JP2852305B2 - Artificial prosthesis materials - Google Patents

Artificial prosthesis materials

Info

Publication number
JP2852305B2
JP2852305B2 JP61271578A JP27157886A JP2852305B2 JP 2852305 B2 JP2852305 B2 JP 2852305B2 JP 61271578 A JP61271578 A JP 61271578A JP 27157886 A JP27157886 A JP 27157886A JP 2852305 B2 JP2852305 B2 JP 2852305B2
Authority
JP
Japan
Prior art keywords
prosthetic
growth factor
factor
porous structure
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61271578A
Other languages
Japanese (ja)
Other versions
JPS63125260A (en
Inventor
杉郎 大谷
定勝 ▲やなぎ▼澤
邦雄 新島
一志 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Kagaku Gijutsu Shinko Jigyodan
Niijima Kunio
Yanagisawa Sadakatsu
Original Assignee
Mitsubishi Chemical Corp
Kagaku Gijutsu Shinko Jigyodan
Niijima Kunio
Yanagisawa Sadakatsu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Kagaku Gijutsu Shinko Jigyodan, Niijima Kunio, Yanagisawa Sadakatsu filed Critical Mitsubishi Chemical Corp
Priority to JP61271578A priority Critical patent/JP2852305B2/en
Publication of JPS63125260A publication Critical patent/JPS63125260A/en
Application granted granted Critical
Publication of JP2852305B2 publication Critical patent/JP2852305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Prostheses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は歯や骨の欠損部分を補填補綴する材料に関す
るものである。 更に詳しくは、本発明は歯や骨の欠損部分を補填補綴
するにあたり、生体内で骨形成作用を促す効果を有する
材料を用いることにより、早期に生体組織と強固な結合
をもたらすことのできるインプラント材料に関するもの
である。 〔従来の技術〕 歯や骨の欠損部を人工材料で補填補綴することは従来
より種々行なわれている。すなわち従来より生体に適用
されてきた人工補填補綴材料としては金属材料、有機材
料、無機材料等があるが、強度、安全性、生体との親和
性、接着性等で改善点を有しており、より生体に近似し
た材料の開発が現在も継続しているのが現状である。 特に、人工材料を用い歯や骨の欠損部を補填補綴する
際の問題点として生体と材料との接着性があり、これは
人工材料の埋入後2〜3ケ月経過した後に、人工材料と
生体組織が安定的状態を形成することであるが、かかる
接着性を改良するために水酸化アパタイト、三リン酸カ
ルシウム等の生体活性材料が知られている。 これらの生体活性材料では生体中の骨芽細胞が自ら生
産するアパタイトと該材料とが一体化し骨癒着を生じる
ものといわれているが、かかる材料は主としてセミラッ
クスであるため生体骨組織と比較すると強度の点で相対
的に低く、かつ材料表面に傷等が生じると極端に強度が
低下するという欠点を有している。 これに対し、金属材料、炭素材料、アルミナ、ジルコ
ニア等の生体不活性材料では強度の点で生体骨組織を凌
ぐものがあるものの、生体との接着性の点で生体活性材
料に劣る。 そこでかかる接着性を改善するために材料表面に凹凸
を設けたり、あるいは生体と同様の結合組織を形成させ
るように材料表面に多孔構造層を設け、強固な接着性を
生体との反応により生じさせる方法(特公昭61−9859号
公報)等が知られている。 〔発明が解決しようとする問題点〕 しかしながら、かかる生体活性材料あるいは生体不活
性材料は生体との接着にそれぞれの特徴があるものの、
かかる接着が一応完了するための期間はいずれも約2〜
3ケ月という長期間を要し、かかる期間人工補填補綴材
料を埋入部に静置保持する必要がある。そして静置保持
が不十分であると、接着に要する期間が更に延びたり、
あるいは炎症等により接着不能となつたりする等の問題
点を有していた。 〔問題点を解決するための手段〕 そこで、本発明者等はかかる問題点を解決するために
鋭意検討を行なつた結果、特定構造からなる人工補填補
綴材料の表面層中に細胞増殖、細胞分化を促進させる物
質を含有させることにより骨形成が促進され、かつ生体
と人工材料との接着に要する期間が著しく短縮できるこ
とを見い出し本発明に到達した。 すなわち、本発明の目的は骨形成が容易で、かつ接着
期間を短縮することが可能な高特性の人工補填補綴材料
を提供することにある。 そして、その目的は基材表面に厚さ0.1mm以上の実質
的に炭素質材料で構成された多孔構造層を有する人工補
填補綴材料であつて、該多孔構造層が微細な単繊維がラ
ンダムに配置された繊維状物質とそれに堆積された熱分
解炭素から構成され、その表面部における平均孔径が約
100μm以上で基材側に向つて次第に空隙率が減少する
ような空隙率分布を有する構造であり、かつ該多孔構造
層中に細胞増殖・分化促進物質が分散・含有されてなる
ことを特徴とする人工補填補綴材料により容易に達成さ
れる。 以下、本発明を詳細に説明する。 本発明で用いる人工補填補綴材料としては、特定の多
孔構造層を表面部分に有するものである。 具体的には、基材表面に厚さ0.1mm以上の実質的に炭
素材料で構成された多孔構造層を有する人工補填補綴材
料であつて、該多孔構造層が微細な単繊維がランダムに
配置された繊維状物質と、それに堆積された熱分解炭素
から構成され、かつその表面部における平均孔径が約10
0μm以上で基材側に向つて次第に空隙率が小さくなる
ような空隙率分布を有する構造のものである。 以下、上記特定構造からなる人工補填補綴材料につい
て説明する。 この多孔構造層という意味は、高い空隙率をもつ表面
構造の総称であつて、一般的には繊維が堆積し、それが
互に結着しており、それにより多くの空隙が形成されて
いる表面構造をいい、繊維の太さ、長さ、形、量及び配
向と更に結着の程度などによつて多くの様々な形状があ
る。典型的には例えば繊維がランダムな方向に多数重な
り合つて、しかも互に強固に結着している構造を指すも
のである。そして形成される孔の大きさは表面部分は孔
径が100μm以上、好ましくは200μm以上のものが含ま
れており、内部に向つて孔径が小さくなつている形のも
のが好ましい。 一般に人工補填補綴材料は相当の衝撃の力にも耐えう
るように十分な弾性と強度を備えている必要がある。そ
の要求に対して本発明の多孔構造層の存在と、そこに析
出している気相熱分解炭素が極めて効果的に性能を発揮
する。すなわち、上記の人工補填補綴材料はそれ自体が
気相熱分解炭素で被覆されているため極めて強靭であ
り、生体内に埋設すると生体組織が多孔構造層の孔の中
に侵入し、更に孔の立体構造と炭素の骨誘電作用により
侵入した結合組織は石灰化して骨組織に変る。このため
炭素繊維と生体組織互にからみあつた二重網目構造を形
成し、生体に強固に結合固定される。 そして、かかる人工補填補綴材料を製造するには、先
ず炭素材料、具体的には各種の炭素繊維強化炭素材料、
焼結型炭素材料又はガラス状炭素材料など、或は金属材
料、具体的には白金、チタン、タンタル、タングステン
などを、例えば棒状、板状、ブレード状或は必要とする
形状に適宜成形して金属の場合には、必要に応じて物理
的炭素気相分解法などの手段により、表面に炭素被膜を
形成させて基材とし、この表面を適当な繊維で多孔構造
層を生成させるに有利な形に被覆する。用いられる繊維
の材質としては、例えば前記した基材の炭素金属、そし
てその形状としては比較的長繊維を用いた編織布、不織
布、フエルト紙、比較的短繊維のチヨツプドストランド
などが用いられる。これらの繊維で基材表面を被覆する
には編織布、不織布、フエルト、紙などの場合には適宜
の大きさに切断して、必要に応じて有機質接着剤を用い
て付着させ、更に必要ならば長繊維をもつて巻きつけ
(ワインデイング)固定する。チヨツプド・ストランド
を用いる場合には基材表面の必要部分に有機質接着剤を
塗布しておき、これにチヨツプド・ストランドをまぶす
ようにして付着する方式が採用される。 以上基材表面を繊維で被覆する方法について、種々説
明したが、とりわけ炭素繊維不織布を用いて基材を被覆
し必要に応じて有機質接着剤又は炭素繊維を用いて固定
する方法が好ましい。いずれの方法を採用するにして
も、最終的に得られたものは基材表面が空隙率の高い繊
維層を形成しており後の熱分解炭素処理を施した結果、
多孔構造層を有利に生じさせるよう配慮すべきである。 次いで得られたもの(以下−これを堆積用素材と呼
ぶ。)に熱分解炭素を析出させて一体化させる。この熱
分解炭素処理は、基材の温度が600℃以上2300℃、望ま
しくは700〜1100℃、基材から表面に向つて負の温度勾
配をもつ状態をつくるようにして、熱分解炭素を析出さ
すれことが優れた炭素質人工補填補綴材料を製造するた
めに重要である。つまり基材と表面の繊維状物を強固に
結合固着させ、同時に繊維状物の内部、つまり基材側が
最も密で、外部表層に向つて次第に空隙率が大きくなる
ような空隙率分布をもつた多孔構造層を形成させるため
に、以上のような条件が必要となるのである。 本発明では上記の特定構造からなる人工補填補綴材料
の多孔構造層中に骨形成促進するために細胞増殖・分化
促進物質を分散・含有させる。 細胞増殖・分化促進物質としては骨形成能を有するも
のであればいずれの物質も用いられ、具体的には骨誘導
因子(Bone morphogetic protein;BMP)、軟骨誘導因子
(Cartilage−inducing factor;CIF)、骨由来成長因子
(Bone−derived growth factor;BDGF)、骨格成長因子
(Skeletal growth foctor;SGF)、軟骨由来成長因子
(Cartilage−derived growth factor;CDGF)、軟骨由
来因子(Cartilage−derived factor;CDF)、インスリ
ン、ソマトメジン−C血小板由来成長因子(Platelet−
derived growth factor;PDGF)、副甲状腺ホルモン(PT
H)、カルシトニン、上皮成長因子(EGF)等が挙げら
れ、これらの細胞増殖・分化促進物質を1種もしくは2
種以上用いるとよい。 これらの物質は予じめ生理食塩水等中に分散混合して
おいて前記の人工補填補綴材料の多孔層中に含浸させる
あるいは該層中に添着するかして本発明の人工補填補綴
材料を調製する。なお、細胞増殖・分化促進物質は実質
的に分散された状態で多孔層中に含有されていればよく
特に均一に分散されている必要はない。 上記物質の使用量は特に限定されるものではないが、
通常材料100重量部に対して0.001重量部以上、好ましく
は0.01〜0.1重量部用いるのがよい。 また、必要に応じて、上記の多孔層を予じめコラーゲ
ン等の硬タンパク質で表面処理し、次いで細胞増車区促
進物質を分散・含有させると、該物質が多孔層中から流
出し難くなるのでよい。かかるコラーゲン等の硬タンパ
ク質により表面処理方法としては公知の手法により行な
われるが、例えばコラーゲンの溶液もしくは変性コラー
ゲンを分散させた溶液中に前記の人工補填補綴材料を浸
漬させ、次いで低温下で凍結乾燥させればよく、場合に
より細胞増殖促進物質を前記コラーゲン溶液中に分散さ
せた溶液を用いると操作上容易となり更に好ましい。 〔実施例〕 以下、実施例によりさらに本発明を詳細に説明する。 実施例1 直径3.5mm、長さ80mmの炭素繊維強化炭素複合材(以
下「C/C複合材」という。)〔図−1の(1)〕の表面
に炭素繊維のフエルトを巻きつけ厚さ0.8mmとする。こ
のC/C複合材を高周波誘導加熱してより反応器内で700℃
に加熱した後、Arガスをキヤリアーガスとしてジクロル
エチレンの蒸気を反応器内に導入して熱分解炭素を生成
させる。4時間の反応の後、C/C複合材と炭素繊維が熱
分解炭素で接着され一体化した、表面が開気孔である多
孔構造層〔図−1の(2)〕をもつ材料を得る。この材
料の表面状態を細工用グラインダーにて整える。 この後、長さ15mmずつ3個に切断し、片方の端面に直
径2.0mm、深さ10mmの穴をあける。この穴に図−1に示
すチタン合金製のポスト(3)を骨セメントにより装着
し、人工補填補綴材料(A)を得る。 該材料(A)にラットの骨誘導因子(BMP)(Bone−m
orphogetic protein;Proc.Natl.Acad.Sci,75,1828−183
2(1979))の1重量%の生理食塩溶液中に含浸させ、
次いで低温下で凍結乾燥させて本発明の人工補填補綴材
料を得た。 次に、この様にして調製した該材料を体重4kgのカニ
クイ猿の下顎骨にチタン合金部分が上になる様に挿入
し、上皮を一端縫合する。 1ケ月経過の後、再度切開し、チタン合金製のポスト
を該材料より引き抜き、図−2に示す上皮を貫通して口
腔内に出る形状のチタン合金製のポスト(3)に骨セメ
ントにより該材料に接着し、再度縫合する。数日後、歯
冠をチタン合金に取りつけ、咬合圧が加わる様にする。
現在、1年を経過したが、炎症、ゆるみ(loosening)
もなく、良好な結果を示している。 実施例2 実施例1と同様にして得られた多孔構造層をもつ材料
を細工用グラインダーにて表面状態を整えた後、長さ10
mmずつに切断し、人工補填補綴材料(A)を得た。この
材料(A)を実施例1で用いたBMPを1重量%分散した
コラーゲン溶液に浸漬処理し、実施例1と同様にして本
発明の人工補填補綴材料を得た。 次にこの棒状材料を体重4kgのカニクイザルの大腿骨
の中間部に挿入し、1ケ月後に取り出した。表面の多孔
構造層の断面を100μmの厚さに切り出し、軟X線を用
いてマイクロラジオグラムを撮影した。 この結果、1ケ月の短期間で多孔構造層内に新生骨が
形成されていることを確認した。 〔発明の効果〕 本発明によれば、特定構造の人工補填補綴材料の多孔
層中に細胞増殖・分化促進物質を分散・含有させること
により生体による骨形成反応を容易にすることができる
ので接着に必要な期間を大幅に短縮できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a material for repairing a defective portion of a tooth or a bone. More specifically, the present invention uses a material having an effect of promoting osteogenesis in a living body when implanting and repairing a defective portion of a tooth or a bone, so that an implant capable of early and firmly bonding to a living tissue can be provided. It is about materials. 2. Description of the Related Art Various restorations and prostheses for defective teeth and bones with artificial materials have been conventionally performed. In other words, artificial prosthetic materials that have been conventionally applied to living bodies include metal materials, organic materials, inorganic materials, and the like, but have improvements in strength, safety, affinity with living bodies, adhesion, and the like. At present, the development of materials that are more similar to living organisms is still ongoing. In particular, when using artificial materials to repair teeth and bone defects, there is a problem with the adhesion between the living body and the material. A biological tissue forms a stable state. Bioactive materials such as hydroxyapatite and calcium triphosphate are known to improve such adhesiveness. In these bioactive materials, it is said that apatite produced by osteoblasts in the living body and the material are integrated to cause bone adhesion.However, such a material is mainly semi-luxed and compared with living bone tissue. It has the disadvantage that the strength is relatively low, and that if the surface of the material is scratched, the strength is extremely reduced. On the other hand, bioactive materials such as metal materials, carbon materials, alumina, and zirconia are better in strength than living bone tissue, but are inferior to bioactive materials in adhesion to living bodies. Therefore, in order to improve such adhesiveness, the surface of the material is provided with irregularities, or a porous structure layer is provided on the surface of the material so as to form a connective tissue similar to that of a living body, and strong adhesiveness is generated by a reaction with the living body. A method (Japanese Patent Publication No. 61-9859) and the like are known. [Problems to be Solved by the Invention] However, although such a bioactive material or a bioinert material has respective characteristics in adhesion to a living body,
The period for completing such bonding is about 2 ~
It takes a long period of three months, and it is necessary to keep the artificial prosthetic material in the implanted part for such a period. And if the standing and holding is insufficient, the period required for bonding is further extended,
Alternatively, there has been a problem that adhesion becomes impossible due to inflammation or the like. [Means for Solving the Problems] Accordingly, the present inventors have conducted intensive studies in order to solve such problems, and as a result, cell proliferation and cell growth in the surface layer of the artificial prosthesis material having a specific structure. The present inventors have found that by including a substance that promotes differentiation, bone formation is promoted, and the period required for adhesion between a living body and an artificial material can be significantly shortened. That is, an object of the present invention is to provide a prosthetic prosthetic material having a high property, in which bone formation is easy and the bonding period can be shortened. The purpose is an artificial prosthetic prosthesis material having a porous structure layer substantially composed of a carbonaceous material having a thickness of 0.1 mm or more on the surface of a base material, and the porous structure layer is formed by randomly forming fine single fibers. It is composed of the arranged fibrous material and pyrolytic carbon deposited on it, and the average pore size on the surface is about
It is a structure having a porosity distribution such that the porosity gradually decreases toward the substrate side at 100 μm or more, and characterized in that the cell growth / differentiation promoting substance is dispersed and contained in the porous structure layer. This is easily achieved with an artificial prosthetic material. Hereinafter, the present invention will be described in detail. The artificial prosthetic material used in the present invention has a specific porous structure layer on its surface. Specifically, it is an artificial prosthetic prosthesis material having a porous structure layer substantially composed of a carbon material having a thickness of 0.1 mm or more on the surface of a base material, and the porous structure layer has fine single fibers randomly arranged. Fibrous material and pyrolytic carbon deposited on it, and the average pore size on the surface is about 10
It is a structure having a porosity distribution such that the porosity gradually decreases toward the substrate at 0 μm or more. Hereinafter, the artificial prosthetic material having the specific structure will be described. The meaning of the porous structure layer is a general term for a surface structure having a high porosity, in which fibers are generally deposited and bound to each other, thereby forming many voids. Refers to the surface structure, and there are many different shapes depending on the thickness, length, shape, amount and orientation of the fiber and the degree of binding. Typically, for example, it refers to a structure in which a large number of fibers are overlapped in a random direction and are firmly bound to each other. The size of the formed hole includes a surface portion having a hole diameter of 100 μm or more, preferably 200 μm or more, and preferably has a shape in which the hole diameter decreases toward the inside. Generally, the prosthetic prosthesis material must have sufficient elasticity and strength to withstand considerable impact forces. In response to such demands, the presence of the porous structure layer of the present invention and the gas phase pyrolytic carbon deposited thereon exhibit extremely effective performance. That is, the artificial prosthetic material is extremely tough because it is coated with gas-phase pyrolytic carbon itself, and when embedded in a living body, living tissue penetrates into the pores of the porous structure layer, and The connective tissue invaded by the three-dimensional structure and the bone dielectric action of carbon is calcified and turned into bone tissue. For this reason, the carbon fiber and the living tissue form a double network structure entangled with each other, and are firmly bonded and fixed to the living body. Then, in order to produce such an artificial prosthetic material, first, a carbon material, specifically, various carbon fiber reinforced carbon materials,
A sintered carbon material or a vitreous carbon material, or a metal material, specifically, platinum, titanium, tantalum, tungsten, or the like, is appropriately shaped into, for example, a bar, a plate, a blade, or a required shape. In the case of metal, if necessary, a carbon film is formed on the surface by means such as a physical carbon vapor decomposition method as a base material, and this surface is advantageous for forming a porous structure layer with appropriate fibers. Cover in shape. As the material of the fiber used, for example, the above-described carbon metal of the base material, and as the shape thereof, a woven fabric, a nonwoven fabric, a felt paper, and a relatively short fiber chopped strand using relatively long fibers are used. Can be In order to coat the substrate surface with these fibers, in the case of knitted fabrics, nonwoven fabrics, felts, papers, etc., cut them into appropriate sizes and attach them using an organic adhesive as necessary, and furthermore, if necessary. Wound with a long fiber and fixed. When a chopped strand is used, a method is used in which an organic adhesive is applied to a necessary portion of the surface of the base material, and the chopped strand is adhered to the organic adhesive. Various methods have been described above for coating the surface of the base material with the fibers. In particular, a method of coating the base material with a carbon fiber non-woven fabric and fixing it with an organic adhesive or carbon fibers as necessary is preferable. Regardless of which method is adopted, the final product is obtained by subjecting the substrate surface to a fiber layer with a high porosity and performing a subsequent pyrolytic carbon treatment,
Care should be taken to advantageously produce a porous structure layer. Next, pyrolytic carbon is deposited on the resulting material (hereinafter referred to as a material for deposition) to be integrated. In this pyrolytic carbon treatment, the temperature of the substrate is 600 ° C or higher and 2300 ° C, desirably 700 to 1100 ° C, and a state having a negative temperature gradient from the substrate to the surface is created, and the pyrolytic carbon is deposited. Rushing is important for producing an excellent carbonaceous prosthetic prosthetic material. In other words, the substrate and the fibrous material on the surface are firmly bonded and fixed, and at the same time, the inside of the fibrous material, that is, the substrate side is the densest, and has a porosity distribution such that the porosity gradually increases toward the outer surface layer. In order to form a porous structure layer, the above conditions are required. In the present invention, a cell growth / differentiation promoting substance is dispersed / contained in the porous structure layer of the artificial prosthetic material having the above specific structure in order to promote bone formation. Any substance that has osteogenic ability can be used as a cell growth / differentiation promoting substance. Specifically, bone morphogetic protein (BMP), cartilage-inducing factor (CIF) , Bone-derived growth factor (BDGF), skeletal growth factor (SGF), cartilage-derived growth factor (CDGF), cartilage-derived factor (CDF) ), Insulin, somatomedin-C platelet-derived growth factor (Platelet-
derived growth factor (PDGF), parathyroid hormone (PT
H), calcitonin, epidermal growth factor (EGF) and the like.
It is better to use more than one kind. These substances are dispersed and mixed in physiological saline or the like in advance and impregnated into the porous layer of the artificial prosthetic prosthesis material or attached to the layer to form the artificial prosthetic prosthesis material of the present invention. Prepare. The cell growth / differentiation promoting substance need only be contained in the porous layer in a substantially dispersed state, and need not be particularly uniformly dispersed. The amount of the above substances is not particularly limited,
Usually, it is used in an amount of 0.001 part by weight or more, preferably 0.01 to 0.1 part by weight, per 100 parts by weight of the material. Further, if necessary, the porous layer is subjected to a surface treatment with a hard protein such as collagen in advance, and then a cell proliferation promoting substance is dispersed and contained therein, so that the substance hardly flows out of the porous layer. Good. As a surface treatment method using a hard protein such as collagen, a known method is used.For example, the artificial prosthetic material is immersed in a solution of collagen or a solution in which denatured collagen is dispersed, and then freeze-dried at a low temperature. In some cases, it is more preferable to use a solution in which a cell growth promoting substance is dispersed in the collagen solution because the operation becomes easier. EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. Example 1 A carbon fiber felt was wound around the surface of a carbon fiber reinforced carbon composite material having a diameter of 3.5 mm and a length of 80 mm (hereinafter referred to as “C / C composite material”) ((1) in FIG. 1). 0.8 mm. This C / C composite material is heated to 700 ° C in the reactor by induction heating.
Then, dichloroethylene vapor is introduced into the reactor using Ar gas as a carrier gas to generate pyrolytic carbon. After the reaction for 4 hours, a material having a porous structure layer ((2) in FIG. 1) in which the surface is open pores is obtained by integrating the C / C composite material and the carbon fibers by bonding with pyrolytic carbon. The surface condition of this material is adjusted with a grinder for work. After that, it is cut into three pieces each having a length of 15 mm, and a hole having a diameter of 2.0 mm and a depth of 10 mm is made in one end face. A post (3) made of a titanium alloy shown in FIG. 1 is attached to the hole by bone cement to obtain an artificial prosthetic material (A). The material (A) was added to rat osteoinductive factor (BMP) (Bone-m
orphogetic protein; Proc. Natl. Acad. Sci, 75, 1828-183
2 (1979)) in a 1% by weight physiological saline solution,
Then, the artificial prosthesis material of the present invention was obtained by freeze-drying at a low temperature. Next, the material thus prepared is inserted into the lower jaw bone of a cynomolgus monkey weighing 4 kg so that the titanium alloy portion thereof faces upward, and the epithelium is sutured at one end. After one month, the incision was made again, the titanium alloy post was pulled out of the material, and the titanium alloy post (3) having a shape penetrating the epithelium shown in FIG. Glue to the material and re-suturing. A few days later, the crown is attached to the titanium alloy so that occlusal pressure is applied.
Now, after one year, inflammation and loosening
None, showing good results. Example 2 After adjusting the surface condition of a material having a porous structure layer obtained in the same manner as in Example 1 using a grinder for work, a length of 10
The prosthetic material (A) was obtained by cutting into mm units. This material (A) was immersed in a collagen solution in which 1% by weight of BMP used in Example 1 was dispersed, and an artificial prosthesis material of the present invention was obtained in the same manner as in Example 1. Next, the rod-shaped material was inserted into the middle part of the femur of a cynomolgus monkey weighing 4 kg, and removed one month later. The cross section of the porous structure layer on the surface was cut out to a thickness of 100 μm, and a microradiogram was taken using soft X-rays. As a result, it was confirmed that new bone was formed in the porous structure layer in a short period of one month. [Effects of the Invention] According to the present invention, an osteogenic reaction by a living body can be facilitated by dispersing and containing a cell growth / differentiation promoting substance in a porous layer of an artificial prosthetic prosthetic material having a specific structure. Can significantly reduce the required time.

【図面の簡単な説明】 図−1及び図−2は、本発明に係る人工補填補綴材料を
歯根材として用いる場合の態様例を示す。 1:C/C複合材、2:多孔構造層、 3:チタン合金製ポスト
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 show examples of embodiments in which the artificial prosthetic material according to the present invention is used as a root material. 1: C / C composite, 2: Porous structure layer, 3: Titanium alloy post

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 999999999 新技術事業団 埼玉県川口市本町四丁目1番8号 (73)特許権者 999999999 三菱化学株式会社 東京都千代田区丸の内2丁目5番2号 (72)発明者 大谷 杉郎 桐生市菱町黒川2010番地の2 (72)発明者 ▲やなぎ▼澤 定勝 東京都港区三田2−3番34−407号 (72)発明者 新島 邦雄 埼玉県大宮市上小町563番地 (72)発明者 松浦 一志 神奈川県横浜市緑区鴨志田町1000番地 三菱化成工業株式会社総合研究所内 (56)参考文献 特開 昭57−134154(JP,A) 特開 昭61−200903(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (73) Patent holder 999999999               New Technology Agency               4-8 Honcho, Kawaguchi City, Saitama Prefecture (73) Patent holder 999999999               Mitsubishi Chemical Corporation               2-5-2 Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Suguro Otani               2010-2, Kurokawa, Hishimachi, Kiryu-shi (72) Inventor ▲ Yanagi ▼ Sawakatsu Sawa               2-3-3, Mita, Minato-ku, Tokyo (72) Inventor Kunio Niijima               563 Kamikomachi, Omiya City, Saitama Prefecture (72) Inventor Kazushi Matsuura               1000 Kamoshida-cho, Midori-ku, Yokohama-shi, Kanagawa               Mitsubishi Chemical Industry Co., Ltd.                (56) References JP-A-57-134154 (JP, A)                 JP-A-61-200903 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.基材表面に厚さ0.1mm以上の実質的に炭素質材料で
構成された多孔構造層を有する人工補填補綴材料であつ
て、該多孔構造層が微細な単繊維がランダムに配置され
た繊維状物質とそれに堆積された熱分解炭素から構成さ
れ、その表面部における平均孔径が約100μm以上で基
材側に向つて次第に空隙率が減少するような空隙率分布
を有する構造であり、かつ該多孔構造層中に細胞増殖・
分化促進物質が分散・含有されてなることを特徴とする
人工補填補綴材料。 2.細胞増殖・分化促進物質が骨誘導因子、軟骨誘導因
子、骨由来成長因子、骨格成長因子、軟骨由来成長因
子、軟骨由来因子、インスリン、ソマトメジン−C、血
小板由来成長因子、副甲状腺ホルモン、カルシトニン、
上皮成長因子から選ばれる1種以上の物質であることを
特徴とする特許請求の範囲第1項記載の人工補填補綴材
料。 3.基材が炭素又は金属材料であることを特徴とする特
許請求の範囲第1項記載の人工補填補綴材料。
(57) [Claims] An artificial prosthetic material having a porous structure layer substantially composed of a carbonaceous material having a thickness of 0.1 mm or more on a substrate surface, wherein the porous structure layer is a fibrous material in which fine single fibers are randomly arranged. It is composed of a substance and pyrolytic carbon deposited thereon, and has a porosity distribution such that the average pore diameter at the surface thereof is about 100 μm or more and the porosity gradually decreases toward the substrate side, and Cell proliferation in the structural layer
An artificial prosthetic material comprising a differentiation promoting substance dispersed and contained therein. 2. Cell growth / differentiation promoting substances are osteoinductive factor, cartilage inducing factor, bone derived growth factor, skeletal growth factor, cartilage derived growth factor, cartilage derived factor, insulin, somatomedin-C, platelet derived growth factor, parathyroid hormone, calcitonin,
2. The prosthetic prosthetic material according to claim 1, wherein the prosthetic material is at least one substance selected from epidermal growth factor. 3. 2. The prosthetic prosthetic material according to claim 1, wherein the base material is a carbon or metal material.
JP61271578A 1986-11-14 1986-11-14 Artificial prosthesis materials Expired - Fee Related JP2852305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61271578A JP2852305B2 (en) 1986-11-14 1986-11-14 Artificial prosthesis materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271578A JP2852305B2 (en) 1986-11-14 1986-11-14 Artificial prosthesis materials

Publications (2)

Publication Number Publication Date
JPS63125260A JPS63125260A (en) 1988-05-28
JP2852305B2 true JP2852305B2 (en) 1999-02-03

Family

ID=17502030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271578A Expired - Fee Related JP2852305B2 (en) 1986-11-14 1986-11-14 Artificial prosthesis materials

Country Status (1)

Country Link
JP (1) JP2852305B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151461A (en) * 1987-12-08 1989-06-14 Koransha Co Ltd Prosthesis material for organism
US5108436A (en) * 1988-09-29 1992-04-28 Collagen Corporation Implant fixation
US5118667A (en) * 1991-05-03 1992-06-02 Celtrix Pharmaceuticals, Inc. Bone growth factors and inhibitors of bone resorption for promoting bone formation
ATE262361T1 (en) * 1991-12-18 2004-04-15 Icu Medical Inc METHOD FOR FLUID TRANSFER
WO1998029130A1 (en) * 1996-12-27 1998-07-09 Chugai Seiyaku Kabushiki Kaisha Orthodontic remedy containing pth
EP1016412A4 (en) * 1997-07-22 2001-05-02 Chugai Pharmaceutical Co Ltd Dental remedies containing pth
US6174167B1 (en) 1998-12-01 2001-01-16 Woehrle Peter S. Bioroot endosseous implant
DE502004008211D1 (en) * 2003-05-28 2008-11-20 Cinv Ag IMPLANTS WITH FUNCTIONALIZED CARBON SURFACES
EP1852135B1 (en) * 2005-02-23 2018-04-11 HI-LEX Corporation Medical material, artificial tooth root and method of producing material for clinical use
JP5166864B2 (en) * 2005-02-23 2013-03-21 株式会社ハイレックスコーポレーション Artificial tooth root
JP2006263445A (en) * 2005-02-25 2006-10-05 Yasuharu Noisshiki Medical material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134154A (en) * 1981-02-12 1982-08-19 Otani Sugirou Carbonacious artificial filler and prosthetic material and production thereof
JPS5968519U (en) * 1982-10-28 1984-05-09 東海カ−ボン株式会社 Biological carbon material
JPS59211447A (en) * 1983-05-16 1984-11-30 三菱鉛筆株式会社 Carbonaceous implant material for living body hard tissue and production thereof

Also Published As

Publication number Publication date
JPS63125260A (en) 1988-05-28

Similar Documents

Publication Publication Date Title
JP3064470B2 (en) Artificial prosthetic materials
Ran et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes
US7763272B2 (en) Support material for tissue engineering, for producing implants or implant materials, and an implant produced with the support material
EP1852135B1 (en) Medical material, artificial tooth root and method of producing material for clinical use
US5049074A (en) Dental implant
EP2251049A2 (en) Methods and devices for bone attachment
US4457984A (en) Carbon artificial prosthetic material
US7001551B2 (en) Method of forming a composite bone material implant
EP1385449B1 (en) Biologically-functionalised, metabolically-inductive implant surfaces
JPS6133660A (en) Coating composition for surgical implant and fixing element
JP2852305B2 (en) Artificial prosthesis materials
JP2004358249A (en) Strontium-substituted apatite coating
JPH10500343A (en) Biocompatible materials and bone implants for bone repair and replacement
US20120245703A1 (en) Composite bone material implant and method
US7416564B2 (en) Porous bioceramics for bone scaffold and method for manufacturing the same
JPH01151461A (en) Prosthesis material for organism
RU2001128230A (en) Vertebral and bones restoration implant
JP3008586B2 (en) Method for producing artificial prosthetic material
JP2920931B2 (en) Artificial root material
JPS63238867A (en) Filling prosthetic material of living body
US20090098092A1 (en) Composite Bone Material and Method of Making and Using Same
Martins-Júnior et al. Bone repair utilizing carbon nanotubes
JP2920930B2 (en) Artificial root material
WO2013011827A1 (en) Implant material for living body and method for producing same
US10932910B2 (en) Nanofiber coating to improve biological and mechanical performance of joint prosthesis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees