JPS59211447A - Carbonaceous implant material for living body hard tissue and production thereof - Google Patents

Carbonaceous implant material for living body hard tissue and production thereof

Info

Publication number
JPS59211447A
JPS59211447A JP58084073A JP8407383A JPS59211447A JP S59211447 A JPS59211447 A JP S59211447A JP 58084073 A JP58084073 A JP 58084073A JP 8407383 A JP8407383 A JP 8407383A JP S59211447 A JPS59211447 A JP S59211447A
Authority
JP
Japan
Prior art keywords
carbon
carbonaceous
organic polymer
core material
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58084073A
Other languages
Japanese (ja)
Other versions
JPS6155392B2 (en
Inventor
川窪 隆昌
大谷 杉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP58084073A priority Critical patent/JPS59211447A/en
Publication of JPS59211447A publication Critical patent/JPS59211447A/en
Publication of JPS6155392B2 publication Critical patent/JPS6155392B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発明は、生体硬組織用のインブラント材料(埋入拐イ
:−1)及び、その製造方法に関するものであ6o更に
詳しくは、骨や歯の欠損部分を補填、補綴するために供
する人工骨、人工歯用の材料とじて生体内VC埋入され
た場合に生体反応が少なく、生体組峨と良< 、171
染み強固に結合する註質全有し、耐久l′l:fc優f
た生体硬組織用インブラント材料及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to an implant material for biological hard tissue (implant material: -1) and a method for producing the same. When VC is implanted in a living body as an artificial bone used for prosthesis or as a material for an artificial tooth, there is little biological reaction and good biological tissue density.171
All stains have a strong bonding quality, and are durable: fc excellent fc
The present invention relates to an implant material for biological hard tissue and a method for producing the same.

従来から人工骨及び人口歯として生体内(で川り込まれ
る材料は種々横割され多年に亘る努カカ玉なされたにも
拘らず未だ多ぐの問題点ヲ安しでいるのが実情である。
In the past, materials that have been introduced into living bodies as artificial bones and artificial teeth have been divided into various types, and despite many years of effort, the reality is that many problems still remain.

今迄の金属あるいは、関分子樹)]11材料に代替して
セラミックスあるいはガラス、炭素等の無機材料が開発
され最近注目されろ↓うになり一部のものU”4用化さ
れ始めた。
Ceramics, glass, carbon, and other inorganic materials have recently been developed to replace conventional metals or related materials, and some of them have begun to be used for U"4.

インブラント材料は使用部位の形状、寸法、機能によっ
て要求される特注が様々であり、それに対する設計、素
材の選択も亦多釉、多様である等の非常に難しい条件を
多く内在している。
Implant materials have various customization requirements depending on the shape, size, and function of the part to be used, and the design and selection of materials for these are also subject to many extremely difficult conditions, such as multiple glazes and variety.

インブラント材が生体内に赴いて安全に機能するために
必要とされる条件は、 (1)  術1生及び組織測微1生が無く、発J+’7
i、アレルギー、近接組織の破壊作用等の障否を起さな
いこと。
The conditions necessary for the implant material to function safely in the living body are: (1) There is no surgical procedure and no tissue microscopy, and the occurrence of J+'7
i. It should not cause any problems such as allergies or destructive effects on adjacent tissues.

(2)異物反応(生体外に排出しようとする作用)を引
起させないこと。
(2) Do not cause foreign body reactions (actions that attempt to expel them from the living body).

(3)生体内で吸収(分解消失)されないこと。(3) It should not be absorbed (disappeared by decomposition) in the living body.

(4)体液等の影響全受けてイオン化して浴出しないこ
と。
(4) Do not bathe ionized by the influence of body fluids, etc.

(5)組織と良く馴染み(生体親和性という)結合する
こと。
(5) It has good affinity with tissues (called biocompatibility).

(6)  曲げ強さ、圧縮強さ等の機械的強度が高く、
使用上の応力に耐えまた生体環境下で強度劣化しないこ
と。
(6) High mechanical strength such as bending strength and compressive strength,
Must withstand stress during use and do not deteriorate in strength in biological environments.

(7)取扱いが容易で消うIJが施せること。(7) Easy to handle and erasable IJ can be applied.

(8)硬就、弾性率が生体硬組織と同等かや5太さい1
呈Kに調整可能で生体組織と一体化した場合に限りなく
天然に近い状態を取り得るものであること。
(8) Stiffness and elastic modulus are similar to biological hard tissue or slightly thicker 1
It should be possible to adjust the presentation K and take a state as close to natural as possible when integrated with living tissue.

等の各要件金満たすことが挙げられる。以上の必要要件
に照合させても素材を計測すると、金属材ネ4でげ前記
(1) 、 (2) 、 (4) 、 (8)の条件に
対し問題点が捗り、プラスチックス材料では(2) 、
 (3) 、 (6)の条件Vこ問題となるものが多い
。これに対して、最近注目ざ八でいるセラミックス拐料
は生体組織に特有の条件である(1)〜(5) VCつ
いては殆んど問題に無い。
The following requirements must be met. Even when measuring the material against the above requirements, problems with metal materials (4), (1), (2), (4), and (8) above are improved, and with plastic materials ( 2) ,
Conditions (3) and (6) have many problems. On the other hand, ceramic nanomaterials, which have been attracting a lot of attention recently, have almost no problems with VC (1) to (5), which are conditions specific to living tissues.

従来セラミックス拐料が用いられなかった理由は、(6
)■イ夙械的強朋力埒j?7たなかったこと、及び水分
の多い生体内環境において強度劣化することが欠点とさ
れていたことに、J:る。この点に関して(り:、人工
サファイヤ単結晶体、又は多結晶体等のアルミナ質材料
や、水酸化アパクイト焼結体が開発されたことにエリ前
記した欠点を改良して一部笑用に供されるようになった
。し刀・しなから前者のアルミナ質では硬度、弾1生率
が名じ〈1″1,1.l<生体vC7)h\る応力が埋
入材に集中し、周辺組織に無理な尾、力が作用してこれ
ケ破壊したり甚しくは神経組織に到達してこれを損傷す
る等の障害を引起する等の問題があり(8)の条件にお
いて未だ不十分な点が残されている。後者の合成水酸化
アパタイト焼結体は生体の硬組織に極めて近似した物質
であり、前記アルミナ質材料の場合のような問題は少な
いが、未だ機械的強度が不十分でありアノξタイト粉末
の合成及び成形焼結技術に困)!11かつ複何1な工程
を金銭なくされる等の問題がある。以上は累)12に関
連した問題点であるが、更には、施術に際して通常生体
硬組織(骨及び歯〕に於ける・1」折部位の修復や人工
関節の埋入及び人工1v1根の饅;植に際し7で、イン
ブラント材料を骨に固定するには (1)  インブラント材と骨組織を構造的あるいは。
The reason why ceramic additives were not used in the past is (6)
)■Is it really mechanical? 7, and the drawback was that the strength deteriorated in a moist in-vivo environment. Regarding this point, the above-mentioned drawbacks have been improved and some of the alumina materials such as artificial sapphire single crystals or polycrystalline materials and sintered hydroxide apaquite have been developed and are now available for commercial use. In the case of the former alumina material, the hardness and bullet survival rate are the same (1″1,1.l<living body vC7), and stress concentrates on the implant material. However, under the condition (8), there are problems such as unreasonable force acting on the surrounding tissue, causing damage to it, or even reaching and damaging the nervous tissue. The latter synthetic hydroxyapatite sintered body is a material that closely resembles the hard tissues of living organisms, and there are fewer problems like those of the alumina materials, but it still has poor mechanical strength. There are problems such as the synthesis of annotite powder and the shaping and sintering technology is insufficient, and the multiple steps are cost-free.The above are the problems related to 12). Furthermore, during the treatment, the implant material is usually fixed to the bone in Step 7 of repairing the broken part of the living body's hard tissue (bones and teeth), implanting an artificial joint, and fixing the artificial 1v1 root. (1) Align the implant material and bone tissue with structural or

形状的に工夫して自己固定させるセルフロンキング法。Self-locking method that fixes itself by devising the shape.

(2)  ネジやボルトナンド類を用いて機械的に固定
さぜる方法。
(2) A method of mechanically fixing using screws or bolt nuts.

(3)  インブラント材と骨と全医用セメント等の接
治剤を用いて接層する。
(3) Attach the implant material to the bone using an adhesive such as all-medical cement.

等の手段が採用さtている。しかし、何れの方法を用い
ても長い期間にゆるみを生じてたとえインブラント材そ
のものに欠陥が無くとも剥落し取り替えなければならな
い場合がある。
Measures such as these have been adopted. However, no matter which method is used, the implant material may become loose over a long period of time, and even if there is no defect in the implant material itself, it may come off and have to be replaced.

−また、歯根としてのインブラント材を歯槽骨内に埋入
嵌植して、と71.に歯冠を固定する歯科治療が行なわ
れるが、この場合にも前記各種硬質インブラント材料が
使用され、その形状も天然歯根型、ビン型、ブレード型
、スクリュー型、等の多種類のものが存在し、それぞれ
の症状に応じて設計されたものが1更用Vこ供されてい
る。
-Also, by implanting an implant material as a tooth root into the alveolar bone, and 71. Dental treatment is performed to fix the crown of a tooth, and in this case as well, the various hard implant materials mentioned above are used, and there are many different shapes such as natural tooth root shape, bottle shape, blade shape, screw shape, etc. There are many different types of drugs available, each designed according to the symptoms.

この場合には、体内と体表面とにまたがって用いられる
為、とくに材料−組織界面での接層が必要である。すな
わち生体内から体表面へ突出する部分での接着が重要で
ある。これが得られなければ体外からの細菌感染や不害
物質の体内への浸透に裏って好ましくない結果を招くこ
とになる。
In this case, since it is used across the body and the body surface, contact layering is particularly required at the material-tissue interface. That is, adhesion at the part that protrudes from the inside of the body to the body surface is important. If this is not achieved, unfavorable results may occur due to bacterial infection from outside the body or the infiltration of harmful substances into the body.

以上のような問題点が残されている現状VC74%み、
本願発明者は炭素が1960年代前半から生体用材料と
して注目され始め、抗血栓性に優れ、組織刺激性がなく
、生体との親fO性に富み、且つ生体内外の種々の環境
下に於ても抜群の安定性を有しており機械強度にも優れ
た特性を有する拐料であって、その結果人工心臓弁とし
て応用され多くの定着した成功例が発表されており、他
にも靭帯、歯根材、人工関節への笑用化がなされている
点に着目し、更に研究を重ね、生体硬組織との結合が強
固となる様な素材、及び構造全検討し、しかも生体機能
全維持する上て゛十分な強度を与えるような形状設計に
工夫を行って、従来には見られない優れた生体硬組織用
インブラント材を創製することに成功した。すなわち本
発明に、芯イ2とじて高硬度、冒強度、不浸透性を有す
る緻密質炭素材料を用い、該芯拐表面に厚さ100μm
以上の炭素質り次元多孔層を構築することf:特徴とし
、実質的に炭素のみで構成され、更に必要に応じてに該
表面て気相熱分解炭素を析出させて被覆処理金族こし表
面を円滑化すると共に捕獲強化させた生体硬組織用イン
ブラント材料及びその製造方法に関するものである。
At present, 74% of VCs still have the above-mentioned problems.
The inventor of this application discovered that carbon began to attract attention as a biological material in the early 1960s, and that carbon has excellent antithrombotic properties, no tissue irritation, is highly compatible with living organisms, and is effective under various environments both inside and outside of living organisms. It also has excellent stability and mechanical strength, and as a result, it has been applied to artificial heart valves and many established success stories have been published, as well as ligaments, Focusing on the fact that it has been used for dental root materials and artificial joints, we have conducted further research and have thoroughly investigated materials and structures that have a strong bond with living hard tissue, while maintaining all biological functions. By devising a shape design that provides sufficient strength, we succeeded in creating an excellent implant material for biological hard tissue that has never been seen before. That is, in the present invention, a dense carbon material having high hardness, erodibility, and impermeability is used as the core 2, and the core 2 is made of a dense carbon material having a thickness of 100 μm on the surface of the core.
Constructing the above carbonaceous porous layer f: Characteristically, it is substantially composed only of carbon, and if necessary, vapor-phase pyrolytic carbon is deposited on the surface to coat the metal layer surface. The present invention relates to an implant material for biological hard tissues that facilitates the process and strengthens capture, and a method for manufacturing the same.

本発明のインブラント材料は、表面が平滑で胃硬度であ
り、曲げ強さ圧縮強さ等の機械的強度に優れ、且つ体液
等に対して不浸透性を有する炭素材料1芯拐全作り更に
該芯材表面に100μm以上好−よしく Ir:L 5
00μ711以上の多孔層が構築された構造になってい
る。この多孔構造は、生体との結合全円’/Nに且つ強
固に行なわしめる上で極めて重要であり、表面に卸1胞
が付着し、固定増殖し易い細孔構造に設計され、丑ず生
体とインブラント材界面に新しく生成されてくるコラー
ゲン繊維がインブラント表面の多孔組織内に入り込み相
互に交織した状態が作り出せるように工夫されている。
The implant material of the present invention is made entirely of a single core of carbon material, which has a smooth surface, has gastric hardness, has excellent mechanical strength such as bending strength and compressive strength, and is impermeable to body fluids. Preferably 100 μm or more on the surface of the core material Ir:L 5
It has a structure in which a porous layer with a diameter of 00 μ711 or more is constructed. This porous structure is extremely important for achieving full-circle and strong bonding with living organisms. The collagen fibers newly generated at the interface between the implant and the implant material are designed to penetrate into the porous tissue on the implant surface and create a state in which they interweave with each other.

更にば、この表面多孔層に酸素や栄養分などの01、給
のため血液等の循環液が浸透し易い泊jj孔分布か適当
になされていることが必要である。すなわち芯材近傍で
は、50μm、以下、望ましくは20μIn以下の細孔
径を有することが好ましく、この孔径であると毛細血管
の浸入が行なわれずに円部に浸入したコラーゲン繊維組
織は石灰化して芯拐辰面と強固に固着する状態を呈し投
錨効果を発現するようになる。また細孔径100μm以
下の多孔層に相隣る中間層では、100μm以上好まし
くは200 pm程度の細孔分布を有していることが良
く、この領域に於ては毛細血管による酸素及び栄養分の
供給が十分になされ、コラーゲン繊細441Nikに軟
骨化された状態で定着する。更に最外表面(は20 Q
 Itm以上600μm以下で好1しくば30(J/、
tm孔径分イIJk有する多孔層で構築されていること
が良い。この孔径分布を有する最外表面では、体液及び
血管の浸入が自由であり効果的且つ円滑VCi苅胞増タ
16活動を行なわせることが可能であり、コラーゲン繊
維組織は柔軟に且つ強固にインブラントイ」と生体幾組
余部と全投錨効果により結合し、全く天然に於けるが如
き状態を呈する様になる。
Furthermore, it is necessary that the surface porous layer has an appropriate pore distribution so that circulating fluids such as blood can easily penetrate to supply oxygen and nutrients. In other words, it is preferable to have a pore diameter of 50 μm or less, preferably 20 μIn or less in the vicinity of the core material, and with this pore diameter, the collagen fiber tissue that has penetrated into the circular part without capillary infiltration will be calcified and removed from the core. It becomes firmly attached to the dragon face and produces an anchoring effect. In addition, the intermediate layer adjacent to the porous layer with a pore diameter of 100 μm or less preferably has a pore distribution of 100 μm or more, preferably about 200 pm, and in this region, oxygen and nutrients are supplied by capillaries. is sufficiently applied and is fixed in a cartilage state to the collagen delicate 441Nik. Furthermore, the outermost surface (is 20 Q
Itm or more and 600 μm or less, preferably 30 (J/,
It is preferable that the porous layer is constructed of a porous layer having tm pore diameter IJk. On the outermost surface with this pore size distribution, body fluids and blood vessels can freely infiltrate, allowing effective and smooth VCi calyx expansion 16 activity, and the collagen fiber tissue is flexible and strong in the in-plant. The toy and the rest of the living body are combined by a total anchoring effect, and it comes to appear in a state exactly like that in nature.

こ\で訂う多孔層とは、設計された孔径分布を有し、且
つ高い空隙率を持つ表面構造の総称であって、一般的に
は管理された粒径分布全有する有機高分子物質の微小粒
子VCよって構成され各粒子相互間において点接着もし
くは点融着がなされ、それが強固に焼結炭化されて成る
等方法であり、且つ三次元的に空隙を有する炭素質多孔
体を指すものである。以上の様に有意な機能を有する本
願発明によるインブラント材料は、芯材表面に三次元点
焼結多孔層を構築したーまSの状態でも天川に供し伯ろ
が、更に表面の構造強度を補穫強化すること、及び表面
の状態をより清ら刀Δにして細胞のイ・1周全容易にさ
せる目的で気相熱分解炭素を析出法イノiさせて該表面
を被覆することがエリ理想的である。この気相熱分解炭
素被後処理は、被処理体(芯材表[I]]VC炭素点焼
炭素化焼結多孔体層たもの)のIA度全全600℃以上
2300℃好ましくは700℃〜1,100℃に保ち、
熱分解炭素原料としては、ベンゼン、ナフタレン、など
の炭化水素化合物、ジクロロエチレン、トリクロルエタ
ンなとのハロゲン化炭化水素を用いることかで@ろが、
特に・・ロゲン化炭化水素を用いる場合にはより低温で
処理できる利点がある。気相熱分jIIイ炭素の析出、
堆積処理に要する時間は条件VC,l:つて異なるが、
通常1〜10時間で行なわれる。以上生体用インブラン
ト材として必須な要件である細胞増殖機能及び生体親和
性を中心に、本願に用いる炭素質三次元多孔体の構成及
び気相熱分解炭素の被覆処理について記載したが、次に
本願における一般的炭素質三次元多孔体の製造方法につ
いて説明する。多孔体の原材料として用いる有機高分子
物質としては、原理的に固体粒状であって不活性気相雰
囲気中に於て炭素化するものであれば良いが、望捷しく
は後塩素化ポリ塩化ビニル樹脂、ポリアクリロニトリル
樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール、”
)フェニレンエーテル樹脂、4リアミドイミド樹脂、ポ
リイミド樹脂、芳香族ポリアミド樹脂、ポリジビニルベ
ンゼン樹脂等の熱町塑註樹脂及び、フラン樹脂、フェノ
ール樹脂、ビスマレイミド−トリアジン樹脂等の熱硬化
1’&41A脂のモノマー又は、初期縮重合体を熱変形
可能な程度、もしくは溶媒で浴解可能な8反に軽く硬化
させたものを粉砕した粒子、あるいはトラガントガム、
アラビアガム、多糖類の如き縮合多環芳香族を分子の基
本(1に造同に持つ天然高分子粒子、又前記に含まれな
い縮合多環芳香族を分子の基本構造内υて持つ合成冒分
子粒子、すなわちナフタレンスルフォン酸のホルマリン
縮合物、スレン系染料及びその中間体、及び石油アスフ
ァルト、コールタール、合成樹脂等全300℃〜500
℃好ましくt−1,380’C〜400℃に於て乾留し
低分子化合物を除去したものを粉砕した粒子などの内1
種又は2神以上の混合物粒子が適している。また、こ\
(tこ用いる有;1豪商分子粒子の形状については、特
に制・恨+a無いが望−ましくは球体であることが良い
The porous layer referred to here is a general term for a surface structure with a designed pore size distribution and high porosity, and is generally made of an organic polymer material with a controlled particle size distribution. A carbonaceous porous body composed of microparticles VC, which is formed by point adhesion or point fusion between each particle, and is strongly sintered and carbonized, and which has three-dimensional voids. It is. As described above, the implant material according to the present invention, which has a significant function, has a three-dimensional point sintered porous layer on the surface of the core material. Ideally, it would be ideal to coat the surface by depositing vapor-phase pyrolytic carbon for the purpose of strengthening the harvest and making the surface condition more pure and making it easier to complete one cycle of cells. It is true. This vapor phase pyrolytic carbon post-treatment is carried out at an IA degree of 600°C or higher, preferably 700°C, of the object to be treated (core material surface [I] VC carbon-sintered carbonized porous layer). Keep at ~1,100℃,
Hydrocarbon compounds such as benzene and naphthalene, and halogenated hydrocarbons such as dichloroethylene and trichloroethane can be used as pyrolysis carbon raw materials.
In particular, when logenated hydrocarbons are used, there is an advantage that they can be processed at lower temperatures. Vapor phase heat fraction jII a precipitation of carbon,
The time required for the deposition process varies depending on the conditions VC,l:
It is usually carried out in 1 to 10 hours. Above, we have described the structure of the carbonaceous three-dimensional porous material used in this application and the coating treatment with vapor phase pyrolytic carbon, focusing on the cell proliferation function and biocompatibility, which are essential requirements for a biological implant material. A general method for producing a three-dimensional carbonaceous porous body in the present application will be explained. In principle, the organic polymer substance used as a raw material for the porous body may be any substance that is solid and granular and can be carbonized in an inert gas phase atmosphere, but post-chlorinated polyvinyl chloride is preferable. Resin, polyacrylonitrile resin, polyvinyl chloride resin, polyvinyl alcohol,
) Thermoplastic resins such as phenylene ether resin, 4-aryamide-imide resin, polyimide resin, aromatic polyamide resin, and polydivinylbenzene resin, and thermosetting 1'&41A resins such as furan resin, phenol resin, and bismaleimide-triazine resin. Particles obtained by lightly curing a monomer or an initial condensation polymer into a shape that can be thermally deformed or bath-dissolved in a solvent, or gum tragacanth,
Natural polymer particles, such as gum arabic and polysaccharides, have fused polycyclic aromatics as the basic structure of the molecule (1), and synthetic polymer particles that have fused polycyclic aromatics not included in the basic structure of the molecule, such as gum arabic and polysaccharides. Molecular particles, i.e. formalin condensate of naphthalene sulfonic acid, threne dyes and their intermediates, petroleum asphalt, coal tar, synthetic resins, etc. all at 300°C to 500°C
C
Seed or mixture particles of two or more species are suitable. Also, ko\
(This may be used; 1) There are no particular restrictions on the shape of the molecular particles, but it is preferable that they be spherical.

粒子の大きざについては、直径又は最大辺が1mm以下
(1)粒子か好丑しく、粒子の90多以上が直径又は最
大辺が30μm以上であることが良い。
Regarding the size of the particles, (1) particles preferably have a diameter or maximum side of 1 mm or less, and it is preferable that 90 or more of the particles have a diameter or maximum side of 30 μm or more.

炭素多孔体の気孔率(空隙率)を大きくするには粒径の
大きなものを選択し、逆に気孔率の小さいものを得るに
は、粒径の小さなもの全選択すれば良く、気孔径を均一
にする為には、該有機高分子粒子を篩又ぽ風簸、水簸等
にエリ予め分級しで粒径を揃えることによって達成され
、更に中心部が密で外表部が粗であるようVC設剖され
た気孔率分布を有する多層三次元構造とするKは、予め
均一径に分級された微細粒子、中級粒子、粗粒子をそれ
ぞれ用意し、成型用平板金型を加熱して初めに微細粒子
を入れ軽く融M(溶M)させ、次に中級粒子、粗粒子の
順で融層(又は溶層)σせて全体を一体化すること(で
より達成される。また、円筒状、円柱状、角柱状等に多
孔1?、fの外形全賦形させることを目的とする場合V
Cハ、これらの形状を有する金型内に粒子を充填させ融
N(父は溶7k )させること−C1その金型の形状全
維持した成形体を得ることができる。以上の金型のカI
J熱温度は、使用した有機高分子粒子の少なくとも軟化
点以]二で融点以下の温度とし、有機高分子粒子が軟化
しぞの粒子表面層相互間に点融着が生じるように調ゾf
る。この場合温度が低すぎれば、軟化による流動性が減
じて点融着が生じないし、逆に温度が1偽すぎる場合に
は、軟化による流動性が太ぎ〈彦るので生成された多孔
体の気孔が閉ざされたり甚しくは気孔が消滅してし貰う
欠点が生じて好ましくない。溶媒を用いて点接着全行わ
しめるKぼまず有機高分子粒子可溶の溶媒全その溶解能
にも依るが、一般的に該粒子の10重量%以下好捷しぐ
(−I5重量%以下を添加し、ヘンシェルミキサー等の
高速J工り枠機を用いて粒子表面を均一に濡らしたもの
全前記と同様の成型用金型に投入する。この場合も溶媒
(は有機高分子粒子の表面のみが溶解され点接着される
に足る必要分たけを添加することが肝要である。賦形さ
れた該多孔体は乾燥して溶媒をJ’、n赦させて有q=
高分子多孔体を得る。前記いずれかの方法VCXって得
た有機側分子多孔体はその後硬化処理を力瓜すか、加熱
空気VCよる酸化架橋、もしくは塾長硫酸等の酸に浸漬
して脱水素反応を行なわせて不溶。不融化処理を施して
炭素前駆体とする。
To increase the porosity (porosity) of a carbon porous material, select one with a large particle size, and conversely, to obtain one with a small porosity, select all the particles with a small particle size. In order to make the organic polymer particles uniform, it is achieved by pre-classifying the organic polymer particles using a sieve, elutriation, water elutriation, etc. to make the particle size uniform. K, which has a multilayer three-dimensional structure with a VC-shaped porosity distribution, is prepared by preparing fine particles, intermediate particles, and coarse particles that have been classified into uniform diameters in advance, and heating a flat mold for molding. This is achieved by adding fine particles and melting them lightly (melting M), then melting the intermediate particles and then coarse particles into a melting layer (or melt layer) to unify the whole. V
C. Filling a mold having these shapes with particles and melting with N (melting 7k) - C1. A molded article that maintains the entire shape of the mold can be obtained. The power of the above mold
The heating temperature is at least above the softening point of the organic polymer particles used and below the melting point, and adjusted so that the organic polymer particles soften and point fusion occurs between the surface layers of the particles.
Ru. In this case, if the temperature is too low, the fluidity due to softening will be reduced and point melting will not occur.On the other hand, if the temperature is too low, the fluidity due to softening will become too thick and the resulting porous body will This is undesirable since the pores may be closed or even disappear. Although it depends on the solubility of all the solvents in which the K-boad organic polymer particles can be soluble, in general, 10% by weight or less of the particles (-15% by weight or less) is used for spot bonding. The entire particle surface is uniformly wetted using a high-speed J-forming frame machine such as a Henschel mixer, and then the whole particle is placed in the same molding mold as above.In this case, the solvent (only the surface of the organic polymer particle is It is important to add the necessary amount to dissolve and point-bond the material.The formed porous material is dried to release the solvent J',n.
A porous polymer material is obtained. The organic molecular porous material obtained by any of the above methods VCX is then subjected to a hardening treatment, oxidative crosslinking with heated air VC, or immersed in an acid such as Jukucho's sulfuric acid to perform a dehydrogenation reaction to make it insoluble. It is made into a carbon precursor by performing an infusible treatment.

次に本願発明による高硬雇、1%強度、不浸透性を有す
る緻密炭素質芯材(υ、下芯材と1う)の製造方法につ
いて説明する。
Next, a method for manufacturing a dense carbonaceous core material (υ, lower core material) having high hardness, 1% strength, and impermeability according to the present invention will be explained.

芯材の製造方法については、その設計と使用目的に応じ
て以下に記載するいずれかの方法が採用される。
Regarding the manufacturing method of the core material, one of the methods described below is adopted depending on its design and purpose of use.

方法(1)、マトリックスとして後項素化ポリ塩化ビニ
ル樹脂、ポリ塩化ビニル;ly1脂、ポリビニルアルコ
ール−バニリン−トラガントガム混合樹脂、等の熱可塑
性合成値脂類を用い、これ(〆こ高結晶i生を有する天
然黒鉛粉末、及びカーボンブランク又は要素繊維チョツ
プドファイバー等の炭素質粉体を体質材(フィラー)と
して加えた配合物を高剪断力全有するミキシングロール
及び加圧ニーダ等で強力に練り込みマトリックス樹脂と
炭素剥粉体との界面にメカノケミカルな反応を引起させ
て炭素質粉体が望ましくは、−欠粒子状態に至るまで均
一に分散させて成形用組成物k イ4iた。し力・る後
この組成物を通常のプランジャー型又は、スクリュー形
押出接に、J:す、所望する形状の押出ダイを用いて筒
圧下に押出して意図する形状に賦形された先棒(円柱)
状、板状、角柱状の芯材用生成形体が得られた。
Method (1), using thermoplastic synthetic resins such as hydrogenated polyvinyl chloride resin, polyvinyl chloride; A mixture containing raw natural graphite powder and carbonaceous powder such as carbon blank or chopped fiber as a filler is made into a strong material using a mixing roll with high shear strength, a pressure kneader, etc. The molding composition is prepared by causing a mechanochemical reaction at the interface between the kneaded matrix resin and the carbon flakes to uniformly disperse the carbonaceous powder, preferably to a state of missing particles. After applying pressure, this composition is extruded into a conventional plunger type or screw type extrusion joint under cylinder pressure using an extrusion die of the desired shape to form a tip rod into the desired shape. (Cylinder)
Core material shaped bodies having a shape, a plate shape, and a prismatic shape were obtained.

方法(2)、マトリックスとして焼成後高い炭素残歪収
率を示す物質で、比較的容易に熱重縮合可能な基分子化
合物のモノマー、プレポリマー、又は低重縮合体の1種
又は2種以上の混合物を用い、これに前記方法(1)と
同様の炭素質粉末を加えて均一に分散し、これを高剪断
力を有するミキシングロール、又は加圧ニーダを用いて
強力に練り込み、更にゼールミルを用いて高度に機械的
エネルギーを作用させてメカノケミカフし反応を誘起さ
せて体質材として用いた該炭素質粉末の一次粒子表面に
−1−cマトリックス樹脂を均一に物理化学的に強固に
結合させた成形用粉末組成物を得た。次にこれを通常の
加熱プレス成型機ヲ用いて所望の形状に粉末圧縮成形し
て芯材用生成形体が得られた。
Method (2), as a matrix, one or more types of monomers, prepolymers, or low polycondensates of base molecular compounds that can be thermally polycondensed with a substance that exhibits a high carbon residual strain yield after firing and can be relatively easily thermally polycondensed. Add the same carbonaceous powder as in method (1) to this mixture and disperse it uniformly, knead it vigorously using a mixing roll with high shear force or a pressure kneader, and then use a Zeel mill. The -1-c matrix resin is uniformly and physicochemically bonded firmly to the surface of the primary particle of the carbonaceous powder used as an extender by applying a high level of mechanical energy using a mechanochemical cuff to induce a reaction. A powder composition for molding was obtained. Next, this was powder compression molded into a desired shape using a conventional hot press molding machine to obtain a formed body for the core material.

次Vこ、本願発明の主要″″cある芯材表面に炭素質三
次元多孔体全構築させる方法について説明する。
Next, the main feature of the present invention, the method of constructing the entire carbonaceous three-dimensional porous body on the surface of the core material, will be explained.

第1の方法は、前記(1)及び(2)のいずれかの方法
によって得られた芯材の生成形体全iIJ記多孔体用の
原材料である有機高分子物質の土粒状物中に直接埋入(
インサート)シて、加熱もしくは溶媒により芯材表面及
び粒子間相互圧点融着又げ点接着を生じさせて、芯材と
三次元多孔層とが一体賦形された生インブラント成形体
全得た。この生インブラント成形体を50℃〜300 
’C好ましくは150℃〜200’Cに加熱された空気
浴中で酸化架橋させるか、又は熱濃硫酸中に浸漬して脱
水素反応を行なわせて不溶、不融化させ炭素AiJ駆体
とした後、窒素ガス等の不活注気相中で徐々に昇温させ
800℃以上の所定の温度に焼成し炭素比させて完成品
を得た。
The first method involves directly embedding the entire formed core material obtained by either method (1) or (2) above in soil granules of an organic polymeric material, which is the raw material for the porous material. Enter (
Insert), heat or solvent is used to cause mutual pressure point fusion and point adhesion between the core material surface and particles to obtain a whole raw implant molded product in which the core material and the three-dimensional porous layer are integrally formed. Ta. This raw implant molded body was heated to 50°C to 300°C.
'C is preferably oxidized and crosslinked in an air bath heated to 150°C to 200'C, or immersed in hot concentrated sulfuric acid to perform a dehydrogenation reaction to make it insoluble and infusible, resulting in a carbon AiJ precursor. Thereafter, the temperature was gradually raised in an inert gas injection phase such as nitrogen gas, and the product was fired to a predetermined temperature of 800° C. or higher, and the carbon content was compared to obtain a finished product.

第2の方法は、前記方法によって得られた芯材の生成形
体表面に、予め点融着もしくは点接7M ICよって三
次元多孔体に賦形されAi+記いずれかの手段に裏って
不溶、不融化処理の施されft多孔体乞炭化結合力を有
する液状又はペースト状イ1機篩分子組成物を接着剤と
して用いて貼り合わせ一体化させてインブラント生成形
体を得た。こ\で、接層剤として用いる液状又(グペー
スト状有機高分子組成物とげ、フラン樹脂、フェノール
樹月旨等の液状又はペースト状のもので炭素化した段階
で強固な接合力を有するものであれば良く特男1」に限
定されるものでにない。この時、これら接着用液状樹脂
に対し微粒黒鉛又はカーボンブランク等の炭素粉末が5
〜50重量係好捷しくに10〜20重量係添加された組
成物としたものが炭化結合に、J:!l)強固にするの
で好ましい。この様にして芯材と多孔体層とが一体に貼
り合わされた生インブラント成形体は、前記第1の方法
と以下同様にして焼成炭素化し完成品全得た。
The second method is to shape the surface of the formed body of the core material obtained by the above method into a three-dimensional porous body by point fusion or point contact 7M IC in advance, and to insoluble it by any of the means described above. A liquid or paste-like sieve molecular composition which had been subjected to an infusibility treatment and had carbonization bonding strength was bonded and integrated using an adhesive to obtain an implant-formed body. In this case, liquid or paste-like materials such as organic polymer compositions, furan resins, and phenol resins used as adhesives have a strong bonding force when carbonized. It is not limited to "Tokuo 1". At this time, carbon powder such as fine graphite or carbon blank is added to these adhesive liquid resins.
~50% by weight is preferably added to the composition by 10 to 20% by weight to form a carbonized bond, J:! l) It is preferable because it makes it stronger. The raw implant molded body in which the core material and the porous layer were bonded together in this manner was fired and carbonized in the same manner as in the first method to obtain a complete finished product.

第3の方法は、芯材及び多孔体をそれぞれ前Ne2の焼
成手段に基づいて炭素化したものを、更に前記炭化接着
剤を用いて貼り合わせ一体化させた後回j矩焼成するこ
とにより完全に一体化して炭素化した完成品を得た。
In the third method, the core material and the porous body are carbonized based on the firing method of Ne2, and then they are bonded together using the carbonized adhesive, and then fired in a rectangular manner, thereby completely carbonizing the core material and the porous body. A carbonized finished product was obtained.

以J−1第J、第2.第3//)り蛮方iJ f Jつ
てヂjられた不順インブラント材料ぼ、前記した如く更
にその必要に応じて気相熱分解炭素勿ぞの表面に析出堆
積させて被覆することにより表面の同調化を計ると同時
に表面強贋を増加させることかできる。
From J-1 No. J, No. 2. 3rd///) As described above, the surface of the non-conforming implant material can be coated by depositing it on the surface of the vapor-phase pyrolytic carbon, if necessary. It is possible to increase surface forgery at the same time as synchronization.

本発明の生体硬組織用インブラント材料は次の様な特注
金偏えている。
The implant material for biological hard tissue of the present invention is custom-made as follows.

(1)炭素質三次元多孔層の構造及び細孔軽を適切に選
択し設計することにエリ、生体組織の浸入及び内部芯材
表面に於ける石灰化に、r、ろ硬骨組織化(骨化)速度
全変化させることができる。
(1) Appropriate selection and design of the structure and pore size of the carbonaceous three-dimensional porous layer, prevention of infiltration of living tissue and calcification on the surface of the internal core material, r, bone organization (bone ) The speed can be completely changed.

(2)  インブラント材円部に浸入したコラーゲン繊
維組織先端は芯材表面で骨化して一体化し、中層部は軟
骨化し、外表¥Jl! ’rl新生したコラーゲン繊維
組織に扱われて生体骨組域と一体化してインブラント材
は投錨効果(アンカーリング) I/C、にり強固に接
合され、りたかも自然骨の如き様相を呈する。
(2) The tip of the collagen fiber tissue that has penetrated into the circular part of the implant material is ossified and integrated on the surface of the core material, and the middle layer becomes cartilage, and the outer surface is ¥ Jl! Treated by the newly generated collagen fiber tissue and integrated with the biological skeleton, the implant material is firmly bonded with the anchoring effect (anchoring), giving it an appearance similar to that of natural bone.

(3)不インブラント材は、抗血栓性を有し、かつ組織
刺激性が極めて少なく、親和性が優れるのでその適用場
所を選ばない。
(3) Non-implant materials have antithrombotic properties, have extremely low tissue irritation, and have excellent affinity, so they can be applied anywhere.

(4)  全体が炭素のみで構成されるため腐食するこ
とが無く、又生体環境内に於てその機械的1生質が経時
劣化する工う彦ことに井:い。
(4) Because it is composed entirely of carbon, it does not corrode, and its mechanical properties deteriorate over time in the biological environment.

(5)軽量であり、生体硬組織に近似した弾性率を持つ
ので応力集中等vrcxる無理な力を生体に負担させな
い。
(5) It is lightweight and has an elastic modulus similar to that of living hard tissues, so it does not burden living bodies with unreasonable forces such as stress concentration.

(6)表層部に多孔構造を有するので施術に際してイン
ブラント材の自立性があり挿入箇所に自由に適合するの
で他の硬質材料の如きゆるみを生ずることなく長期間の
使用に耐える。
(6) Since the surface layer has a porous structure, the implant material is self-supporting during the treatment and can be freely adapted to the insertion site, so it can withstand long-term use without loosening like other hard materials.

次に本発明全芙施例全皐げて具体的に説明するが、不発
明は以下の実施例に限定されるものではプ、I呪い。
Next, the present invention will be explained in detail with all its embodiments, but the invention is not limited to the following embodiments.

実施例1(丸棒状試料) 芯材成形用組成物の材料として、平均重合度800、塩
累含有量646係の後塩素化ボ・り塩化ビニル樹脂(−
日本カーノぐイト社N T  Q 25 )を採用し、
この後塩素化ポリ塩化ビニル樹脂100↓F量%に対し
て、閤結晶注天然黒鉛微粉末(平均粒径2.0μnL)
70重量%を体質材として加えfc、配合物100重量
%に対してyvc可塑剤としてジオクチルフタレート2
5重蛍係を添加してヘン/エルミキサーを用いて分散し
た後、表111]温度q 1:30℃に保ったミキ/ン
グロールを用いて十分に混線を繰返し黒鉛粒子が一次粒
子状態に近くなる迄続行してメカノケミカル反応’z8
Nさせた芯材成形用組成物を得た。
Example 1 (Round bar-shaped sample) As a material for a composition for forming a core material, post-chlorinated polyvinyl chloride resin (-
Nippon Carnoguito Co., Ltd. NT Q 25) is adopted,
After this, fine natural graphite powder (average particle size 2.0 μnL) was poured into crystals based on 100↓F amount% of chlorinated polyvinyl chloride resin.
70% by weight was added as an extender, fc, and dioctyl phthalate 2 was added as a plasticizer to 100% by weight of the formulation.
After adding the quintuple powder and dispersing it using a Hen/El mixer, mixing was repeated sufficiently using a mixing roll kept at a temperature of 1:30°C until the graphite particles were in a state close to the primary particle state. Continue until the mechanochemical reaction 'z8
A core molding composition subjected to N was obtained.

この成形用組成物をベント式スクリュー押出磯を用いて
脱気を行いつ\成型温度150℃、で押出して直径2.
5 mmの丸棒(生成形体)を得た。この丸棒を長さ2
0mrrLに切断した後直径5. Q mmの円筒型の
成型用金型中に垂直Vr:、′SLで、金型底部よりI
Q、mmの深さまで多孔11☆用イ2料である有機高分
子物質の粒子として、平均重合度5OO1塩素含有量ら
46%である後塩素化ポリ塩化ビニル樹脂(T−025
)k用い、これを篩分縁して30メツシユの筒金通過し
50ノソシユの篩に残留した粒子を集めたものを充填し
た後、1i凋全体全160℃のエアーオーブン中に30
分間処理した後室温(tこ冷却して脱型し芯材部II]
]に点融着して一体化したインブラント生成形体を得た
。次に、これ全100℃に加熱された熱儂硫酸中に20
分間浸漬させノ況塩化水素反応及び脱水素反応を行わせ
た後水洗、乾繰させて不溶、不融化処理金族して炭素前
駆体とレグζ。更に窒素ガス中で500℃迄を10℃/
hr、 500〜1,000℃迄を50℃/hrの昇温
速度で昇温させi、o o o℃で3時間保持し、た後
自然放冷させて焼成全完了させ完全に炭素化した完成イ
ンブラント材を得た。
This molding composition was extruded at a molding temperature of 150° C. while degassing using a vented screw extrusion mill, and the molding composition was extruded to a diameter of 2.
A 5 mm round bar (produced shape) was obtained. This round bar has a length of 2
Diameter 5. after cutting to 0mrrL. In a cylindrical molding mold of Q mm, vertical Vr:,'SL is applied from the bottom of the mold to I.
Post-chlorinated polyvinyl chloride resin (T-025
), this was separated into a sieve, passed through a 30-mesh sieve, and the particles remaining on the 50-mesh sieve were collected and filled, and then placed in an air oven at a temperature of 160°C for 30 min.
After processing for minutes at room temperature (cool down and remove from the mold core part II)
] was point-fused to obtain an integrated implant-formed body. Next, this was placed in hot sulfuric acid heated to 100℃ for 20 minutes.
After being immersed for a minute to carry out hydrogen chloride reaction and dehydrogenation reaction, it was washed with water and dried to make it insoluble and infusible. Furthermore, the temperature was increased to 500℃ in nitrogen gas at 10℃/
The temperature was raised from 500 to 1,000°C at a rate of 50°C/hr, held at 0°C for 3 hours, and then allowed to cool naturally to complete firing and complete carbonization. A completed implant material was obtained.

このインブラント材の表面多孔層を形成している細孔径
ば150μmを中心に±50μm17)綻囲で分布して
いた。捷た試料は芯材部直径2. l m、m 、最大
外径3.5 mm、長さ18. OTtTTLの形状を
有し、曲げ強さ4. OOOkgf /crl、圧縮強
さ5,50 、Okgf7 caで十分な1銭械的強度
金有していた。
The pore diameters forming the surface porous layer of this implant material were distributed with a radius of ±50 μm17) centered around 150 μm. The shredded sample has a core diameter of 2. l m, m, maximum outer diameter 3.5 mm, length 18. It has an OTtTTL shape and has a bending strength of 4. OOOkgf/crl, compressive strength 5.50, Okgf7ca, and had sufficient mechanical strength.

実施例2(板状試料) 芯・lオ成形用絹成物として前記実施V1」1と同様の
ものを採用しこれ全脱気装置全有するプランジャ一式油
圧押出成型□rA k用いて、成型温度130℃、成型
圧カフ 0 kff/csrtで厚さ2.5 nL7a
、4% 3 Q ntmに押出成形したものを長さ25
+nm17こ切断して板状体(生成形体)を得た。また
多孔層(・11.築用材料として、平均重合度740.
塩素含有量670%の後塩素化ポリ塩化ビニル(■日不
カーバイド社製’J’ −870)全採用し、これ全予
め篩分級して、■200メソ/ユ通過(45zzm以下
90%)の細粒、■100メソ7ユ通過、150メンシ
ユ残留(平均粒径701tm)の中級粒、■30メソ/
ユニll11過、50ノソノユ残留(平均粒径280μ
nL )の籾粒、をそれぞれ得た。次に平滑な而を有す
る横2 Q Q mm X縦300mff1の金型上(
(上記■の細粒を厚さl mm VC数き詰めた後、こ
の金型′ff:l 501:に加温されたエアーパス中
に2分間保持した俊室温迄冷却し粒子間相互が軽く融着
され几多孔層’fc K4jた。次(にの細粒1−の上
に中級粒層、その上に粗粒層を同様の操作を順次繰り返
して細孔分布の異なる三層構造を有し一体化したヨ次元
多孔体の生成形体缶イ11た。次にこれを実施例1と同
様にして不溶。不f肚化処理を施し、更に璧素ガス中で
10℃/h rの昇温速反″T:400℃迄昇温させた
後冷却して該三次元多孔体を得た。
Example 2 (plate-shaped sample) The same material as in the above-mentioned Example V1'1 was adopted as the silk material for core/l-o molding, and the molding temperature was adjusted using hydraulic extrusion molding with a complete plunger equipped with a full degassing device. 130℃, molding pressure cuff 0 kff/csrt, thickness 2.5 nL7a
, 4% 3 Q ntm extrusion molded to length 25
A plate-shaped body (produced shape) was obtained by cutting +nm17. In addition, the porous layer (・11. As a construction material, the average degree of polymerization is 740.
All chlorinated polyvinyl chloride with a chlorine content of 670% (■'J'-870 manufactured by Nippu Carbide Co., Ltd.) was used, and all of this was classified in advance through a sieve to pass through ■200 meso/yu (90% below 45zzm). Fine grain, ■ 100 meso passed through 7 units, 150 meso remained (average particle size 701 tm) intermediate grain, ■ 30 meso/
Passed through 11 units, 50 units remained (average particle size 280μ)
nL) of rice grains were obtained. Next, on a mold with a smooth surface measuring 2 Q Q mm wide x 300 mff1 long (
(After the fine grains of the above (■) were packed down to a thickness of 1 mm and VC, they were cooled to a temperature-controlled room that was kept in a heated air path for 2 minutes in this mold 'ff:l 501:, so that the particles were slightly fused with each other. A finely porous layer was formed.Next, the same operation was repeated sequentially to form a medium grain layer on top of the fine grain 1-, and a coarse grain layer on top of that to form a three-layer structure with a different pore distribution. The integrated transversely porous body was formed into a shape (11).Next, it was treated in the same manner as in Example 1 to make it insoluble.It was further heated at 10°C/hr in an elementary gas. Rapid reaction "T: The temperature was raised to 400°C and then cooled to obtain the three-dimensional porous body.

別に炭化接合性を有する液状又はペースト状接着剤全用
意する。すなわちフラン樹脂初期縮合物(日豆化成社製
ヒタフランVP−302)80重量係と天然黒鉛粉末(
2μm)20重重量上を配合調整して冷却した3本ロー
ルで練った液状物全作った。
Separately, prepare all liquid or paste adhesives that have carbonization bonding properties. That is, 80% by weight of furan resin initial condensate (Hitafuran VP-302 manufactured by Nizu Kasei Co., Ltd.) and natural graphite powder (
2 μm) A total of liquid products were prepared by adjusting the formulation and kneading with three cooled rolls.

継いで、@記芯材の板状体表面(で、前記多孔体の炭素
前駆体を縦I Q mm X横3Qmmに裁断したもの
二枚全前記接着剤に適宜の硬化剤を添加したものを使用
して表部二面に貼り合わせ一体化させてインブラント生
成形体を得た。
Next, the surface of the core material plate (2 pieces of the carbon precursor of the porous body cut into length I Q mm x width 3 Q mm) were prepared by adding an appropriate curing agent to the adhesive described above. The two surfaces were bonded and integrated to obtain an implant-formed body.

次VC1これ全実施例1と同様の条件で焼成炭化させて
目的とする炭素質インブラント材を?#た。
Next VC1 This is all fired and carbonized under the same conditions as in Example 1 to produce the desired carbonaceous implant material? #Ta.

入面三次元多孔層を構築している細孔径を測定するため
に試相全切=したところ芯材近傍では平均15 thn
、 、中間部で平均200μyn、外表部で平均350
μmの細孔径が観察され、その各層間は相互に融治され
ていた。又芯材表面と多孔層表面は強固に接合されてい
−C−’eの界W]が判別しゾ・11い状態であった。
In order to measure the diameter of the pores that make up the three-dimensional porous layer on the entrance surface, the sample phase was completely cut = 15 thn on average near the core material.
, , Average of 200μyn in the middle part, average of 350 in the outer part
Pore diameters of μm were observed, and the layers were mutually fused. In addition, the surface of the core material and the surface of the porous layer were firmly bonded, and the -C-'e boundary W] could be determined.

試料1に、 J、lさ4.8 nun (芯材部2.0
 +l1lTL l 仙25171171、縦20mm
の形状を有し、曲げ強さ3 、500 kgf/C++
t、圧縮強さ5,800 krf/C+d を十分なV
lly、械的強度を不していた。
For sample 1, J, length 4.8 nun (core part 2.0
+l1lTL l Sen25171171, height 20mm
shape, bending strength 3, 500 kgf/C++
t, compressive strength 5,800 krf/C+d with sufficient V
lly, the mechanical strength was poor.

笑施例3(ブレ゛−F型試料) 芯材成形用組成物の4′A別としてフラン)lIIr 
II’#f初期縮合物(日豆化成社製ヒタフランV F
−302)100重量%に対して、ファーネスブランク
(三菱化成工業社製M A −100) 45 p5 
:im %を体質材として加えた配合物をニーダで均一
混合した彼我[f]li温涙50℃に保たれたミキノン
クロールケ用いて十分に混練し、黒鉛粒子が一次肋子状
、1ぶに近くなる迄続行しメカノケミカル反応’C’i
A起させて該黒鉛粒子表面がフラン但I脂[J:つて均
一に縁抜される壕で繰返した。次にこれを粗砕してボー
ルミルに投入し50時間粉砕して平均粒子径5μ7rL
の芯材成形用組成物粉末を得た。この芯材成形用組成物
粉末を用いて図□の形状を有する金型により温度150
℃、1001ηf/l、r)iの成型圧力で粉末圧縮成
ムリして芯材生成形体金得た。
Example 3 (Brave-F type sample) 4'A (furan) lIIr of the composition for forming the core material
II'#f initial condensate (Hitafuran V F manufactured by Nizu Kasei Co., Ltd.
-302) Furnace blank (MA-100 manufactured by Mitsubishi Chemical Industries, Ltd.) 45 p5 relative to 100% by weight
:im% was added as an extender and was uniformly mixed in a kneader.The mixture was thoroughly kneaded using a Mikinon Krollke kept at 50°C, and the graphite particles were shaped like primary ribs. The mechanochemical reaction 'C'i continues until it approaches 1.
The surface of the graphite particles was coated with furan fat [J: A] and the edges were removed uniformly. Next, this was coarsely crushed, put into a ball mill, and crushed for 50 hours, with an average particle size of 5 μ7 rL.
A core material molding composition powder was obtained. Using this core material molding composition powder, a mold having the shape shown in the figure □ was heated to 150°C.
The powder was compressed under a molding pressure of 1001 ηf/l and r)i to obtain a core material formed body.

継いでこの芯材のブレード部の表裏両面に前記実施例2
によって作られた三層114造を持つ三次元多孔体の炭
素前駆体を裁断して、f4iJ記実施例2によって調整
された接着剤にエリ貼り合わせて一体化させインブラン
ト生成形体を得た。次にこれを180CK加熱されタエ
アーオープン中−C”10時間処理して完全に硬化全完
了させて炭素前、躯体とした。
Then, the above Example 2 was applied to both the front and back sides of the blade portion of this core material.
The carbon precursor of the three-dimensional porous body having a three-layer 114 structure was cut and bonded to the adhesive prepared in Example 2 described in f4iJ for integration to obtain an implant-formed body. Next, this was heated to 180 CK and treated for 10 hours in an open air conditioner to completely cure it and form a carbon frame.

次にこれ全実施例1と同ノ峠の条件で焼成炭紫化させて
目的とする炭素質インブラント材を得た。
Next, the fired carbon was purple-purified under the same conditions as in Example 1 to obtain the desired carbonaceous implant material.

得られた表面多孔層の構築状態は実施例2と同様であっ
た。又この試料は表面か硬くガラス状を呈し、曲げ強I
K 1 、500 kgf /ca曲げ弾性率2X10
51(りf /ca、圧1%破壊来荷重240 kyで
めり、生体硬組械用インブラント材として好適な特註全
示した。
The structure of the obtained surface porous layer was the same as in Example 2. The surface of this sample was hard and glassy, and the bending strength I
K 1, 500 kgf/ca flexural modulus 2X10
51 (rif/ca, 1% pressure to failure at a load of 240 ky), with all the special notes suitable as an implant material for biological rigid structures.

実施例4(気相熱分解炭素堆積による表面被覆)前記実
施例2によって作られた炭・葉質インブラント試料を基
材として固定し芯材である板状体に直接通電することに
裏って加熱した。堆積条件は以下の通りである。
Example 4 (Surface coating by vapor-phase pyrolytic carbon deposition) The charcoal/leaf implant sample prepared in Example 2 was fixed as a base material and electricity was applied directly to the plate-like core material. and heated. The deposition conditions are as follows.

原料布イ幾物      cis−1,2−ジクロロエ
チレンキャリヤーガス  アルゴン 原料ガス濃贋   14容量% 原料ガス流量   400 rrre/yu11中心芯
材表[11]温度 900℃ また、堆積に要し^時間に51身間を以って終了させた
Raw material cloth Cis-1,2-dichloroethylene carrier gas Argon raw material gas concentration 14% by volume Raw material gas flow rate 400 rrre/yu11 Center core material table [11] Temperature 900°C Also, the deposition time is 51 times per hour I finished it in time.

気相熱分解炭素で被覆されたインブラント表面に非常に
堅牢で且つ硬く、鋼製ヤス1.I Tは傷がイマ]かな
い状態であった。
The implant surface is coated with vapor-phase pyrolytic carbon and is extremely robust and hard, with a steel filer 1. IT was in a state with no injuries.

又、表面層を(41Y築している多孔1111)漬は極
めて良く維持されており更に電子顕微鏡観察によれば、
その粒子焼結体表面ば均質に被キガされて訃り丸みを帯
びて平滑化していた。板状体試ネ・1の強度L1更に増
加して曲げ強さ4 、200 hf /crrf 、 
EEA’g(? rUi サ6.500 kgf /C
T7デであった。
In addition, the surface layer (porous 1111 forming 41Y) is maintained extremely well, and furthermore, according to electron microscopy observation,
The surface of the sintered particles was uniformly scratched, rounded and smoothed. The strength L1 of the plate-shaped body trial 1 is further increased to have a bending strength of 4, 200 hf/crrf,
EEA'g(? rUi sa6.500 kgf /C
It was T7 de.

以上実施例を示して説明したが、現在これらの試料に、
体重4 kzのカニクイザルの歯槽刊内及び下腿骨中に
埋入してインブラント材としての滴注を;JAが中でろ
ろ。
Although the examples have been explained above, these samples are currently
Injected as an implant material into the alveolus and lower leg bone of a cynomolgus monkey weighing 4 kHz; JA is in charge.

特許出願人 三菱鉛筆株式会社Patent applicant: Mitsubishi Pencil Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)筒硬度、面強度、不浸透性を有する緻密質炭素材
料から成る芯材表面に厚さ1001Lrn以上の炭素質
三次元多孔層を構築したことを特徴とする該芯材と該三
次元多孔層とが一体賦形されている笑質的に炭素材料の
みて構成された生体硬組織用インブラント材料。
(1) The core material is characterized in that a three-dimensional carbonaceous porous layer with a thickness of 1001 Lrn or more is constructed on the surface of the core material, which is made of a dense carbon material having cylindrical hardness, surface strength, and impermeability. An implant material for biological hard tissues, which is essentially composed of carbon material and is integrally formed with a porous layer.
(2)該芯材は結晶質黒鉛、カーボンブランク等の炭素
質微粉末又は、炭素繊維VC工って複合強化された有機
高分子樹脂材料全硬化処理又は、不宕、不融化処理等の
炭素前駆体化処理を施した後、不活性気相雰囲気中で所
定温度以上に焼成して成る炭素質材料である特許請求範
囲第1項記載の生体f吠組織用インブラント材料。
(2) The core material is carbonaceous fine powder such as crystalline graphite or carbon blank, or organic polymer resin material composite reinforced with carbon fiber VC, fully hardened, or carbon treated with fugo, infusible, etc. The implant material for living bone tissue according to claim 1, which is a carbonaceous material obtained by performing a precursor treatment and then firing at a predetermined temperature or higher in an inert gas phase atmosphere.
(3)該炭素質三次元多孔層は、有機高分子物質の粒子
を加熱もしくは溶媒によりその表面を軽く溶かして粒子
間に点融着又は点接着を生じさ−ぎて有機高分子多孔体
全形成(生成形体)シタ後硬化処理又は、不溶、不融化
処理を施して耐熱変形VLを付与させて(炭素前駆体)
から不活性気相雰囲気中で所定温度に焼成して成る基本
的に粒状焼結構造である炭素多孔体である特許請求範囲
第1項に記載の生体硬組織用インブラント材料。
(3) The carbonaceous three-dimensional porous layer is formed by heating the particles of the organic polymer substance or lightly melting the surface with a solvent to cause point fusion or point adhesion between the particles. After forming (produced shaped body), it is subjected to hardening treatment or insoluble and infusible treatment to impart heat-resistant deformation VL (carbon precursor)
The implant material for biological hard tissue according to claim 1, which is a carbon porous body having basically a granular sintered structure, which is obtained by firing at a predetermined temperature in an inert gas phase atmosphere.
(4)結晶質黒鉛、カーボンブランク等の炭素質微粉末
又は炭素繊維によって複合強化された有機高分子樹脂材
料の成形体、又は硬化処理又は不融不溶化処理等の炭素
前駆体化処理金施した成形体、又はこれをさらに不活性
気相雰囲気中で所定温度以上[焼成した炭素質材料7J
jら成る芯材に、有機高分子物質の生粒子全直接包囲さ
せて加熱もしくは溶媒に工り該芯材の表面及び粒子間相
互に点融着もしくは点接着を生じさせ、又は該芯拐表面
と該有機高分子物質から成る有機高分子多孔体の生成形
体又は、その炭素前駆体、又は炭素化物より成る多孔層
面とを有効炭化する有機高分子物質の1種又は2種以上
を用いた液状組成物で作られた炭化接合材k fffi
用して接層結合して一体賦形し、イ使化処理又は不溶不
融化処理を施した後不活註気イ1」雰囲気中で所定温度
に焼成することから成る生体硬組織用インブラン) A
−)+料の製造方法。
(4) A molded body of an organic polymer resin material composite reinforced with carbonaceous fine powder such as crystalline graphite or carbon blank or carbon fiber, or a molded body subjected to a carbon precursor treatment such as a hardening treatment or an infusible insolubilization treatment. The molded body or the molded body is further heated at a predetermined temperature or higher in an inert gaseous atmosphere [sintered carbonaceous material 7J
All the raw particles of the organic polymer substance are directly surrounded by a core material consisting of J and heated or treated with a solvent to cause point fusion or point adhesion between the surface of the core material and the particles, or the surface of the core material is A liquid using one or more organic polymer substances that effectively carbonizes the produced form of the organic polymer porous body made of the organic polymer substance, its carbon precursor, or the porous layer surface made of the carbonized substance. Carbonized bonding material made from the composition kfffi
In-blank for biological hard tissues, which consists of bonding in layers and shaping them into one piece, subjecting them to a treatment to make them insoluble or infusible, and then firing them to a predetermined temperature in an inert atmosphere (Note 1). A
−) + Method for producing the material.
(5)、該焼成は少くとも800℃以上の温度に加熱昇
温することから成る特許言責*範囲第4項記載の生体硬
組織用インブラント材料の製造方法。
(5) The method for producing an implant material for biological hard tissue according to Patent Disclaimer * Scope Item 4, wherein the firing comprises heating to a temperature of at least 800° C. or higher.
(6)焼成後、気相熱分解炭素被覆処3ii!全行い炭
押ヲ析出させて光面を円滑化すると共に捕獲強化1.メ
せること全特徴とする特許請求範囲第4項に記載の生体
硬組織用インブラント材料の製造方法。
(6) After firing, vapor phase pyrolytic carbon coating treatment 3ii! Precipitate charcoal throughout the process to smooth the light surface and strengthen capture 1. 5. The method for producing an implant material for biological hard tissue according to claim 4, which is characterized in that it can be used in a living body.
JP58084073A 1983-05-16 1983-05-16 Carbonaceous implant material for living body hard tissue and production thereof Granted JPS59211447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58084073A JPS59211447A (en) 1983-05-16 1983-05-16 Carbonaceous implant material for living body hard tissue and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58084073A JPS59211447A (en) 1983-05-16 1983-05-16 Carbonaceous implant material for living body hard tissue and production thereof

Publications (2)

Publication Number Publication Date
JPS59211447A true JPS59211447A (en) 1984-11-30
JPS6155392B2 JPS6155392B2 (en) 1986-11-27

Family

ID=13820303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58084073A Granted JPS59211447A (en) 1983-05-16 1983-05-16 Carbonaceous implant material for living body hard tissue and production thereof

Country Status (1)

Country Link
JP (1) JPS59211447A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329651A (en) * 1986-07-23 1988-02-08 柳沢 定勝 Filling prosthetic material of living body
JPS63125260A (en) * 1986-11-14 1988-05-28 大谷 杉郎 Artificial prosthetic filler material
US6989033B1 (en) 1992-09-17 2006-01-24 Karlheinz Schmidt Implant for recreating verterbrae and tubular bones
EP1717340A2 (en) 2005-04-22 2006-11-02 Suzuki, Tetsuya Method of producing esthetically pleasing ornaments from bone components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329651A (en) * 1986-07-23 1988-02-08 柳沢 定勝 Filling prosthetic material of living body
JPS63125260A (en) * 1986-11-14 1988-05-28 大谷 杉郎 Artificial prosthetic filler material
US6989033B1 (en) 1992-09-17 2006-01-24 Karlheinz Schmidt Implant for recreating verterbrae and tubular bones
EP1717340A2 (en) 2005-04-22 2006-11-02 Suzuki, Tetsuya Method of producing esthetically pleasing ornaments from bone components
US7727589B2 (en) 2005-04-22 2010-06-01 Tetsuya Suzuki Method of producing esthetically pleasing ornaments from bone components

Also Published As

Publication number Publication date
JPS6155392B2 (en) 1986-11-27

Similar Documents

Publication Publication Date Title
Baino et al. Bioceramics and scaffolds: a winning combination for tissue engineering
Adams et al. Carbon fiber‐reinforced carbon as a potential implant material
Jenkins et al. The fabrication of artifacts out of glassy carbon and carbon‐fiber‐reinforced carbon for biomedical applications
US4859383A (en) Process of producing a composite macrostructure of organic and inorganic materials
CN112190756B (en) Preparation method of carbon fiber composite material profiling artificial bone
CN113304323B (en) Porous polyether-ether-ketone-hydroxyapatite composite material and preparation method and application thereof
Tang et al. Fabrication and in vitro evaluation of 3D printed porous polyetherimide scaffolds for bone tissue engineering
Li et al. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques
WO2007128192A1 (en) A medical strengthened-type porous bioceramics, its preparation method and application
CN112245661B (en) TBJ tissue repair film type stent and preparation method thereof
Li et al. In vitro calcium phosphate formation on a natural composite material, bamboo
Fitzer Thermal degradation of polymers to polymeric carbon—an approach to the synthesis of new materials
CN101899193A (en) Polyether-ether-ketone composite material containing fluorine phosphorus lime, preparation method and usage thereof
JP7421484B2 (en) Functionally graded polymer knee implants and their manufacture for enhanced fixation, wear resistance, and mechanical properties
JPS59211447A (en) Carbonaceous implant material for living body hard tissue and production thereof
KR101239112B1 (en) Method for Preparing Porous Titanium-Hydroxyapatite Composite
CN108577957A (en) A kind of C/C-SiC composite materials bone plate and preparation method thereof
TW201000154A (en) Method for manufacturing biomedical glassiness ceramic material
CN108404227A (en) A kind of C/C composite materials bone plate and preparation method thereof
CN110606746B (en) Skull repairing patch and preparation method thereof
CN1200043C (en) Inorganic/organic nano-composite bioactivity porous material and its preparation method
US5171492A (en) Process for producing carbonaceous implant material
CN111233457B (en) Method for preparing porous magnesium-doped HA-based composite material based on carbon fibers as pore-forming agent and reinforcement
CN112206355B (en) Profiling artificial bone and preparation method thereof
EP1450875B1 (en) Articular implant and method for the production thereof