JP2853752B2 - Transmission line length measuring device - Google Patents

Transmission line length measuring device

Info

Publication number
JP2853752B2
JP2853752B2 JP3030946A JP3094691A JP2853752B2 JP 2853752 B2 JP2853752 B2 JP 2853752B2 JP 3030946 A JP3030946 A JP 3030946A JP 3094691 A JP3094691 A JP 3094691A JP 2853752 B2 JP2853752 B2 JP 2853752B2
Authority
JP
Japan
Prior art keywords
phase difference
signal
input
circuit
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3030946A
Other languages
Japanese (ja)
Other versions
JPH04269674A (en
Inventor
泰一 尾辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHURUNBERUJU TEKUNOROJIIZU Inc
Nippon Telegraph and Telephone Corp
Original Assignee
SHURUNBERUJU TEKUNOROJIIZU Inc
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHURUNBERUJU TEKUNOROJIIZU Inc, Nippon Telegraph and Telephone Corp filed Critical SHURUNBERUJU TEKUNOROJIIZU Inc
Priority to JP3030946A priority Critical patent/JP2853752B2/en
Priority to EP96201797A priority patent/EP0736773B1/en
Priority to DE69232208T priority patent/DE69232208T2/en
Priority to EP92301526A priority patent/EP0501722B1/en
Priority to US07/840,118 priority patent/US5321632A/en
Priority to DE69225262T priority patent/DE69225262T2/en
Publication of JPH04269674A publication Critical patent/JPH04269674A/en
Application granted granted Critical
Publication of JP2853752B2 publication Critical patent/JP2853752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、遠端開放の伝送線路に
パルスを送出して得られる反射波形から伝送線路長を測
定する伝送線路長測定装置に関し、特に複数の試験ピン
を有する集積回路試験装置等において、該試験ピンに対
応して設置された試験パタン出力/試験結果判定回路か
ら、被試験回路の入出力ピンに至るまでの伝送線路長の
高精度測定等に適した伝送線路長測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission line length measuring apparatus for measuring a transmission line length from a reflected waveform obtained by transmitting a pulse to a transmission line having an open end, and more particularly to an integrated circuit having a plurality of test pins. In a test apparatus, etc., a transmission line length suitable for highly accurate measurement of a transmission line length from a test pattern output / test result determination circuit installed corresponding to the test pin to an input / output pin of a circuit under test. It relates to a measuring device.

【0002】[0002]

【従来の技術】集積回路試験装置の試験タイミング精度
を維持するために必要なタイミング補正においては、集
積回路試験装置の試験ピンに対応して設置された試験パ
タン出力/試験結果判定回路から被試験回路の入出力ピ
ンに至る伝送線路長の、試験ピン間バラツキによって生
じるタイミング誤差を補正することが主要な処理項目の
一つとなっている。
2. Description of the Related Art In a timing correction necessary for maintaining the test timing accuracy of an integrated circuit test apparatus, a test pattern output / test result judgment circuit installed corresponding to a test pin of the integrated circuit test apparatus performs a test. One of the main processing items is to correct a timing error caused by a variation between test pins in a transmission line length to an input / output pin of a circuit.

【0003】従来においては、このような伝送線路長を
測定するにあたり、特願昭62−309326号に記載
されているような方法が用いられていた。この従来技術
の一例を図4により説明する。
Conventionally, in measuring such a transmission line length, a method as described in Japanese Patent Application No. 62-309326 has been used. An example of this prior art will be described with reference to FIG.

【0004】図4において、2つの位相差検出回路10
1および102を用い、各々、測定したい伝送線路10
0を、遠端開放状態として、これら2つの位相差検出回
路101および102の各一方の入力端A1およびB1
に接続して一定の繰り返し周期を有するパルス信号S1
を入力し、各他方の入力端A2およびB2にはこのパル
ス信号S1とは繰り返し周期がわずかに異なる基準パル
ス信号S2を入力する。一方の位相差検出回路101で
は、入力端A1に現われる階段状の反射波の第一の立上
りエッジのタイミングで、両入力端A1およびA2に供
給される信号間の位相差を比較する。他方の位相差検出
回路102では、入力端B1に現われる階段状の反射波
の第二の立上りエッジのタイミングで、両入力端B1お
よびB2に供給される信号間の位相差を比較する。
In FIG. 4, two phase difference detection circuits 10
1 and 102, respectively, the transmission line 10 to be measured
0 is set to the far-end open state, and the input terminals A1 and B1 of one of these two phase difference detection circuits 101 and 102, respectively.
And a pulse signal S1 having a constant repetition cycle
And a reference pulse signal S2 whose repetition period is slightly different from that of the pulse signal S1 is input to the other input terminals A2 and B2. On the other hand, the phase difference detection circuit 101 compares the phase difference between the signals supplied to the two input terminals A1 and A2 at the timing of the first rising edge of the stepped reflected wave appearing at the input terminal A1. The other phase difference detection circuit 102 compares the phase difference between the signals supplied to the two input terminals B1 and B2 at the timing of the second rising edge of the stepped reflected wave appearing at the input terminal B1.

【0005】両位相差検出回路101および102から
の位相差情報信号S3およびS4を排他的論理和ゲート
103に供給し、そのゲート出力S5と基準パルス信号
S2とを論理積ゲート104に供給し、この論理積ゲー
ト104からは、位相差信号S3とS4とが一致してい
ないときのみ、当該基準パルス信号S2を有効として出
力する。その有効パルス信号S6をカウンタ105で計
数することによって、階段状の反射波の第一と第二の立
上りエッジ間の時間差を求め、この時間差の値を二分し
て当該伝送線路を往復する伝搬遅延時間とみなしてい
た。
The phase difference information signals S3 and S4 from the phase difference detection circuits 101 and 102 are supplied to an exclusive OR gate 103, and the gate output S5 and the reference pulse signal S2 are supplied to an AND gate 104. Only when the phase difference signals S3 and S4 do not match, the AND gate 104 outputs the reference pulse signal S2 as valid. By counting the effective pulse signal S6 by the counter 105, the time difference between the first and second rising edges of the stepped reflected wave is obtained, and the value of this time difference is divided into two to divide the propagation delay in the round trip of the transmission line. Was considered time.

【0006】[0006]

【発明が解決しようとする課題】前述した両位相差検出
回路101および102の位相差情報信号S3とS4と
が一致していない状態としては、位相差情報信号S3お
よびS4の各立上りエッジ部分での不一致状態と、各立
下りエッジ部分での不一致状態が存在する。例えば、入
力信号A1およびB1の立上りエッジで位相差を検出す
る場合には、位相差情報信号S3およびS4の各立上り
エッジは、基準パルス信号S2の立上りエッジを入力信
号A1およびB1の立上りエッジがよぎる時に生じる。
他方、位相差情報信号S3およびS4の各立下りエッジ
は、基準パルス信号S2の立下りエッジを入力信号A1
およびB1の立上りエッジがよぎる時に生じる。
The above-mentioned state where the phase difference information signals S3 and S4 of the phase difference detection circuits 101 and 102 do not coincide with each other is caused by the rising edge portions of the phase difference information signals S3 and S4. And a mismatch state at each falling edge portion. For example, when the phase difference is detected at the rising edges of the input signals A1 and B1, the rising edges of the phase difference information signals S3 and S4 correspond to the rising edges of the reference pulse signal S2 and the rising edges of the input signals A1 and B1. Occurs when crossing.
On the other hand, each falling edge of the phase difference information signals S3 and S4 corresponds to the falling edge of the reference pulse signal S2 as the input signal A1.
And when the rising edge of B1 crosses.

【0007】上記位相差情報信号S3およびS4の立上
りエッジ間の位相差と、立下りエッジ間の位相差は、と
もに、当該伝送線路を往復するときの伝搬遅延時間2T
と、パルス信号S1およびS2の繰り返し周期t,t+
dtによって決定され、理想的には2Tを(t+Δt)
/Δt倍に伸長した値に等しくなる。
The phase difference between the rising edges and the phase difference between the falling edges of the phase difference information signals S3 and S4 are both equal to the propagation delay time 2T when reciprocating the transmission line.
And the repetition periods t, t + of the pulse signals S1 and S2
dt, and ideally 2T is (t + Δt)
It is equal to the value expanded by / Δt times.

【0008】しかしながら、実際の位相差検出回路には
固有の検出感度特性が存在し、その検出感度が低下する
ほど、上記位相差には多くの誤差が生じる。
However, an actual phase difference detection circuit has a unique detection sensitivity characteristic, and the lower the detection sensitivity is, the more errors occur in the phase difference.

【0009】従って、位相差検出回路101および10
2の検出感度特性に、立上りエッジ−立上りエッジ間の
検出と立上りエッジ−立下りエッジ間の検出とで差異が
生じる場合には、検出感度の劣るエッジ間の位相差検出
結果により多くの誤差が生じ、上記の測定方法ではこの
誤差分が必然的に含まれるという問題を有していた。
Therefore, the phase difference detection circuits 101 and 10
If the detection sensitivity characteristic of No. 2 has a difference between the detection between the rising edge and the rising edge and the detection between the rising edge and the falling edge, more errors are caused by the detection result of the phase difference between the edges having lower detection sensitivity. As a result, the above measurement method has a problem that this error is inevitably included.

【0010】例えば、特願昭62−299037号に記
載されている回路を上述した位相差検出回路に適用すれ
ば、現在の半導体技術を用いれば立上りエッジ−立上り
エッジ間の位相差検出では数ピコ秒の検出感度が実現で
きるが、立上りエッジ−立下りエッジ間の位相差検出で
は原理的に感度が劣り、測定精度上問題となっていた。
For example, if the circuit described in Japanese Patent Application No. 62-299037 is applied to the above-described phase difference detection circuit, if the current semiconductor technology is used, the detection of a phase difference between a rising edge and a rising edge will require several picoseconds. Although a detection sensitivity of seconds can be realized, the detection of a phase difference between a rising edge and a falling edge is inferior in principle in sensitivity, and poses a problem in measurement accuracy.

【0011】さらに、上述した従来技術では、両位相差
情報信号の不一致期間の一周期分だけに繰り返される基
準パルス信号数が伝送線路長の2倍の量に対応するた
め、両位相差情報信号の不一致期間の一周期分だけに繰
り返される基準パルス信号数を計数するか、もしくは計
数した基準パルス信号数が両位相差情報信号の不一致期
間の何周期分の値であるのかを正確に把握する必要があ
る。しかしながら、それを実現する機能がなく、位相差
検出回路の入力信号パルス数自体を付加的な手段で制御
するしか方法がなかった。
Further, in the above-mentioned prior art, since the number of reference pulse signals repeated only for one cycle of the mismatch period between the two phase difference information signals corresponds to twice the transmission line length, Counting the number of reference pulse signals repeated only for one cycle of the non-coincidence period, or accurately grasping the number of reference pulse signals counted in the non-coincidence period of both phase difference information signals There is a need. However, there is no function to realize this, and there has been no other way but to control the number of input signal pulses of the phase difference detection circuit by additional means.

【0012】そこで、本発明の目的は、従来の問題点を
解決し、高精度かつ高機能な伝送線路長測定装置を提供
することにある。
An object of the present invention is to solve the conventional problems and to provide a highly accurate and high-performance transmission line length measuring device.

【0013】[0013]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、遠端開放の伝送線路にパルスを送
出して得られる反射波形から伝送線路長を測定する伝送
線路長測定装置において、一定の繰り返し周期を有する
遠端開放による階段波と、該階段波とは繰り返し周期が
わずかに異なる基準パルス信号が入力信号として入力さ
れ、該2つの入力信号に対するしきい値が独立に制御可
能で、前記階段波の進行波成分による立上りエッジ、も
しくは立下りエッジ毎に両入力信号間の位相ずれを選択
的に検出する第一の位相差検出回路と、前記階段波と、
前記基準パルス信号が入力信号として入力され、該2つ
の入力信号に対するしきい値が独立に制御可能で、前記
階段波の反射波成分による立上りエッジ、もしくは立下
りエッジ毎に両入力信号間の位相ずれを選択的に検出す
る第二の位相差検出回路と、前記階段波が共通の2入力
信号として入力され、該2つの入力信号に対するしきい
値が独立に制御可能で、前記階段波の反射波成分と進行
波成分の立上りエッジ間、もしくは立下りエッジ間の位
相ずれを選択的に検出する第三の位相差検出回路と、前
記第一,第二および第三の位相差検出回路の各々からの
第一,第二および第三の位相差情報信号をもとに、該第
一の位相差情報信号と該第二の位相差情報信号の立上り
部分で生じている位相ずれ期間、および立下り部分で生
じている位相ずれ期間のいずれか一方を選択的に抽出す
る位相差信号抽出回路と、外部からの要求信号が入力さ
れ、該要求信号が入力された後に前記第一もしくは前記
第二の位相差情報信号の1周期分に相当する期間内でか
つ前記位相差信号抽出回路が抽出した位相ずれ期間の
み、前記基準パルス信号を有効とする基準パルスゲート
回路と、該基準パルスゲート回路からの出力信号を計数
するカウンタと、を備えたことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a transmission line length measurement for measuring a transmission line length from a reflected waveform obtained by sending a pulse to a transmission line having an open end. In the apparatus, a staircase wave having a constant repetition cycle due to the far-end opening and a reference pulse signal whose repetition cycle is slightly different from the staircase wave are input as input signals, and threshold values for the two input signals are independently set. Controllable, a first phase difference detection circuit that selectively detects a phase shift between both input signals for each rising edge or falling edge due to the traveling wave component of the staircase wave, and the staircase wave,
The reference pulse signal is input as an input signal, and a threshold value for the two input signals can be independently controlled, and a phase between both input signals at each rising edge or falling edge due to the reflected wave component of the staircase wave A second phase difference detection circuit for selectively detecting a shift, wherein the staircase wave is input as a common two input signal, and a threshold value for the two input signals can be independently controlled; A third phase difference detection circuit for selectively detecting a phase shift between a rising edge or a falling edge of a wave component and a traveling wave component, and each of the first, second, and third phase difference detection circuits From the first, second and third phase difference information signals from the first phase difference information signal and the second phase difference information signal, Phase shift occurring in the downstream part A phase difference signal extraction circuit for selectively extracting any one of the first and second phase difference information signals after a request signal is input from the outside and the request signal is input. A reference pulse gate circuit that validates the reference pulse signal within a period corresponding to minutes and only during a phase shift period extracted by the phase difference signal extraction circuit, and a counter that counts an output signal from the reference pulse gate circuit. , Is provided.

【0014】[0014]

【作用】本発明では、進行波に反射波が重畳された階段
状波形の、進行波によるエッジのタイミングと反射波に
よるエッジのタイミングを個別に、該階段状波形とはわ
ずかに異なる繰り返し周期を有する基準パルスのタイミ
ングと比較し、同時に該進行波によるエッジと該反射波
によるエッジの位相極性を検出し、これらの比較および
検出の結果を用いて、進行波エッジと基準パルスのタイ
ミング比較で得られる位相差情報信号と、反射波と基準
パルスのタイミング比較で得られる位相差情報信号との
不一致状態のうち、該2つの位相差情報信号の立上りエ
ッジ間もしくは立下りエッジ間の不一致状態のいずれか
一方を選択的に抽出し、かつ、外部からの測定要求信号
が入力された後に該抽出した不一致期間の一周期分だ
け、該基準パルス信号を計数することによって、該進行
波エッジと反射波エッジのタイミング差、すなわち伝送
線路長を測定する。
According to the present invention, the timing of the edge of the stepped waveform in which the reflected wave is superimposed on the traveling wave and the timing of the edge of the reflected wave are individually set to a repetition period slightly different from the stepped waveform. The timing of the traveling wave edge is compared with the timing of the reference pulse, and the phase polarity of the edge of the traveling wave and the edge of the edge of the reflected wave are detected at the same time. Out of the mismatched state between the phase difference information signal obtained and the phase difference information signal obtained by comparing the timing of the reflected wave and the reference pulse, either of the mismatched state between the rising edge or the falling edge of the two phase difference information signals One of which is selectively extracted, and after the measurement request signal is input from the outside, the reference pulse signal is generated for one cycle of the extracted mismatch period. By counting, timing difference of the reflected wave edge with the traveling wave edge, i.e. measuring the length of the transmission line.

【0015】従って、該位相差検出回路の検出感度が、
同一極性のエッジ間での検出と逆極性のエッジ間での検
出とで異なっていても、感度の高い検出結果のみを測定
結果として採用できるため、位相差検出回路の特性を最
大限に活用でき、高精度な伝送線路長の測定が可能とな
る。しかもまた、入力信号のパルス数を制御することな
く、確実に伝送線路長に対応する計数値が得られる。
Therefore, the detection sensitivity of the phase difference detection circuit is
Even if detection between edges of the same polarity is different from detection between edges of the opposite polarity, only the highly sensitive detection result can be used as the measurement result, so that the characteristics of the phase difference detection circuit can be fully utilized. Thus, the transmission line length can be measured with high accuracy. In addition, the count value corresponding to the transmission line length can be obtained without control of the number of pulses of the input signal.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】図1に本発明の基本回路構成の一実施例を
示す。図2には図1に示した本発明の基本回路構成の一
実施例の各部における信号を例示するタイムチャートを
示す。両図面に基づいて以下に実施例を説明する。
FIG. 1 shows an embodiment of the basic circuit configuration of the present invention. FIG. 2 is a time chart illustrating signals at various parts of the embodiment of the basic circuit configuration of the present invention shown in FIG. An embodiment will be described below with reference to both drawings.

【0018】伝送遅延時間Tの伝送線路100の遠端を
開放して得られる階段波RFの立上りエッジにおいて、
第一のエッジすなわち進行波によるエッジをa、第二の
エッジすなわち反射波によるエッジをbとする。これら
エッジaおよびbには2Tだけタイミングのずれがあ
る。
At the rising edge of the staircase wave RF obtained by opening the far end of the transmission line 100 with the transmission delay time T,
The first edge, ie, the edge due to the traveling wave, is a, and the second edge, ie, the edge due to the reflected wave, is b. These edges a and b have a timing shift of 2T.

【0019】図1において、1,2および3は、入力信
号のしきい値制御が可能な位相差検出回路である。位相
差検出回路1には、前記進行波による立上りエッジaと
タイミング比較パルスPRの立上りエッジとの位相差を
比較すべく、両信号が被測定入力信号として加えられ
る。ここで、図2に示すように、入力信号しきい値を決
める基準レベル入力VR11およびVR12として、進
行波による立上りエッジの中間レベルおよびタイミング
比較パルスPRの中間レベルを、ぞれぞれ、設定する。
In FIG. 1, reference numerals 1, 2, and 3 are phase difference detection circuits capable of controlling the threshold value of an input signal. Both signals are applied to the phase difference detection circuit 1 as input signals to be measured in order to compare the phase difference between the rising edge a of the traveling wave and the rising edge of the timing comparison pulse PR. Here, as shown in FIG. 2, an intermediate level of a rising edge due to a traveling wave and an intermediate level of a timing comparison pulse PR are set as reference level inputs VR11 and VR12 for determining an input signal threshold, respectively. .

【0020】位相差検出回路2には、前記反射波による
立上りエッジbとタイミング比較パルスPRの立上りエ
ッジとの位相差を比較すべく、両信号が被測定入力信号
として加えられる。ここで、図2に示すように、入力信
号しきい値を決める基準レベル入力VR21およびVR
22として、反射波による立上りエッジの中間レベルお
よびタイミング比較パルスPRの中間レベルを、それぞ
れ、設定する。
Both signals are added to the phase difference detection circuit 2 as input signals to be measured in order to compare the phase difference between the rising edge b of the reflected wave and the rising edge of the timing comparison pulse PR. Here, as shown in FIG. 2, reference level inputs VR21 and VR21 for determining the threshold value of the input signal.
As 22, the intermediate level of the rising edge due to the reflected wave and the intermediate level of the timing comparison pulse PR are set, respectively.

【0021】同様に、位相差検出回路3には、前記進行
波による立上りエッジaと前記反射波による立上りエッ
ジbの位相差を比較すべく、前記階段波信号が共通の被
測定入力信号として加えられる。ここで、図2に示すよ
うに、入力信号しきい値を決める基準レベル入力VR3
1およびVR32として、進行波による立上りエッジの
中間レベルおよび反射波による立上りエッジの中間レベ
ルを、それぞれ、設定する。
Similarly, in order to compare the phase difference between the rising edge a due to the traveling wave and the rising edge b due to the reflected wave, the staircase signal is added to the phase difference detection circuit 3 as a common input signal to be measured. Can be Here, as shown in FIG. 2, a reference level input VR3 for determining an input signal threshold value
The intermediate level of the rising edge due to the traveling wave and the intermediate level of the rising edge due to the reflected wave are set as 1 and VR32.

【0022】位相差検出回路1および2は、図2に示す
ように、タイミング比較パルスPRのタイミングが他方
のタイミングに比べて遅れているときに正の位相差情報
としてハイレベルを出力し、逆の場合は、負の位相差情
報としてローレベルを出力するNRZ(Non Ret
urn Zero)の位相差情報信号Q+とその反転信
号Q−をそれぞれ出力する。
As shown in FIG. 2, the phase difference detection circuits 1 and 2 output a high level as positive phase difference information when the timing of the timing comparison pulse PR is later than the other timing, and In the case of NRZ (Non Ret), a low level is output as negative phase difference information.
(urn Zero), and outputs an inverted signal Q− of the phase difference information signal Q +.

【0023】一方、位相差検出回路3の動作も位相差検
出回路1または2のそれと同様であり、反射波による立
上りエッジタイミングは進行波による立上りエッジタイ
ミングに比べて遅れているから、正の位相差情報として
Q+にはハイレベル、Q−にはローレベルのNRZ信号
を定常的に出力する。
On the other hand, the operation of the phase difference detection circuit 3 is the same as that of the phase difference detection circuit 1 or 2, and the rising edge timing due to the reflected wave is later than the rising edge timing due to the traveling wave. As the phase difference information, a high level NRZ signal is constantly output to Q + and a low level NRZ signal is output to Q−.

【0024】ここで、階段波RFおよびタイミング比較
パルスPRの繰り返し周期がそれぞれtおよびt+dt
であると仮定すると、両信号の繰り返し周期の差はdt
であるから、両信号の位相関係は一周期毎にdtずつず
れていく。従って、位相差検出回路1および2の各々の
出力信号Q+およびQ−の周期はt+dtを(t+d
t)/dt倍に伸張したものとなり、位相差検出回路1
の出力信号Q+およびQ−と位相差検出回路2の出力信
号Q+およびQ−との位相関係は、周期と同様に、進行
波によるエッジaと反射波によるエッジbとの時間差2
Tを(t+dt)/dt倍に伸張したものとなる。
Here, the repetition periods of the staircase wave RF and the timing comparison pulse PR are t and t + dt, respectively.
And the difference between the repetition periods of both signals is dt
Therefore, the phase relationship between the two signals is shifted by dt every cycle. Accordingly, the period of each of the output signals Q + and Q− of the phase difference detection circuits 1 and 2 is t + dt (t + d
t) / dt times, and the phase difference detection circuit 1
, And the phase relationship between the output signals Q + and Q− of the phase difference detection circuit 2 are the same as the period, except for the time difference 2 between the edge a due to the traveling wave and the edge b due to the reflected wave.
T is expanded by (t + dt) / dt times.

【0025】次に、符号4は位相差信号抽出回路を示
す。この位相差信号抽出回路4の一実施例として、図1
では、否定論理和ゲート41,42,43,44および
45によって構成している。以下にこの位相差信号抽出
回路の構成と動作を説明する。
Next, reference numeral 4 denotes a phase difference signal extraction circuit. As an embodiment of the phase difference signal extracting circuit 4, FIG.
In this example, NOR gates 41, 42, 43, 44 and 45 are used. Hereinafter, the configuration and operation of this phase difference signal extraction circuit will be described.

【0026】位相差検出回路1の出力信号Q+と位相差
検出回路2の出力信号Q−、および位相差検出回路1の
出力信号Q−と位相差検出回路2の出力信号Q+の各々
の否定論理和を論理ゲート41および42で取る。論理
ゲート41の出力としては、図2に示すように、位相差
検出回路1の出力信号Q+と位相差検出回路2の出力信
号Q+との間の立下りエッジ間のタイミング差が生じて
いる期間だけハイレベルが生じる。論理ゲート42の出
力としては、図2に示すように、位相差検出回路1の出
力信号Q+と位相差検出回路2の出力信号Q+との間の
立上りエッジ間のタイミング差が生じている期間だけハ
イレベルが生じる。
The NOT logic of each of the output signal Q + of the phase difference detection circuit 1 and the output signal Q− of the phase difference detection circuit 2 and the output signal Q− of the phase difference detection circuit 1 and the output signal Q + of the phase difference detection circuit 2 The sum is taken by logic gates 41 and 42. As shown in FIG. 2, the output of the logic gate 41 is a period during which a timing difference between the falling edges of the output signal Q + of the phase difference detection circuit 1 and the output signal Q + of the phase difference detection circuit 2 occurs. Only a high level occurs. As shown in FIG. 2, the output of the logic gate 42 is only for a period during which a timing difference between rising edges between the output signal Q + of the phase difference detection circuit 1 and the output signal Q + of the phase difference detection circuit 2 occurs. High level occurs.

【0027】さらに、例えば、論理ゲート41の出力と
位相差検出回路3の出力信号Q+、および論理ゲート4
2の出力と位相差検出回路3の出力信号Q−の各々の否
定論理和を論理ゲート43および44で取ると、回路3
の出力信号Q+にはハイレベルが定常的に出力されてい
るから論理ゲート43の出力はローレベルに固定され
る。一方、回路3の出力信号Q−には、図2に示すよう
に、ローレベルが定常的に出力されているから論理ゲー
ト44の出力としては、論理ゲート41の出力の反転信
号、すなわち位相差検出回路1の出力信号Q+と位相差
検出回路2の出力信号Q+との間の立下りエッジ間のタ
イミング差が生じている期間だけローレベルが生じ、こ
の期間を抽出できる。従って、さらに論理ゲート45で
論理ゲート43の出力と論理ゲート44の出力との否定
論理和を取ると、図2に示すように、論理ゲート45に
より、位相差検出回路1の出力信号Q+と位相差検出回
路2の出力信号Q+との間の立上りエッジ間のタイミン
グ差が生じている期間だけを抽出できる。
Further, for example, the output of the logic gate 41, the output signal Q + of the phase difference detection circuit 3, and the logic gate 4
2 and the output signal Q− of the phase difference detection circuit 3 are NORed by the logic gates 43 and 44, the circuit 3
The output of the logic gate 43 is fixed at a low level because a high level is constantly output to the output signal Q +. On the other hand, as shown in FIG. 2, the output signal Q- of the circuit 3 has a low level steadily output, so that the output of the logic gate 44 is an inverted signal of the output of the logic gate 41, ie, the phase difference. A low level is generated only during a period in which the timing difference between the falling edge between the output signal Q + of the detection circuit 1 and the output signal Q + of the phase difference detection circuit 2 occurs, and this period can be extracted. Therefore, when the logical gate 45 further performs a NOR operation on the output of the logical gate 43 and the output of the logical gate 44, the output signal Q + of the phase difference detection circuit 1 is changed by the logical gate 45 as shown in FIG. It is possible to extract only a period in which a timing difference between rising edges between the output signal Q + of the phase difference detection circuit 2 and the rising edge occurs.

【0028】なお、位相差検出回路3の出力信号Q+と
Q−の接続を逆転すれば、論理ゲート45の出力には、
位相差検出回路1の出力信号Q+と位相差検出回路2の
出力信号Q+との間の立下りエッジ間のタイミング差が
生じている期間だけローレベルが生じ、この期間を抽出
できる。従って、位相差検出回路1および2の検出特性
において、立上りエッジ間での検出感度と、立上りエッ
ジ−立下りエッジ間での検出感度に差異があっても、位
相差検出回路3の出力信号Q+とQ−の接続方法の選択
に応じて、検出感度の高い成分の情報だけを抽出するこ
とができ、以て高精度な位相差検出が可能となる。
By reversing the connection between the output signals Q + and Q- of the phase difference detection circuit 3, the output of the logic gate 45 becomes
A low level is generated only during a period in which a timing difference between falling edges between the output signal Q + of the phase difference detection circuit 1 and the output signal Q + of the phase difference detection circuit 2 occurs, and this period can be extracted. Therefore, in the detection characteristics of the phase difference detection circuits 1 and 2, even if the detection sensitivity between the rising edge and the detection sensitivity between the rising edge and the falling edge is different, the output signal Q + of the phase difference detection circuit 3 According to the selection of the connection method between Q and Q-, it is possible to extract only information of components having high detection sensitivity, thereby enabling highly accurate phase difference detection.

【0029】次に、符号5は基準パルスゲート回路を示
し、この回路5は図3に示す例の如き構成の論理回路5
1および否定論理和ゲート52より構成される。この基
準パルスゲート回路の構成および動作を図3に示す一実
施例を用いて以下に説明する。
Next, reference numeral 5 indicates a reference pulse gate circuit, and this circuit 5 is a logic circuit 5 having a configuration as shown in FIG.
1 and a NOR gate 52. The configuration and operation of this reference pulse gate circuit will be described below using one embodiment shown in FIG.

【0030】基準パルスゲート回路5は、リセット優先
セットリセットフリップフロップ53および54,強制
リセット付きトグルフリップフロップ55、および論理
和ゲート56および57より成る論理回路51と否定論
理和ゲート52によって構成されている。
The reference pulse gate circuit 5 comprises a logic circuit 51 comprising reset priority set reset flip-flops 53 and 54, a toggle flip-flop 55 with forced reset, and OR gates 56 and 57, and a NOR gate 52. I have.

【0031】ここで、フリップフロップ53,54およ
び55はすべてクロック入力の立上りエッジをセンスし
て出力信号QおよびQBが確定するものと仮定する。ま
ず、図2に示すように、リセット信号RSTによってこ
れらフリップフロップ53,54および55が初期化さ
れる。
Here, it is assumed that flip-flops 53, 54 and 55 all sense rising edges of clock input to determine output signals Q and QB. First, as shown in FIG. 2, these flip-flops 53, 54 and 55 are initialized by a reset signal RST.

【0032】測定要求信号T1がハイになると、この信
号T1を受けるフリップフロップ53のQB出力がロー
レベルになる。図2に示すように、このQB出力と位相
差検出回路1のQ+信号が論理和ゲート57を介してト
グルフリップフロップ55のクロック端子に印加され
る。トグルフリップフロップ55のQB出力は位相差検
出回路1のQ+信号の立上りエッジで反転するから、位
相差検出回路1のQ+信号の2度目の立上りエッジでト
グルフリップフロップ55のQB出力は再びハイレベル
に反転する。このQB出力は、フリップフロップ54の
セット端子に供給され、そのQ出力がハイレベルに反転
する。このQ出力はリセット信号RSTと共に論理和ゲ
ート56を介してフリップフロップ53のリセット端子
に供給される。したがって、このフリップフロップ53
をリセットし、それ以後のトグルフリップフロップ55
のクロック入力は禁止される。
When the measurement request signal T1 goes high, the QB output of the flip-flop 53 receiving this signal T1 goes low. As shown in FIG. 2, the QB output and the Q + signal of the phase difference detection circuit 1 are applied to the clock terminal of the toggle flip-flop 55 via the OR gate 57. Since the QB output of the toggle flip-flop 55 is inverted at the rising edge of the Q + signal of the phase difference detection circuit 1, the QB output of the toggle flip-flop 55 becomes high level again at the second rising edge of the Q + signal of the phase difference detection circuit 1. Flip to This QB output is supplied to the set terminal of the flip-flop 54, and the Q output is inverted to a high level. This Q output is supplied to the reset terminal of the flip-flop 53 via the OR gate 56 together with the reset signal RST. Therefore, this flip-flop 53
Is reset, and the subsequent toggle flip-flop 55
Clock input is prohibited.

【0033】かくして、トグルフリップフロップ55の
QB出力には測定要求信号T1が印加された直後に位相
差検出回路1のQ+出力の一周期分だけがハイレベルと
なる信号が出力される。このQB出力,タイミング比較
パルスPRおよび否定論理和ゲート45の出力を否定論
理和ゲート52に供給すると、図2に示すような出力が
得られる。
Thus, the QB output of the toggle flip-flop 55 outputs a signal in which only one cycle of the Q + output of the phase difference detection circuit 1 becomes high immediately after the application of the measurement request signal T1. When the QB output, the timing comparison pulse PR and the output of the NOR gate 45 are supplied to the NOR gate 52, an output as shown in FIG. 2 is obtained.

【0034】前記位相差信号抽出回路4で抽出された位
相差情報信号は、前記階段波RFとタイミング比較パル
スPRが入力され続ける限り、位相差検出回路1および
2の出力信号Q+やQ−の信号周期で繰り返される。
As long as the staircase wave RF and the timing comparison pulse PR are continuously input, the phase difference information signal extracted by the phase difference signal extraction circuit 4 is the output signal Q + or Q− of the phase difference detection circuits 1 and 2. It is repeated in the signal cycle.

【0035】そこで、例えば図3に示すような基準パル
スゲート回路5においては、外部からの測定要求信号T
1が印加されると、その印加後に、論理回路51により
位相差検出回路1のQ+出力の一周期分だけを抽出し、
その抽出出力信号と、位相差信号抽出回路4から前記位
相差情報信号と、タイミング比較パルスPRとの否定論
理和を論理ゲート52で取れば、位相差検出回路1のQ
+出力と位相差検出回路2のQ+出力との間の立上りエ
ッジ間のタイミング差が生じている期間の一周期分だけ
の間に送出されるタイミング比較パルスPRのパルスを
抽出できる。
Therefore, for example, in a reference pulse gate circuit 5 as shown in FIG.
When 1 is applied, after the application, the logic circuit 51 extracts only one cycle of the Q + output of the phase difference detection circuit 1,
If the logical OR of the extracted output signal, the phase difference information signal from the phase difference signal extraction circuit 4 and the timing comparison pulse PR is taken by the logic gate 52, the Q of the phase difference detection circuit 1
It is possible to extract the pulse of the timing comparison pulse PR which is transmitted during only one cycle of the period in which the timing difference between the rising edge between the + output and the Q + output of the phase difference detection circuit 2 occurs.

【0036】従って、さらにカウンタ6で論理ゲート5
2からの出力パルスの個数を計数し、計数値がNであっ
たとすれば、位相差検出回路1のQ+出力と位相差検出
回路2のQ+出力との間の立上りエッジ間のタイミング
差が生じている期間をタイミング比較パルスPRの周期
(t+dt)のN倍として認識できる。
Therefore, the counter 6 further sets the logic gate 5
2 is counted, and if the counted value is N, a timing difference occurs between the rising edges of the Q + output of the phase difference detection circuit 1 and the Q + output of the phase difference detection circuit 2. This period can be recognized as N times the period (t + dt) of the timing comparison pulse PR.

【0037】ところで、上述したように、位相差検出回
路1の出力信号Q+およびQ−と位相差検出回路2の出
力信号Q+およびQ−との位相関係は、進行波によるエ
ッジaと反射波によるエッジbとの時間差2Tを(t+
dt)/dt倍に伸張したものであるから、以下の等式
が成り立つ。
As described above, the phase relationship between the output signals Q + and Q- of the phase difference detection circuit 1 and the output signals Q + and Q- of the phase difference detection circuit 2 depends on the edge a due to the traveling wave and the reflected wave. The time difference 2T from the edge b is (t +
dt) / dt, the following equation holds.

【0038】 2T×(t+dt)/dt=N×(t+dt) これより測定すべき値、すなわち伝送線路長Tは次式の
ごとく測定値Nと設定した入力信号との間の周期差dt
によって求めることができる。
2T × (t + dt) / dt = N × (t + dt) From this, the value to be measured, ie, the transmission line length T, is the period difference dt between the measured value N and the set input signal as shown in the following equation.
Can be determined by:

【0039】T=N×dt/2 以上の説明においては、階段波RFの立上りエッジにお
ける、進行波によるエッジaと反射波によるエッジbの
時間差を求めることによって、階段波RFが伝搬した伝
送線路長Tを求める場合について、本発明の実施例を述
べたが、階段波RFの立下りエッジにおける、進行波に
よるエッジaと反射波によるエッジbの時間差を求める
ことによっても同様に伝送線路長Tを求めることができ
る。その場合には、上述した説明において、位相差検出
回路1,2および3として、入力信号の立下りエッジ間
の位相差を比較する回路を用いれば、全く同様の手順に
よって、伝送線路長Tを求めることができる。
T = N × dt / 2 In the above description, the time difference between the rising edge a of the staircase wave RF and the edge b due to the reflected wave is determined to obtain the transmission line through which the staircase wave RF has propagated. Although the embodiment of the present invention has been described for obtaining the length T, the transmission line length T can be similarly obtained by obtaining the time difference between the edge a due to the traveling wave and the edge b due to the reflected wave at the falling edge of the staircase wave RF. Can be requested. In such a case, if a circuit for comparing the phase difference between the falling edges of the input signal is used as the phase difference detection circuits 1, 2, and 3 in the above description, the transmission line length T can be determined in exactly the same procedure. You can ask.

【0040】あるいはまた、位相差検出回路1,2およ
び3として、入力信号の立下りエッジ間の位相差比較と
立上りエッジ間の位相差比較を選択的に制御可能な回路
を用いてもよい。
Alternatively, a circuit capable of selectively controlling the phase difference comparison between the falling edges and the phase difference between the rising edges of the input signal may be used as the phase difference detection circuits 1, 2, and 3.

【0041】測定精度を支配する要因としては、入力さ
れる階段波RFとタイミングパルス信号PRの繰り返し
周期安定度と、上述した、位相差検出回路1,2および
3の検出感度特性が挙げられる。前者については、信号
源として周波数分解能1Hz、周波数安定度1×10
-11 /分程度の性能を有する市販のシンセサイザを用い
れば、例えば、繰り返し周波数を50MHz±1Hz
(50000000±1Hz)と50.002000M
Hz±1Hz(50002000±1Hz)に設定すれ
ば、分解能は0.8ps±0.0004psに設定でき
る。後者については、上述したように、例えば特願昭6
2−299037号に記載された回路を位相差検出回路
に適用すれば、現在の半導体技術を用いれば数ピコ秒の
検出感度が実現できる。従って、測定分解能と時間精度
がともにピコ秒オーダの伝送線路長測定が本発明によっ
て実現できる。
Factors governing the measurement accuracy include the repetition period stability of the input staircase wave RF and timing pulse signal PR, and the above-described detection sensitivity characteristics of the phase difference detection circuits 1, 2, and 3. For the former, the frequency resolution is 1 Hz and the frequency stability is 1 × 10
If a commercially available synthesizer having a performance of about -11 / min is used, for example, a repetition frequency of 50 MHz ± 1 Hz
(5000000 ± 1Hz) and 50.002000M
If the frequency is set to Hz ± 1 Hz (5002000 ± 1 Hz), the resolution can be set to 0.8 ps ± 0.0004 ps. Regarding the latter, as described above, for example,
If the circuit described in Japanese Patent Application Laid-Open No. 2-299037 is applied to a phase difference detection circuit, detection sensitivity of several picoseconds can be realized by using current semiconductor technology. Therefore, the present invention can realize the transmission line length measurement in which both the measurement resolution and the time accuracy are on the order of picoseconds.

【0042】[0042]

【発明の効果】以上の説明から明らかなごとく、本発明
によれば、位相検出回路の検出感度が、同一極性のエッ
ジ間と逆極性のエッジ間とで異なっていても、位相差検
出回路の特性を最大限に活用でき、高精度な伝送線路長
の測定が可能となる。しかもまた、本発明によれば、入
力信号のパルス数を制御することなく、確実に伝送線路
長に対応する計数値が得られる。
As is apparent from the above description, according to the present invention, even if the detection sensitivity of the phase detection circuit differs between the edges of the same polarity and between the edges of the opposite polarity, the phase difference detection circuit can be used. The characteristics can be used to the maximum and the transmission line length can be measured with high accuracy. In addition, according to the present invention, the count value corresponding to the transmission line length can be obtained reliably without controlling the number of pulses of the input signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における伝送線路長測定装置の基本回路
構成の一実施例を示す回路ブロック図である。
FIG. 1 is a circuit block diagram showing one embodiment of a basic circuit configuration of a transmission line length measuring device according to the present invention.

【図2】本発明における伝送線路長測定装置の動作原理
を示すタイムチャートである。
FIG. 2 is a time chart illustrating an operation principle of the transmission line length measuring device according to the present invention.

【図3】本発明における基準パルスゲート回路に適用可
能な回路構成の一実施例を示す回路ブロック図である。
FIG. 3 is a circuit block diagram showing one embodiment of a circuit configuration applicable to a reference pulse gate circuit in the present invention.

【図4】従来技術の一例を示す回路ブロック図である。FIG. 4 is a circuit block diagram illustrating an example of a conventional technique.

【符号の説明】[Explanation of symbols]

100 伝送線路 RF 遠端を開放して得られる階段波 PR タイミング比較パルス a 階段波RFの進行波による立上りエッジ b 階段波RFの反射波による立上りエッジ 1,2,3 位相差検出回路 4 位相差信号抽出回路 5 基準パルスゲート回路 6 カウンタ VR11,VR12 位相差検出回路1の入力信号しき
い値を決める基準レベル入力 VR21,VR22 位相差検出回路2の入力信号しき
い値を決める基準レベル入力 VR31,VR32 位相差検出回路3の入力信号しき
い値を決める基準レベル入力 Q+ 位相差検出回路の位相差情報信号 Q− 位相差検出回路の位相差情報信号Q+の論理反転
信号 41,42,43,44,45,52 否定論理和ゲー
ト 51 論理回路 53,54 リセット優先セットリセットフリップフロ
ップ 55 強制リセット付きトグルフリップフロップ 56,57 論理和ゲート RST リセット信号 T1 測定要求信号 101,102 位相差検出回路 103 排他的論理和ゲート 104 論理積ゲート 105 カウンタ
Reference Signs List 100 Transmission line RF Step wave obtained by opening the far end PR Timing comparison pulse a Rising edge due to traveling wave of step wave RF b Rising edge due to reflected wave of step wave RF 1,2,3 Phase difference detection circuit 4 Phase difference Signal extraction circuit 5 Reference pulse gate circuit 6 Counter VR11, VR12 Reference level inputs VR21, VR22 for determining input signal threshold of phase difference detection circuit 1 Reference level inputs VR31, VR31 for determining input signal threshold of phase difference detection circuit 2 VR32 Reference level input for determining the input signal threshold value of the phase difference detection circuit 3 Q + Phase difference information signal of the phase difference detection circuit Q− Logically inverted signal 41, 42, 43, 44 of the phase difference information signal Q + of the phase difference detection circuit , 45, 52 NOR gate 51 Logic circuit 53, 54 Reset priority set reset flip-flop 55 Toggle flip-flop with forced reset 56, 57 OR gate RST Reset signal T1 Measurement request signal 101, 102 Phase difference detection circuit 103 Exclusive OR gate 104 AND gate 105 Counter

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 遠端開放の伝送線路にパルスを送出して
得られる反射波形から伝送線路長を測定する伝送線路長
測定装置において、一定の繰り返し周期を有する遠端開
放による階段波と、該階段波とは繰り返し周期がわずか
に異なる基準パルス信号が入力信号として入力され、該
2つの入力信号に対するしきい値が独立に制御可能で、
前記階段波の進行波成分による立上りエッジ、もしくは
立下りエッジ毎に両入力信号間の位相ずれを選択的に検
出する第一の位相差検出回路と、前記階段波と、前記基
準パルス信号が入力信号として入力され、該2つの入力
信号に対するしきい値が独立に制御可能で、前記階段波
の反射波成分による立上りエッジ、もしくは立下りエッ
ジ毎に両入力信号間の位相ずれを選択的に検出する第二
の位相差検出回路と、前記階段波が共通の2入力信号と
して入力され、該2つの入力信号に対するしきい値が独
立に制御可能で、前記階段波の反射波成分と進行波成分
の立上りエッジ間、もしくは立下りエッジ間の位相ずれ
を選択的に検出する第三の位相差検出回路と、前記第
一,第二および第三の位相差検出回路の各々からの第
一,第二および第三の位相差情報信号をもとに、該第一
の位相差情報信号と該第二の位相差情報信号の立上り部
分で生じている位相ずれ期間、および立下り部分で生じ
ている位相ずれ期間のいずれか一方を選択的に抽出する
位相差信号抽出回路と、外部からの要求信号が入力さ
れ、該要求信号が入力された後に前記第一もしくは前記
第二の位相差情報信号の1周期分に相当する期間内でか
つ前記位相差信号抽出回路が抽出した位相ずれ期間の
み、前記基準パルス信号を有効とする基準パルスゲート
回路と、該基準パルスゲート回路からの出力信号を計数
するカウンタと、を備えたことを特徴とする伝送線路長
測定装置。
1. A transmission line length measuring apparatus for measuring a transmission line length from a reflected waveform obtained by transmitting a pulse to a transmission line having a far end open, comprising: A reference pulse signal whose repetition cycle is slightly different from the staircase wave is input as an input signal, and the threshold values for the two input signals can be controlled independently,
A first phase difference detection circuit for selectively detecting a phase shift between both input signals at each rising edge or falling edge of the staircase wave due to a traveling wave component; and the staircase wave and the reference pulse signal are input. The signals are input as signals, and the threshold values for the two input signals can be independently controlled, and the phase shift between the two input signals is selectively detected at each rising edge or falling edge due to the reflected wave component of the staircase wave. A second phase difference detection circuit, and the staircase wave are input as two common input signals, the thresholds for the two input signals can be controlled independently, and the reflected wave component and the traveling wave component of the staircase wave A third phase difference detecting circuit for selectively detecting a phase shift between rising edges or between falling edges of the first and second and third phase difference detecting circuits. Second and third Based on the phase difference information signal, one of a phase shift period occurring at a rising portion of the first phase difference information signal and the second phase difference information signal, and a phase shifting period occurring at a falling portion A phase difference signal extracting circuit for selectively extracting one of the first and second phase difference information signals after a request signal is input from the outside and the request signal is input; A reference pulse gate circuit that validates the reference pulse signal within a period and only during a phase shift period extracted by the phase difference signal extraction circuit, and a counter that counts an output signal from the reference pulse gate circuit. A transmission line length measuring device, characterized in that:
JP3030946A 1991-02-26 1991-02-26 Transmission line length measuring device Expired - Lifetime JP2853752B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3030946A JP2853752B2 (en) 1991-02-26 1991-02-26 Transmission line length measuring device
EP96201797A EP0736773B1 (en) 1991-02-26 1992-02-24 Transmission line length measurement method and apparatus
DE69232208T DE69232208T2 (en) 1991-02-26 1992-02-24 Method and device for measuring the length of a transmission line
EP92301526A EP0501722B1 (en) 1991-02-26 1992-02-24 Transmission line length measurement method
US07/840,118 US5321632A (en) 1991-02-26 1992-02-24 Method and apparatus for measuring the length of a transmission line in accordance with a reflected waveform
DE69225262T DE69225262T2 (en) 1991-02-26 1992-02-24 Method of measuring the length of a transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3030946A JP2853752B2 (en) 1991-02-26 1991-02-26 Transmission line length measuring device

Publications (2)

Publication Number Publication Date
JPH04269674A JPH04269674A (en) 1992-09-25
JP2853752B2 true JP2853752B2 (en) 1999-02-03

Family

ID=12317844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030946A Expired - Lifetime JP2853752B2 (en) 1991-02-26 1991-02-26 Transmission line length measuring device

Country Status (1)

Country Link
JP (1) JP2853752B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050607A1 (en) * 2006-10-25 2008-05-02 Advantest Corporation Tester, driver comparator chip, response measuring device, calibration method, and calibration device
WO2010086971A1 (en) * 2009-01-28 2010-08-05 株式会社アドバンテスト Test device and test method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2459622T3 (en) * 2008-12-03 2014-05-12 Abb Research Ltd. Procedure and system for measuring the length of a power line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050607A1 (en) * 2006-10-25 2008-05-02 Advantest Corporation Tester, driver comparator chip, response measuring device, calibration method, and calibration device
JP2008107188A (en) * 2006-10-25 2008-05-08 Advantest Corp Testing device, driver comparator chip, response measuring device, and calibration method and device
WO2010086971A1 (en) * 2009-01-28 2010-08-05 株式会社アドバンテスト Test device and test method
JPWO2010086971A1 (en) * 2009-01-28 2012-07-26 株式会社アドバンテスト Test apparatus and test method

Also Published As

Publication number Publication date
JPH04269674A (en) 1992-09-25

Similar Documents

Publication Publication Date Title
US5083299A (en) Tester for measuring signal propagation delay through electronic components
US5923676A (en) Bist architecture for measurement of integrated circuit delays
US7795939B2 (en) Method and system for setup/hold characterization in sequential cells
US10277213B1 (en) Glitch detection in input/output bus
US5684760A (en) Circuit arrangement for measuring a time interval
US7504896B2 (en) Methods and apparatus for inline measurement of switching delay history effects in PD-SOI technology
KR100292896B1 (en) Pll jitter measuring method and integrated circuit therewith
US5020038A (en) Antimetastable state circuit
EP1525488B1 (en) Electronic circuit with asynchronously operating components
US5498983A (en) Device for checking the skew between two clock signals
JP2853752B2 (en) Transmission line length measuring device
US7363568B2 (en) System and method for testing differential signal crossover using undersampling
US4613777A (en) Binary signal comparator using two d flip-flops for precise triggering
CN216595393U (en) Time delay testing device
US5754063A (en) Method and apparatus to measure internal node timing
GB2549619A (en) Synchronous, internal clock edge alignment for integrated circuit testing
US6807117B2 (en) Semiconductor device having PLL-circuit
JP2571082B2 (en) Transmission line length measuring device
JP3058130B2 (en) Test circuit for high-speed semiconductor integrated circuit devices
JP2591849B2 (en) Test circuit
JPH0329871A (en) Logical integrated circuit
KR200273009Y1 (en) High precision test pattern generator
JPH07260899A (en) Signal timing adjusting circuit
JPH01210875A (en) Testing method for prescaler
JPH0353540A (en) Integrated circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13