JP2851912B2 - Power converter - Google Patents

Power converter

Info

Publication number
JP2851912B2
JP2851912B2 JP9984990A JP9984990A JP2851912B2 JP 2851912 B2 JP2851912 B2 JP 2851912B2 JP 9984990 A JP9984990 A JP 9984990A JP 9984990 A JP9984990 A JP 9984990A JP 2851912 B2 JP2851912 B2 JP 2851912B2
Authority
JP
Japan
Prior art keywords
capacitor
chopper
input
power supply
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9984990A
Other languages
Japanese (ja)
Other versions
JPH04260A (en
Inventor
裕二 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9984990A priority Critical patent/JP2851912B2/en
Publication of JPH04260A publication Critical patent/JPH04260A/en
Application granted granted Critical
Publication of JP2851912B2 publication Critical patent/JP2851912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、直流−直流電力変換するチョッパを有す
る電力変換装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a power converter having a chopper for DC-DC power conversion.

〔従来の技術〕[Conventional technology]

第2図は例えば昭和61年度電気学会全国大会講演論文
集、1147ページに示された従来の電力変換装置を示す回
路構成図である。図において、(1)は直流電源、(2
A),(2B)はこの直流電源(1)に接続された正群及
び負荷の降圧チョッパであって2段カスケード接続され
ており、この降圧チョッパ(2A),(2B)は次のように
構成されている。スイッチング素子(4a)及び(4b)が
各々直流電源(1)の正及び負極の電路に順方向に直列
接続され、コンデンサ(3a),(3b)及びダイオード
(5a),(5b)が直流電源(1)の両端間に並列接続さ
れた状態で互いにブリッジ接続されている。このダイオ
ード(5a),(5b)は、上記スイッチング素子(4a)及
び(4b)の出力側に上記直流電源(1)の極性とは逆方
向に接続され、上記コンデンサ(3a),(3b)の中間点
とダイオード(5a),(5b)の中間点が共通に接続され
ている。(6)はフィルタ用のリアクトル、(7)はフ
ィルタ用のコンデンサで、上記正群及び負群の降圧チョ
ッパ(2A),(2B)の出力両端に並列接続されている。
また、(8)は負荷であって、上記コンデンサ(7)の
両端に並列接続されている。
FIG. 2 is a circuit diagram showing a conventional power converter shown in, for example, page 1147 of the Institute of Electrical Engineers of Japan in 1986. In the figure, (1) is a DC power supply, (2)
A) and (2B) are the buck choppers of the positive group and the load connected to the DC power supply (1), which are cascaded in two stages. The buck choppers (2A) and (2B) are as follows. It is configured. The switching elements (4a) and (4b) are respectively connected in series in the forward direction to the positive and negative electric paths of the DC power supply (1), and the capacitors (3a) and (3b) and the diodes (5a) and (5b) are connected to the DC power supply. (1) are bridge-connected to each other while being connected in parallel between both ends. The diodes (5a) and (5b) are connected to the output side of the switching elements (4a) and (4b) in the opposite direction to the polarity of the DC power supply (1), and are connected to the capacitors (3a) and (3b). And the intermediate point of the diodes (5a) and (5b) are commonly connected. (6) is a reactor for the filter, and (7) is a capacitor for the filter, which is connected in parallel to both ends of the output of the step-down choppers (2A) and (2B) of the positive group and the negative group.
A load (8) is connected in parallel to both ends of the capacitor (7).

次に、第3図を参照して動作について説明する。スイ
ッチング素子(4a),(4b)は電源電圧を周波数Fcで交
互にオン・オフすることにより降圧し、出力フィルタ回
路(6),(7)によって一定の直流電圧を発生して負
荷へ電力を供給する。この時、通常は変動する電源電圧
に対して一定の直流電圧を発生させる目的でチョッパ回
路が使用されるため、上記スイッチング素子(4a),
(4b)は、その通流率が制御されるが、チョッパ出力回
路のリップル電流を最小とする目的で(これはフィルタ
回路の寸法を小さくし、またリップル電流によるフィル
タリアクトリ(6)の騒音を最小とする目的のため)定
格の電源電圧の約1/2でチョッパ出力電圧が一定制御さ
れるように設計されるのが一般的である。
Next, the operation will be described with reference to FIG. Switching elements (4a), (4b) is stepped down by turning on and off the power supply voltage alternating at a frequency F c, an output filter circuit (6), the power to the load by generating a constant DC voltage by (7) Supply. At this time, since the chopper circuit is usually used for generating a constant DC voltage with respect to the fluctuating power supply voltage, the switching element (4a),
In (4b), the conduction ratio is controlled, but for the purpose of minimizing the ripple current of the chopper output circuit (this reduces the size of the filter circuit and the noise of the filter reactor (6) due to the ripple current). In general, the chopper output voltage is designed to be constantly controlled at about 1/2 of the rated power supply voltage.

今、電源電圧が定格電圧Vdの時には、入力側コンデン
サ(3a),(3b)の両端電圧は、それぞれ同じ値でVd/2
となる。この場合に、上記の理由からチョッパ回路出力
電圧Voutは1/2Vdに一定制御されるため、この時のスイ
ッチング素子(4a),(4b)の通流率は50%に制御され
ることになる。
Now, when the power supply voltage is the rated voltage Vd, the voltage between both ends of the input side capacitors (3a) and (3b) is Vd / 2 at the same value, respectively.
Becomes In this case, the output voltage Vout of the chopper circuit is controlled to be constant at 1/2 Vd for the above-mentioned reason, so that the duty ratio of the switching elements (4a) and (4b) at this time is controlled to 50%. Become.

従って、第3図に示すように、正群の降圧チョッパの
出力電圧Vout1は、1/2・fcの時間で交互にVd/2,0,Vd/2,
0…となり、負群の降圧チョッパの出力電圧Vout2は、上
記Vout1と180゜位相がずれて1/2・fcの時間で交互にVd/
2,0,Vd/2,0…となる。
Accordingly, as shown in FIG. 3, the output voltage V out1 of the step-down chopper of the positive group is, 1/2 · f Vd / 2,0 alternately with time c, Vd / 2,
0 ..., and the output voltage V out2 of the step-down chopper of the negative group, Vd alternately above V out1 and 180 ° phase is 1/2 · f c displaced Time /
2,0, Vd / 2,0 ...

また、チョッパ回路出力電圧VoutはVout=Vout1+V
out2となるため、Vd/2一定の直流電圧となる。
The output voltage V out of the chopper circuit is V out = V out1 + V
out2, it becomes Vd / 2 constant DC voltage.

一方、スイッチング素子(4a),(4b)が通流率50%
で制御される場合は、電源側入力電流Idと負荷側出力電
流Ilの関係は、Id=Il/2となるため、入力側コンデンサ
のリップル電圧I1及びI2は第3図に示すようにIdの波高
値で充放電を繰り返す方形波交流電流となる。
On the other hand, the switching elements (4a) and (4b) have a conduction ratio of 50%.
If in to be controlled, the relationship of the power supply side input current Id and the load-side output current Il is, since the Id = Il / 2, the ripple voltage I 1 and I 2 of the input side capacitor, as shown in FIG. 3 It becomes a square wave alternating current that repeats charging and discharging at the peak value of Id.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の電力変換装置は以上のように構成されているの
で、入力側コンデンサ(3a),(3b)には、大きなリッ
プル電流が流れるため、コンデンサ寿命を考慮した場
合、オイルコンデンサを使用せねばならず、装置が大形
で重量が重くなるなどの問題点があった。
Since the conventional power converter is configured as described above, a large ripple current flows through the input-side capacitors (3a) and (3b). Therefore, considering the capacitor life, an oil capacitor must be used. However, there is a problem that the apparatus is large and heavy.

また、電源電圧が瞬時停電を起すような場合、コンデ
ンサの蓄積エネルギーを大きくする必要があり、特に静
電容量が大きなコンデンサが必要とされる場合には従来
形のオイルコンデンサでは不利であった。
In addition, when the power supply voltage causes an instantaneous power failure, it is necessary to increase the energy stored in the capacitor. In particular, when a capacitor having a large capacitance is required, the conventional oil capacitor is disadvantageous.

この発明は上記のような問題点を解消するためになさ
れたもので、入力側コンデンサの小形・軽量化ができる
とともに、コンデンサの長寿命化が図れる電力変換装置
を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a power conversion device that can reduce the size and weight of an input-side capacitor and extend the life of the capacitor.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る電力変換装置は、互いに180゜位相を
ずらせてスイッチングして直流−直流電力変換する降圧
チョッパを2段カスケード接続した2相のチョッパと、
上記チョッパの入力側に接続された入力コンデンサと、
上記チョッパの出力側に接続されたリアクトルとコンデ
ンサの直列体で構成されたフィルタと、上記コンデンサ
の両端に接続された負荷で構成される電力変換装置にお
いて、上記入力コンデンサを、上記2相のチョッパの入
力コンデンサとなる2段の分圧コンデンサとこれに並列
接続した電解コンデンサで構成したものである。
A power converter according to the present invention includes a two-phase chopper in which two-stage cascade-connected step-down choppers that perform DC-DC power conversion by switching the phases 180 ° out of phase with each other;
An input capacitor connected to the input side of the chopper,
In a power converter including a filter connected to a series body of a reactor and a capacitor connected to the output side of the chopper and a load connected to both ends of the capacitor, the input capacitor is connected to the two-phase chopper. Is composed of a two-stage voltage dividing capacitor serving as an input capacitor and an electrolytic capacitor connected in parallel with the voltage dividing capacitor.

〔作用〕[Action]

この発明による電力変換装置は、チョッパのリップル
電流が2段の分圧コンデンサにより供給され、電源瞬時
停電時等には瞬時エネルギーの供給が電解コンデンサよ
り供給されるので、小形・軽量という電解コンデンサの
特長とリップル電流に対して長寿命化できる2段のコン
デンサの特長により、小形・軽量・長寿命のコンデンサ
構成とすることができる。
In the power converter according to the present invention, the ripple current of the chopper is supplied by the two-stage voltage dividing capacitor, and instantaneous energy is supplied from the electrolytic capacitor in the case of a momentary power outage or the like. Due to the features and the features of the two-stage capacitor that can extend the life with respect to ripple current, a compact, lightweight and long-life capacitor configuration can be achieved.

〔実施例〕〔Example〕

以下、この発明の一実施例を第2図と同一部分は同一
番号を付して第1図に基づいて説明する。
An embodiment of the present invention will be described below with reference to FIG.

第1図に示す実施例において、従来例と異なる点は、
直流電源(1)に並列に電解コンデンサ(9)を配して
いる点であり、入力側コンデンサ(3a),(3b)は従来
例のオイルコンデンサとしている。
The difference between the embodiment shown in FIG.
An electrolytic capacitor (9) is arranged in parallel with the DC power supply (1), and the input side capacitors (3a) and (3b) are conventional oil capacitors.

上記第1図実施例において、チョッパ回路を流れる電
流を第1図のようにとり、電解コンデンサ(9)の静電
容量をFC1、オイルコンデサン(3a),(3b)の静電容
量をFC2とすると、次式が成立する。
In the embodiment of FIG. 1, the current flowing through the chopper circuit is taken as shown in FIG. 1, and the capacitance of the electrolytic capacitor (9) is FC1, and the capacitance of the oil condesans (3a) and (3b) is FC2. Then, the following equation is established.

(a)スイッチング素子(4a)がオン、(4b)がオフ
の時、 (i1−i2)/FC1×(1/2・fc) =(i2−i3)/FC2×(1/2・fc) +i2/FC2×(1/2・fc) ……(1) i4=0 ……(2) (b)スイッチング素子(4a)がオフ、(4b)がオン
の時 (i1−i2)/FC1×(1/2・fc) =i2/FC2×(1/2・fc) +(i2−i4)/FC2×(1/2・fc) ……(3) i3=0 ……(4) ここで、fcは第3図に示すスイッチング素子の周波数で
ある。
(A) When the switching element (4a) is on and (4b) is off, (i 1 −i 2 ) / FC1 × (1/2 · fc) = (i 2 −i 3 ) / FC2 × (1 / 2 · fc) + i 2 / FC2 × (1/2 · fc) (1) i 4 = 0 (2) (b) When switching element (4a) is off and (4b) is on (i) 1− i 2 ) / FC1 × (1/2 · fc) = i 2 / FC2 × (1/2 · fc) + (i 2 −i 4 ) / FC2 × (1/2 · fc) (3) ) i 3 = 0 ...... (4 ) here, f c is the frequency of the switching element shown in Figure 3.

(1)式を整理すると次式となる。 The following equation is obtained by rearranging equation (1).

(i1−i2)FC2=(2i2−i3)FC1 ……(5) ここで、スイッチング素子が50%通流率で制御されて
いる時には、i1=i3/2という関係になっているので、
(5)式は次式となる。
(I 1 -i 2) FC2 = (2i 2 -i 3) FC1 ...... (5) Here, when the switching element is controlled with 50% duty ratio is the relationship i 1 = i 3/2 Because it has become
Equation (5) is as follows.

(i1−i2)FC2=−2(i1−i2)FC1 ……(6) (6)式がFC1,FC2の大きさ如何に拘わらず成立する
ためには、次式が成り立つ必要がある。
(I 1 −i 2 ) FC2 = −2 (i 1 −i 2 ) FC1 (6) In order for equation (6) to be satisfied regardless of the size of FC1 and FC2, the following equation must be satisfied There is.

i1=i2 ……(7) 従って、電解コンデンサを充電するリップル電流は、 i1−i2=0となる。i 1 = i 2 (7) Accordingly, the ripple current for charging the electrolytic capacitor is i 1 −i 2 = 0.

同様に、(3)式より、電解コンデンサの放電電流も
0となるため、電解コンデンサのリップル電流は0とな
り、チョッパ回路のリップル電流は、全てオイルコンデ
ンサ(3a),(3b)から供給されることになる。
Similarly, from equation (3), since the discharge current of the electrolytic capacitor also becomes 0, the ripple current of the electrolytic capacitor becomes 0, and the ripple current of the chopper circuit is all supplied from the oil capacitors (3a) and (3b). Will be.

従って、瞬時停電時等のエネルギー供給源を、大きな
静電容量に対して小形・軽量化が可能な電解コンデンサ
に機能を持たせることによってオイルコンデンサの静電
容量によるエネルギー負担をできるだけ最小にすること
ができ、トータルとして小形・軽量のコンデンサ構成と
することができる。
Therefore, the energy load due to the capacitance of the oil capacitor should be minimized by providing the function of an energy supply source such as an instantaneous power failure to an electrolytic capacitor that can be reduced in size and weight for a large capacitance. Thus, a compact and lightweight capacitor configuration can be obtained as a whole.

また、通常、電解コンデンサは、リップル電流により
その寿命が著しく制御されるが、第1図のようなコンデ
ンサ構成にしておけば、リップル電流の負担はほとんど
オイルコンデンサに持たせることができるので、電解コ
ンデンサの長寿命化が図れることになる。
In general, the life of an electrolytic capacitor is significantly controlled by the ripple current. However, if the capacitor is configured as shown in FIG. 1, most of the load of the ripple current can be given to the oil capacitor. The life of the capacitor can be extended.

なお、上記実施例では、チョッパ回路に採用した例を
示したが、直流電源電圧を2つの分圧コンデンサとした
入力回路で、スイッチング回路をインバータ回路とした
ものに対して、このコンデンサ構成は上記実施例と同様
の効果を奏する。
In the above-described embodiment, an example in which the chopper circuit is employed is described. However, the input circuit in which the DC power supply voltage is two voltage dividing capacitors and the switching circuit is an inverter circuit is different from the input circuit in which the switching circuit is an inverter circuit. An effect similar to that of the embodiment is obtained.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明によれば、チョッパの入力コン
デンサを、電解コンデンサと直列接続された分圧コンデ
ンサとを並列に接続した構成にて併用しているため、装
置が小形・軽量化・長寿命化され、さらに安価な装置と
することができる。
As described above, according to the present invention, the input capacitor of the chopper is used in a configuration in which the electrolytic capacitor and the voltage dividing capacitor connected in series are connected in parallel. And a more inexpensive device.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による電力変換装置の回路
構成図、第2図は従来の電力変換関装置の回路構成図、
第3図は第2図の動作波形図である。 図において、(1)は直流電源、(2A),(2B)は正群
および負群降圧チョッパ、(3a),(3b)はオイルコン
デンサ、(9)は電解コンデンサである。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a circuit configuration diagram of a power conversion device according to an embodiment of the present invention, FIG. 2 is a circuit configuration diagram of a conventional power conversion device,
FIG. 3 is an operation waveform diagram of FIG. In the figure, (1) is a DC power supply, (2A) and (2B) are positive and negative group step-down choppers, (3a) and (3b) are oil capacitors, and (9) is an electrolytic capacitor. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに180゜位相をずらせてスイッチング
して直流−直流電力変換する降圧チョッパを2段カスケ
ード接続した2相のチョッパと、上記チョッパの入力側
に接続された入力コンデンサと、上記チョッパの出力側
に接続されたリアクトルとコンデンサの直列体で構成さ
れたフィルタと、上記コンデンサの両端に接続された負
荷で構成される電力変換装置において、上記入力コンデ
ンサを、上記2相のチョッパの入力コンデンサとなる2
段の分圧コンデンサとこれに並列接続した電解コンデン
サで構成したことを特徴とする電力変換装置。
1. A two-phase chopper in which a step-down chopper for performing DC-DC power conversion by switching by 180 ° out of phase with each other is connected in two stages, an input capacitor connected to an input side of the chopper, and the chopper In a power converter comprising a filter connected in series with a reactor and a capacitor connected to the output side of the power supply and a load connected to both ends of the capacitor, the input capacitor is connected to the input of the two-phase chopper. Capacitor 2
A power conversion device comprising a stage voltage dividing capacitor and an electrolytic capacitor connected in parallel to the stage voltage dividing capacitor.
JP9984990A 1990-04-16 1990-04-16 Power converter Expired - Lifetime JP2851912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9984990A JP2851912B2 (en) 1990-04-16 1990-04-16 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9984990A JP2851912B2 (en) 1990-04-16 1990-04-16 Power converter

Publications (2)

Publication Number Publication Date
JPH04260A JPH04260A (en) 1992-01-06
JP2851912B2 true JP2851912B2 (en) 1999-01-27

Family

ID=14258250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9984990A Expired - Lifetime JP2851912B2 (en) 1990-04-16 1990-04-16 Power converter

Country Status (1)

Country Link
JP (1) JP2851912B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228413A (en) * 2007-03-12 2008-09-25 Institute Of National Colleges Of Technology Japan Voltage step-down type dc-dc converter
JP7105983B2 (en) * 2019-02-25 2022-07-25 三菱電機株式会社 Double buck chopper circuit

Also Published As

Publication number Publication date
JPH04260A (en) 1992-01-06

Similar Documents

Publication Publication Date Title
AU2006251711B2 (en) Bi-directional battery power inverter
JP5049637B2 (en) DC / DC power converter
JP2929635B2 (en) Power circuit
US20060087295A1 (en) Non-isolated power conversion system having multiple switching power converters
US20210111632A1 (en) Single-stage isolated dc-dc converters
JP4427667B2 (en) Multiphase switching converter and control method thereof
WO2002011274A1 (en) Alexander topology resonance energy converter and inversion circuit
WO2013186996A1 (en) Electric power conversion device
US11831240B2 (en) Parallel output converters connected to a split midpoint node on an input converter
Saahithi et al. Dual-topology cross-coupled configuration of switched capacitor converter for wide range of application
JP5060962B2 (en) Method and inverter for converting DC voltage to three-phase AC output
Reddy et al. The Design of 2S2L-Based Buck-Boost Converter with a Wide Conversion Range
Chub et al. Switched-capacitor current-fed quasi-Z-source inverter
Abdel-Rahim et al. Switched inductor switched capacitor based active network inverter for photovoltaic applications
Ponraj et al. Analysis of multi-input multilevel boost inverter circuit with optimal firing angles using dSPACE
JP2851912B2 (en) Power converter
Das et al. A two-stage 110VAC-to-1VDC power delivery architecture using hybrid converters for data centers and telecommunication systems
Singh et al. Design and control of two stage battery charger for low voltage electric vehicle using high gain buck-boost pfc ac-dc converter
Babu et al. Novel Single-Stage Transformer-less Cascaded Differential Boost Single-Phase PV Inverter for Grid-Tied Applications
US6002241A (en) Dual mode split-boost converter and method of operation thereof
Aleem et al. A class of parallel operated impedance source inverters
JPS63268470A (en) Power convertor
Nguyen et al. 4-Phase Series-capacitor Buck Converter
Jagan et al. A superior boost active-switched impedance network quasi Z-source inverter
JP3400096B2 (en) Sine wave rectifier circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101113

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12