon dioxide gas decreases in inverse proportion to the temperature, it is possible to generate recovered water having a smaller carbon dioxide gas amount.

【0010】また、燃焼排ガス側の熱交換器および空気
オフガス側の熱交換器を直接式熱交換器として一つの水
分回収塔に収納し、回収した回収水を冷却水として燃焼
排ガスおよび空気オフガスと向流接触させるよう構成す
れば、前段の燃焼排ガス側熱交換器で温度が上昇した回
収水が後段の熱交換器で空気オフガスと向流接触して溶
解炭酸ガスを放出するので、簡素化された補給水回収装
置で溶解炭酸ガス量の少ない回収水を効率良く生成する
ことができる。
Further, the heat exchanger on the flue gas side and the heat exchanger on the air offgas side are housed in a single moisture recovery tower as a direct heat exchanger, and the recovered water is used as cooling water for the combustion exhaust gas and the air offgas. If it is configured to make countercurrent contact, the recovered water whose temperature has risen in the heat exchanger on the combustion exhaust gas side in the preceding stage will come in countercurrent contact with the air off-gas in the heat exchanger in the subsequent stage to release dissolved carbon dioxide gas, which is simplified. The recovered water with a small amount of dissolved carbon dioxide can be efficiently generated by the supplementary water recovery device.

【0011】さらに、燃焼排ガス側の熱交換器と空気オ
フガス側の熱交換器とを、それぞれの回収水を冷却媒体
として別体に形成した水分回収塔に収納し、燃焼排ガス
側の熱交換器で回収した回収水を空気オフガス側の熱交
換器に通流して空気オフガスと向流接触させるよう構成
すれば、両排気ガスの混合が完全に回避され、より溶解
炭酸ガス量の少ない回収水を燃焼排ガス側水分回収塔の
底部に生成することができる。
Further, the heat exchanger on the combustion exhaust gas side and the heat exchanger on the air off-gas side are housed in separately formed water recovery towers using the respective recovered water as a cooling medium, and the heat exchanger on the combustion exhaust gas side is provided. If the recovered water collected in step (1) is passed through the heat exchanger on the air off-gas side and is brought into countercurrent contact with the air off-gas, mixing of both exhaust gases is completely avoided, and recovered water with a smaller dissolved carbon dioxide gas amount can be obtained. It can be generated at the bottom of the flue gas side moisture recovery tower.

【0012】[0012]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池発電装置の
補給水回収装置を模式化して示す断面図であり、以下従
来の装置と同じ部分には同一参照符号を用いることによ
り、重複した説明を省略する。図において、補給水回収
装置13は、水分回収塔14と、これに収納されて冷却
水19で冷却されるプレ−ト式の間接形熱交換器15と
で構成される。水分回収塔14はその高さ方向の中間位
置に燃焼排ガス2Gの入口16,その下方に空気オフガ
ス1Aの入口17,上部に両排ガスの出口18を備えて
おり、したがって、熱交換器15の上半分は主として燃
焼排ガス2G中の水分を凝縮水2Wとして回収する前段
の熱交換器15Aとして機能し、下半分は空気オフガス
1A中の水分を凝縮水1Wとして回収する後段の熱交換
器15Bとして機能する。また、水分回収塔14の底部
には回収水溜め20を備え、凝縮水2Wおよび1Aが混
合した回収水6Aを所定量貯留し、ポンプ7Aによりイ
オン交換式水処理装置8(図4参照)に回収水6Aを供
給する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a cross-sectional view schematically showing a make-up water recovery device for a fuel cell power generation device according to an embodiment of the present invention. Omitted. In the figure, a makeup water recovery device 13 is composed of a water recovery tower 14 and a plate-type indirect heat exchanger 15 housed therein and cooled by cooling water 19. The water recovery tower 14 has an inlet 16 for the combustion exhaust gas 2G at an intermediate position in the height direction, an inlet 17 for the air off-gas 1A below it, and outlets 18 for both exhaust gases at the upper part thereof. The half functions mainly as a first-stage heat exchanger 15A for collecting moisture in the flue gas 2G as condensed water 2W, and the lower half functions as a second-stage heat exchanger 15B for collecting water in the air off-gas 1A as condensed water 1W. I do. Further, a recovery water reservoir 20 is provided at the bottom of the water recovery tower 14, and a predetermined amount of recovered water 6A in which condensed water 2W and 1A are mixed is stored, and the collected water 6A is supplied to an ion-exchange type water treatment apparatus 8 (see FIG. 4) by a pump 7A. Supply recovered water 6A.

【0013】上述の補給水回収装置13において、前段
の熱交換器15Aで凝縮した燃焼排ガス中の水分(燃焼
生成水)の凝縮水2Wは、燃焼排ガス2Gと空気オフガ
ス1Aとの混合ガスと向流接触するので、この混合ガス
中の炭酸ガス濃度に比例した溶解炭酸ガスを含んでいる
が、後段の熱交換器15Bで炭酸ガス濃度の低い空気オ
フガス1Aと向流接触することにより、溶解炭酸ガスの
大部分を空気オフガス側に放出してその溶解炭酸ガス量
が低下し、溶解炭酸ガス量の低い空気オフガスからの凝
縮水1Wと混合して回収水溜め20に回収される。ま
た、冷却水19を前段の熱交換器15A側から後段の熱
交換器15Bに向けて通流するよう構成すれば、冷却水
19が熱交換器15Aで熱交換を行うことによりその温
度が上昇し、後段の熱交換器15Bの熱交換温度が上昇
するので、温度に逆比例して溶解炭酸ガス量が低下する
水の性質を利用して溶解炭酸ガス量がより少ない回収水
を得ることができる。
In the make-up water recovery device 13 described above, the condensed water 2W of the moisture (combustion water) in the combustion exhaust gas condensed in the heat exchanger 15A at the preceding stage is directed to a mixed gas of the combustion exhaust gas 2G and the air off-gas 1A. Although the mixed gas contains dissolved carbon dioxide gas in proportion to the concentration of carbon dioxide gas in the mixed gas, the mixed gas is brought into countercurrent contact with the air offgas 1A having a low carbon dioxide gas concentration in the heat exchanger 15B at the subsequent stage, so that the dissolved carbon dioxide is removed. Most of the gas is discharged to the air off-gas side to reduce the dissolved carbon dioxide gas amount, and is mixed with 1 W of condensed water from the air off-gas having a low dissolved carbon dioxide gas amount and collected in the collection water reservoir 20. Further, if the cooling water 19 is configured to flow from the heat exchanger 15A in the preceding stage to the heat exchanger 15B in the subsequent stage, the temperature of the cooling water 19 rises by performing heat exchange in the heat exchanger 15A. Then, since the heat exchange temperature of the heat exchanger 15B at the subsequent stage rises, it is possible to obtain recovered water having a smaller dissolved carbon dioxide amount by utilizing the property of water in which the dissolved carbon dioxide amount is reduced in inverse proportion to the temperature. it can.

【0014】図2はこの発明の異なる実施例を模式化し
て示す補給水回収装置の断面図であり、水分回収塔14
に収納された前段の熱交換器25Aおよび後段の熱交換
器25Bが共にラシヒリングの充填体からなる直接接触
式の熱交換器として構成され、回収水溜め20に回収さ
れた回収水6Bを循環ポンプ22により液対液冷却器2
1で冷却し、冷却水26として前段の熱交換器25Aの
上方から下段の熱交換器25Bに向けて散水するよう構
成した点が前述の実施例と異なっている。このように構
成された補給水回収装置23においては、前段および後
段の熱交換器内に散布された冷却水26が排ガス2Gお
よび1Aと直接接触して排ガス中の水分を効率良く凝縮
し、かつ凝縮水中の溶解炭酸ガスを炭酸ガス濃度の低い
空気オフガス1A中に放出するので、排ガスと冷却水2
6とがよく接触するよう、それぞれの流量を決めること
により、回収水溜め20に回収される回収水6Bの溶解
炭酸ガス量を一層低減できる効果が得られる。また、2
段の熱交換器25A,25Bを直接接触式とすることに
より熱交換器の構造を簡素化でき、かつ外部への熱交換
を液対液冷却器21で行うことにより高い伝熱効率が得
られるので、小型かつ簡素で熱効率の良い補給水回収装
置23により、溶解炭酸ガス量の少ない回収水6Bを得
ることができる。
FIG. 2 is a sectional view of a makeup water recovery apparatus schematically showing a different embodiment of the present invention.
The former heat exchanger 25A and the latter heat exchanger 25B housed in the tank are both configured as direct contact heat exchangers made of Raschig rings, and the recovered water 6B collected in the collected water reservoir 20 is circulated by a circulation pump. 22 to liquid-to-liquid cooler 2
1 in that the cooling water 26 is sprayed from above the heat exchanger 25A in the preceding stage to the heat exchanger 25B in the lower stage as cooling water 26. In the makeup water recovery device 23 configured as described above, the cooling water 26 sprayed in the heat exchangers of the first and second stages come into direct contact with the exhaust gas 2G and 1A to efficiently condense the moisture in the exhaust gas, and Since the dissolved carbon dioxide in the condensed water is released into the air off-gas 1A having a low carbon dioxide concentration, the exhaust gas and the cooling water 2 are discharged.
By determining the respective flow rates so as to make good contact with the collecting water 6, the effect of further reducing the amount of dissolved carbon dioxide in the recovered water 6B recovered in the recovered water reservoir 20 is obtained. Also, 2
Since the stages of the heat exchangers 25A and 25B are of direct contact type, the structure of the heat exchanger can be simplified, and high heat transfer efficiency can be obtained by performing heat exchange to the outside by the liquid-to-liquid cooler 21. The small and simple make-up water recovery device 23 with high thermal efficiency makes it possible to obtain the recovered water 6B with a small amount of dissolved carbon dioxide gas.

【0015】図3はこの発明の他の実施例を模式化して
示す補給水回収装置の断面図であり、直接接触式熱交換
器25Aおよび25Bをそれぞれ別体の水分回収塔34
Aおよび34Bに収納して、燃焼排ガス2G側,空気オ
フガス1A側別々に補給水回収装置を形成し、それぞれ
の回収水6Cおよび6Dを間接式熱交換器21A,21
Bにより冷却し、冷却水26および36として熱交換器
25Aおよび25Bに散布して水分の凝縮を行うととも
に、水分回収塔34A側の回収水(燃焼生成水)6Cを
水タンク39およびポンプ32Cを介して水分回収塔3
4B側の冷却水36に混合し、空気オフガス側の熱交換
器25Bの冷却水とした点が前述の各実施例と異なって
いる。
FIG. 3 is a cross-sectional view of a makeup water recovery apparatus schematically showing another embodiment of the present invention, in which the direct contact heat exchangers 25A and 25B are separately provided with a separate water recovery tower 34.
A and 34B, and make-up water recovery devices are separately formed on the flue gas 2G side and the air off-gas 1A side, and the recovered waters 6C and 6D are respectively transferred to the indirect heat exchangers 21A and 21A.
B, and is sprayed as cooling water 26 and 36 to the heat exchangers 25A and 25B to condense the water. At the same time, the recovered water (combustion water) 6C on the water recovery tower 34A side is supplied to the water tank 39 and the pump 32C. Moisture recovery tower 3
This embodiment differs from the above embodiments in that it is mixed with the cooling water 36 on the 4B side and used as cooling water for the heat exchanger 25B on the air off-gas side.

【0016】この実施例においては、燃焼排ガス側の水
分回収塔34Aと、空気オフガス側の水分回収塔34B
とが別体に形成されて排ガスの混合を回避でき、空気オ
フガス側水分回収塔内の空気オフガス1Aの炭酸ガス濃
度を本来の低い濃度に保持できるので、水分回収塔34
A側の溶解炭酸ガス量の多い回収水6Cを冷却水36と
混合して冷却水36の温度を幾分高め、熱交換器25B
に散布することにより、溶解炭酸ガスは効率良く空気オ
フガス側に放出され、空気オフガス1Aの炭酸ガス濃度
に平衡した低い溶解炭酸ガス量の回収水6Dを水分回収
塔34Bの底部に回収できる。また、回収水6Dを冷却
水36として繰り返し循環することにより、回収水6D
中の溶解炭酸ガス量を一層低減できるので、イオン交換
樹脂の負荷を一層軽減し、イオン交換樹脂の再生サイク
ルを延長することができる。
In this embodiment, a water recovery tower 34A on the flue gas side and a water recovery tower 34B on the air off-gas side are used.
Is formed separately, the mixing of the exhaust gas can be avoided, and the carbon dioxide concentration of the air offgas 1A in the air offgas side moisture recovery tower can be maintained at the original low concentration.
The recovered water 6C having a large amount of dissolved carbon dioxide on the A side is mixed with the cooling water 36 to raise the temperature of the cooling water 36 somewhat, and the heat exchanger 25B
The dissolved carbon dioxide gas is efficiently discharged to the air off-gas side, and the recovered water 6D having a low dissolved carbon dioxide amount equilibrated with the carbon dioxide concentration of the air off-gas 1A can be recovered at the bottom of the water recovery tower 34B. Further, by repeatedly circulating the collected water 6D as the cooling water 36, the collected water 6D
Since the amount of dissolved carbon dioxide gas therein can be further reduced, the load on the ion exchange resin can be further reduced, and the regeneration cycle of the ion exchange resin can be extended.

【0017】[0017]

【発明の効果】この発明は前述のように、燃焼排ガス中
の水分を凝縮する熱交換器の後段に空気オフガス中の水
分を凝縮する熱交換器を連接して設け、燃焼排ガスから
の凝縮水をその後段に配された熱交換器の空気オフガス
側熱交換面に沿って通水し、凝縮水を炭酸ガス濃度の低
い空気オフガスと向流接触させるよう構成した。その結
果、前段の熱交換器で凝縮した状態では燃焼排ガスと接
触して高い飽和溶解度を保持していた燃焼排ガス中水分
の凝縮水が、後段の熱交換器の熱交換面に広く広がって
空気オフガスと向流接触することにより、その炭酸ガス
溶解量が空気オフガスの炭酸ガス濃度に比例した低い飽
和溶解度にまで低減され、後段の熱交換器で凝縮した空
気オフガス中水分の凝縮水と混合して溶解炭酸ガス量の
少ない回収水を生成するので、燃焼排ガス中の水分を殆
どそのまま回収水とする従来の補給水回収装置で問題と
なったイオン交換樹脂の再生サイクルを延長することが
可能となり、イオン交換樹脂の再生処理や保守作業に要
するワ−キングコストの低減効果の大きい補給水回収装
置を備えた燃料電池発電装置を提供することができる。
また、二つの熱交換器の冷却水温度を後段側で高くなる
よう構成すれば、炭酸ガスの飽和溶解度が温度に逆比例
して小さくなる水の性質を利用して、炭酸ガス量がより
少ない回収水を生成できる利点が得られる。
According to the present invention, as described above, a heat exchanger for condensing moisture in the air off-gas is provided at the subsequent stage of the heat exchanger for condensing moisture in the flue gas, and condensed water from the flue gas is provided. Was passed along the heat exchange surface on the air-off gas side of the heat exchanger disposed in the subsequent stage, so that the condensed water was brought into countercurrent contact with the air-off gas having a low carbon dioxide gas concentration. As a result, the condensed water of the flue gas in the flue gas, which had maintained high saturation solubility in contact with the flue gas when condensed in the first heat exchanger, spread widely on the heat exchange surface of the second heat exchanger and became air. The countercurrent contact with the offgas reduces the amount of dissolved carbon dioxide to a low saturation solubility that is proportional to the concentration of carbon dioxide in the air offgas, and mixes with the condensed water in the air offgas condensed in the subsequent heat exchanger. Since the recovered water with a small amount of dissolved carbon dioxide gas is generated, it is possible to extend the regeneration cycle of the ion-exchange resin, which has been a problem with conventional make-up water recovery systems that use the water in the combustion exhaust gas as recovered water. In addition, it is possible to provide a fuel cell power generator equipped with a make-up water recovery device having a large effect of reducing the working cost required for the regeneration treatment and maintenance work of the ion exchange resin.
In addition, if the cooling water temperature of the two heat exchangers is configured to be higher in the subsequent stage, the amount of carbon dioxide gas is smaller by utilizing the property of water in which the saturation solubility of carbon dioxide becomes smaller in inverse proportion to the temperature. The advantage that recovered water can be generated is obtained.

【0018】また、燃焼排ガス側の熱交換器および空気
オフガス側の熱交換器を直接接触式熱交換器として一つ
の水分回収塔に収納し、回収した回収水を冷却媒体とし
て燃焼排ガスおよび空気オフガスと向流接触させるよう
構成すれば、前段の燃焼排ガス側熱交換器で温度が上昇
した回収水が後段の熱交換器で空気オフガスと向流接触
して溶解炭酸ガスを放出するので、溶解炭酸ガス量の少
ない回収水を得られるとともに、熱交換器を構造が簡素
な直接接触式として一つの水分回収塔に収納し、かつ冷
却水の冷却を液体液冷却器として伝熱効率を高めること
ができるので、溶解炭酸ガスの少ない回収水を簡素化さ
れた補給水回収装置で効率よく回収できる燃料電池発電
装置を提供することができる。
Further, the heat exchanger on the flue gas side and the heat exchanger on the air off-gas side are housed in a single moisture recovery tower as a direct contact heat exchanger, and the recovered recovered water is used as a cooling medium for the flue gas and air off-gas. In this case, the recovered water whose temperature has increased in the heat exchanger on the combustion exhaust gas side in the preceding stage comes into countercurrent contact with the air off-gas in the heat exchanger in the subsequent stage to release dissolved carbon dioxide gas. Recovered water with a small amount of gas can be obtained, and the heat exchanger can be housed in one water recovery tower as a direct contact type with a simple structure, and the heat transfer efficiency can be increased by cooling the cooling water as a liquid-liquid cooler. Therefore, it is possible to provide a fuel cell power generation device capable of efficiently recovering recovered water having a small amount of dissolved carbon dioxide gas with a simplified makeup water recovery device.

【0019】さらに、燃焼排ガス側の熱交換器と空気オ
フガス側の熱交換器とを、それぞれの回収水を冷却媒体
として別体に形成した水分回収塔に収納し、燃焼排ガス
側の熱交換器で回収した回収水を空気オフガス側の熱交
換器に通流して空気オフガスと向流接触させるよう構成
すれば、両排気ガスの混合が完全に回避され、より溶解
炭酸ガス量の少ない回収水を燃焼排ガス側水分回収塔の
底部に生成できる補給水回収装置を提供できるので、イ
オン交換樹脂の再生サイクルをより長くし、燃料電池発
電装置の長期連続運転を低いワ−キングコストを維持し
て行える利点が得られる。
Further, the heat exchanger on the flue gas side and the heat exchanger on the air off-gas side are housed in separately formed water recovery towers using respective recovered water as a cooling medium, and the heat exchanger on the flue gas side is disposed. If the recovered water collected in step (1) is passed through the heat exchanger on the air off-gas side and is brought into countercurrent contact with the air off-gas, mixing of both exhaust gases is completely avoided, and recovered water with a smaller dissolved carbon dioxide gas amount can be obtained. It is possible to provide a make-up water recovery device that can be generated at the bottom of the combustion exhaust gas side water recovery tower, so that the regeneration cycle of the ion exchange resin can be made longer, and the long-term continuous operation of the fuel cell power generation device can be maintained at a low working cost. Benefits are obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例になる燃料電池発電装置の補
給水回収装置を模式化して示す断面図
FIG. 1 is a cross-sectional view schematically showing a makeup water recovery device of a fuel cell power generation device according to an embodiment of the present invention.

【図2】この発明の異なる実施例を模式化して示す補給
水回収装置の断面図
FIG. 2 is a cross-sectional view of a makeup water recovery apparatus schematically illustrating another embodiment of the present invention.

【図3】この発明の他の実施例を模式化して示す補給水
回収装置の断面図
FIG. 3 is a cross-sectional view of a makeup water recovery apparatus schematically illustrating another embodiment of the present invention.

【図4】燃料電池発電装置における従来の補給水の回収
および処理系を示す構成図
FIG. 4 is a configuration diagram showing a conventional make-up water recovery and treatment system in a fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 りん酸形燃料電池 1A 空気オフガス 1W 凝縮水(空気オフガス中水分) 2 燃料改質装置 2G 燃焼排ガス 2W 凝縮水(燃焼排ガス中水分) 3 従来の補給水回収装置 4 水分回収塔 5 熱交換器 6 回収水 8 イオン交換式水処理装置 10 補給水 13 補給水回収装置 14 水分回収塔 15 間接式熱交換器 15A 前段の熱交換器(燃焼排ガス側) 15B 後段の熱交換器(空気オフガス側) 20 回収水溜め 6A 回収水 21 液対液冷却器 23 補給水回収装置 25A 前段の直接接触式熱交換器 25B 後段の直接接触式熱交換器 6B 回収水 26 冷却水 34A 水分回収塔(燃焼排ガス側) 34B 水分回収塔(空気オフガス側) 6C 回収水(燃焼生成水) 6D 回収水(低溶解炭酸ガス量) DESCRIPTION OF SYMBOLS 1 Phosphoric acid type fuel cell 1A Air off gas 1W Condensed water (moisture in air off gas) 2 Fuel reformer 2G Combustion exhaust gas 2W Condensed water (moisture in combustion exhaust gas) 3 Conventional make-up water recovery device 4 Water recovery tower 5 Heat exchanger 6 Recovered water 8 Ion-exchange type water treatment device 10 Make-up water 13 Make-up water recovery device 14 Moisture recovery tower 15 Indirect heat exchanger 15A Heat exchanger at front stage (combustion exhaust gas side) 15B Heat exchanger at rear stage (air off-gas side) Reference Signs List 20 Collected water reservoir 6A Collected water 21 Liquid-to-liquid cooler 23 Make-up water collecting device 25A Direct contact heat exchanger in front stage 25B Direct contact heat exchanger in rear stage 6B Collected water 26 Cooling water 34A Water recovery tower (combustion exhaust gas side) 34B Moisture recovery tower (air off-gas side) 6C Recovered water (combustion water) 6D Recovered water (low dissolved carbon dioxide gas)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西崎 邦博 神奈川県川崎市高津区梶ケ谷2−11−2 (72)発明者 岩佐 信弘 大阪府岸和田市葛城町910−55 (72)発明者 吉田 弘正 愛知県名古屋市西区押切一丁目9番6号 (72)発明者 小松 正 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭61−39371(JP,A) 特開 平4−370665(JP,A) 特開 平4−370666(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24──────────────────────────────────────────────────の Continuing on the front page (72) Kunihiro Nishizaki, Inventor 2-11-2 Kajigaya, Takatsu-ku, Kawasaki-shi, Kanagawa (72) Nobuhiro Iwasa 910-55, Katsuragi-cho, Kishiwada-shi, Osaka (72) Inventor Hiromasa Yoshida Aichi 1-9-6, Oshikiri, Nishi-ku, Nagoya, Japan (72) Inventor Tadashi Komatsu 1-1, Tanabe-Shinda, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (56) References JP-A-61-39371 (JP, A) JP-A-4-370665 (JP, A) JP-A-4-370666 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 8/00-8/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池から排出される空気オフガスと、
燃料改質器から排出される燃焼排ガスとに含まれる水分
を回収し、回収水をイオン交換式水処理装置に供給して
燃料改質用の補給水とするものにおいて、前記燃焼排ガ
ス中の水分を凝縮する熱交換器の後段に前記空気オフガ
ス中の水分を凝縮する熱交換器を連接して設け、燃焼排
ガスからの凝縮水を前記後段に配された熱交換器の空気
オフガス側熱交換面に沿って通水し、凝縮水を炭酸ガス
濃度の低い前記空気オフガスと向流接触させ、炭酸ガス
濃度を低減した回収水を生成することを特徴とする燃料
電池発電装置の補給水回収装置。
1. An air off-gas discharged from a fuel cell,
The water contained in the flue gas and the flue gas discharged from the fuel reformer is recovered, and the recovered water is supplied to an ion-exchange type water treatment device to make up water for fuel reforming. A heat exchanger for condensing moisture in the air off-gas is provided in a subsequent stage of the heat exchanger for condensing water, and an air-off gas side heat exchange surface of a heat exchanger provided in the latter stage for condensed water from combustion exhaust gas. Wherein the condensed water is brought into countercurrent contact with the air off-gas having a low carbon dioxide gas concentration to generate recovered water having a reduced carbon dioxide gas concentration.
【請求項2】燃焼排ガス側の熱交換器および空気オフガ
ス側の熱交換器が直接式熱交換器として一つの水分回収
塔に収納され、回収した回収水を冷却水として燃焼排ガ
ス,空気オフガスの順で向流接触させることを特徴とす
る請求項1記載の燃料電池発電装置の補給水回収装置。
2. A heat exchanger on the flue gas side and a heat exchanger on the air offgas side are housed in one moisture recovery tower as a direct heat exchanger, and the recovered water is used as cooling water to convert the flue gas and air offgas. 2. The make-up water recovery device for a fuel cell power generator according to claim 1, wherein the make-up water recovery device is configured to make countercurrent contact in order.
【請求項3】燃焼排ガス側の熱交換器と空気オフガス側
の熱交換器とが、それぞれの回収水を冷却水として別体
に形成された水分回収塔に収納され、燃焼排ガス側の熱
交換器で回収した回収水を空気オフガス側の熱交換器に
通流して空気オフガスと向流接触させることを特徴とす
る請求項2記載の燃料電池発電装置の補給水回収装置。
3. A heat exchanger on the flue gas side and a heat exchanger on the air offgas side are housed in separately formed water recovery towers using the respective recovered water as cooling water, and heat exchange on the flue gas side is performed. 3. The replenishing water recovery device for a fuel cell power generator according to claim 2, wherein the recovered water recovered by the device flows through the heat exchanger on the air off gas side to make a counter current contact with the air off gas.
JP3243870A 1991-09-25 1991-09-25 Makeup water recovery equipment for fuel cell power generators Expired - Fee Related JP2854171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3243870A JP2854171B2 (en) 1991-09-25 1991-09-25 Makeup water recovery equipment for fuel cell power generators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3243870A JP2854171B2 (en) 1991-09-25 1991-09-25 Makeup water recovery equipment for fuel cell power generators

Publications (2)

Publication Number Publication Date
JPH0582147A JPH0582147A (en) 1993-04-02
JP2854171B2 true JP2854171B2 (en) 1999-02-03

Family

ID=17110207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3243870A Expired - Fee Related JP2854171B2 (en) 1991-09-25 1991-09-25 Makeup water recovery equipment for fuel cell power generators

Country Status (1)

Country Link
JP (1) JP2854171B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067927A1 (en) 2009-12-01 2011-06-09 パナソニック株式会社 Fuel cell system and control method for same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605378B2 (en) * 2000-04-06 2003-08-12 Utc Fuel Cells, Llc Functional integration of multiple components for a fuel cell power plant
US6759154B2 (en) 2001-02-26 2004-07-06 Delphi Technologies, Inc. Water recovery for a fuel cell system
JP2002313383A (en) * 2001-04-11 2002-10-25 Denso Corp Fuel cell system
JP4504614B2 (en) * 2002-03-11 2010-07-14 株式会社荏原製作所 Fuel cell power generation system
JP2005141924A (en) * 2003-11-04 2005-06-02 Nissan Motor Co Ltd Fuel cell system for vehicle
JP4681277B2 (en) * 2004-11-11 2011-05-11 三菱重工業株式会社 Fuel cell system
JP4689305B2 (en) * 2005-03-08 2011-05-25 東芝燃料電池システム株式会社 Fuel cell power generation system and control method thereof
JP2006252953A (en) * 2005-03-10 2006-09-21 Fujitsu Ltd Fuel cell device and electronic apparatus
JP5178042B2 (en) * 2007-04-25 2013-04-10 京セラ株式会社 Fuel cell device
JP5178041B2 (en) * 2007-04-25 2013-04-10 京セラ株式会社 Fuel cell device
JP2009199759A (en) * 2008-02-19 2009-09-03 Aisin Seiki Co Ltd Water purifying system for fuel cell
JP2009259587A (en) * 2008-04-16 2009-11-05 Aisin Seiki Co Ltd Water purifier for fuel cell system, and fuel cell system
JP5092959B2 (en) * 2008-07-18 2012-12-05 パナソニック株式会社 Fuel cell cogeneration system
JP5336573B2 (en) * 2011-12-21 2013-11-06 京セラ株式会社 Waste heat recovery system for solid oxide fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067927A1 (en) 2009-12-01 2011-06-09 パナソニック株式会社 Fuel cell system and control method for same

Also Published As

Publication number Publication date
JPH0582147A (en) 1993-04-02

Similar Documents

Publication Publication Date Title
JP2854171B2 (en) Makeup water recovery equipment for fuel cell power generators
US6277508B1 (en) Fuel cell power supply with exhaust recycling for improved water management
JPH11214021A (en) Solid electrolyte type fuel cell power generating apparatus
JPS6257072B2 (en)
JP3943405B2 (en) Fuel cell power generation system
US6787255B2 (en) Fuel cell power generating system and operation method
JP3077832B2 (en) Makeup water recovery equipment for fuel cell power generators
JP4453211B2 (en) Waste heat treatment method and apparatus for fuel cell power generator
JP2005063697A (en) Fuel cell power generating system
JP3132627B2 (en) Water recovery system for fuel cell power plant
JP3106552B2 (en) Water treatment system for fuel cell power plant
JP3743254B2 (en) Fuel cell power generator
JP2702030B2 (en) Fuel cell system
JP3960001B2 (en) Carbon monoxide remover and fuel cell system
JP3557104B2 (en) Phosphoric acid fuel cell power plant
JP4176130B2 (en) Fuel cell power generation system
JP4660889B2 (en) Fuel cell power generation system and operation method thereof
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP2009140726A (en) Fuel cell power generation device
JP3099407B2 (en) Water treatment system for phosphoric acid fuel cells
JP2000048843A (en) Fuel cell power facility
JP2008226603A (en) Heat recovery system in fuel cell device
JP4479361B2 (en) Hybrid fuel cell power generator
JP2002100382A (en) Fuel cell power generator
JPS62291865A (en) Fuel cell electric cenerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees