JP2850316B2 - 自動焦点調節装置 - Google Patents
自動焦点調節装置Info
- Publication number
- JP2850316B2 JP2850316B2 JP8096016A JP9601696A JP2850316B2 JP 2850316 B2 JP2850316 B2 JP 2850316B2 JP 8096016 A JP8096016 A JP 8096016A JP 9601696 A JP9601696 A JP 9601696A JP 2850316 B2 JP2850316 B2 JP 2850316B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- output
- lens
- focus detection
- image sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ラインイメージセンサ
を用いて被写体像を受光することにより撮影レンズの焦
点状態を検出し、検出された焦点状態に基づいて撮影レ
ンズを駆動し焦点調節を行う自動焦点調節装置に関す
る。 【0002】 【従来の技術】従来上記のようなラインイメージセンサ
が、例えばカメラの焦点検出装置に用いられている。し
かしこのラインイメージセンサでは、単一方向のライン
状の光量分布しか検出できないため、以下のような問題
があった。 【0003】イメージセンサによって得られる映像信号
を解析する型の焦点検出装置ではイメージセンサ上の像
に或る程度以上のコントラストがないと信頼性のある焦
点検出ができない。イメージセンサとしてラインイメー
ジセンサを用いる場合、イメージセンサ上の像のライン
方向のコントラストが低いと焦点検出ができないが、そ
のときでもセンサのラインと異なる方向における像のコ
ントラストは充分である場合が多い。人物とか外景を写
真撮影する場合、水平方向のコントラストの方が垂直方
向のコントラストより高い場合の方が多いので、焦点検
出にラインイメージセンサを用いるときは、イメージセ
ンサを水平方向に配置するのが合理的である。しかしこ
のようにすると、たまたま水平方向のコントラストは低
いが垂直方向のコントラストは高い被写体の場合、焦点
検出ができないことになる。又、カメラを縦位置で使用
する場合にも同様の問題が生じる。この問題は二次元的
なイメージセンサを用いることで解決される。この種の
焦点検出装置として、特開昭59−174807号によ
る提案がなされている。この提案の要旨は受光素子を二
次元的に並べて、その上に被写体像を形成するように
し、この受光素子の配列から一方向の一列の受光素子の
出力を読出してコントラストが不足であった場合、方向
を変えて受光素子列から出力を読取る。このようにして
充分なコントラストが得られる方向を探して、焦点検出
演算を行うものであるが、二次元的なイメージセンサを
用いるので高価なものとなる。 【0004】そこで安価なラインイメージセンサを複数
個互いにライン方向を異ならせて配置することにより、
二次元的なイメージセンサに代えることが考えられる。
この場合、各ラインイメージセンサは被写体の異なる部
分を撮像するので、被写体各部の明るさの相違に従って
各ラインイメージセンサの光量積分時間を変える必要が
あり、センサ毎に積分時間終了のタイミングが異なるこ
とになる。 【0005】 【発明が解決しようとする課題】上述したような多数の
ラインイメージセンサを用いて焦点検出を行う場合、各
イメージセンサの積分終了時期が異なる。自動焦点検出
装置を制御しているマイクロコンピュータは、各ライン
イメージセンサの積分時間の制御も、各センサからの映
像信号の読み出しの制御も行うが、積分時間が終了した
センサから順に映像信号の読み出しを行うと、一方で読
み出しを行いながら、他のセンサの積分時間の制御も行
うと云うことになって、プログラムが大変複雑になり、
コンピュータが余程高速でないと、一つのイメージセン
サの積分時間の終了から他のセンサの積分時間の終了ま
での間に、その一つのセンサの映像信号の読み出しを終
わることはできず、結局は各ラインイメージセンサの出
力を順次読み出して行くのと所要時間は余り違わないこ
とになり、プログラムが複雑になる分だけコストアップ
につながることになる。そこで本発明は、マイクロコン
ピュータで各イメージセンサの積分時間の制御も映像信
号の読み出しの制御も行わせる場合、プログラムの簡単
化を図るものである。 【0006】 【問題点を解決するための手段】複数のラインイメージ
センサ毎に積分時間を制御する手段に加えて、各ライン
イメージセンサの映像データ即ち蓄積電荷を最後のライ
ンイメージセンサの積分時間終了まで保持する手段を設
け、全センサの積分終了後に全センサの映像データを順
次読み出すようにした。 【0007】 【作用】上述構成の意味は、制御装置に同時並行的に積
分時間の制御とラインイメージセンサからの映像信号の
読み出しを行わせず、全部のイメージセンサの積分時間
終了後にデータ読み出しを行い、積分時間の制御とデー
タ読み出しの制御とを時間的に分離することで、プログ
ラムを簡単化したものである。このとき、積分時間の短
かったセンサは最終の積分時間終了までデータ読み出し
を待つことになるが、蓄積電荷を保持させる手段を設け
てあるので、何等支障はないのである。 【0008】 【発明の実施の形態】本発明の内容は図4及びそれに関
連する段落番号0013〜0016に開示されている
が、以下の説明は本発明装置の全体について順次詳説し
ている。 【0009】図1は本発明の一実施例の光学系及びイメ
ージセンサの配置の斜視図で、図2は同実施例装置の分
解斜視図である。図1で1はカメラの撮影レンズ、6は
コンデンサレンズ、8は四個の再結像レンズで10はイ
メージセンサである。コンデンサレンズ6は四個の再結
像レンズ8の前面に置かれた瞳マスクの像を撮影レンズ
1上に形成する。図で撮影レンズ上に画かれた点線の円
がこの投影像である。コンデンサレンズ6の前面には十
字形の開口を持った視野マスク2が配置され、このマス
ク面は撮影レンズ1の予定焦点面でカメラのフィルム面
と等価な位置にある。再結像レンズ8は視野マスク2の
面の像をイメージセンサ10上に形成する。この構成で
例えば再結像レンズ8のうちの一つイ′のコンデンサレ
ンズ6によるレンズ1上の像はイ、同様にしてロ′の像
はロであって、撮影レンズ1のイの円で囲まれた領域を
通過した被写体光によって視野マスク2上に形成された
像が、再結像レンズイ′によってイメージセンサ10上
に形成される。同様にして、撮影レンズ上のロの領域を
通過した被写体光によって視野マスク2上に形成された
像が、再結像レンズロ′によってイメージセンサ上に形
成される。イメージセンサ10上で十字形に並んだ長方
形は、X1 が再結像レンズイ′よる視野マスク2の十字
形の開口の水平部分の像であり、X2 が再結像レンズ
ロ′による視野マスクの十字形開口の水平部分の像であ
る。Y1 ,Y2 も同様にして縦方向に並んだ一対の再結
像レンズによる視野マスクの十字形開口の縦の部分の像
である。X1 ,X2 上には被写体の同じ部分の像が形成
されているが、被写体の撮影レンズ1による像が丁度視
野マスク2上に形成されている、つまりピントが合って
いるとき、被写体の同一部分のX1 ,X2 上の再結像像
の位置を基準にすると、被写体像が視野マスクより撮影
レンズ寄りにできているとき(前ピン)、X1 ,X2 上
の再結像像は互いに近づき、反対に後ピンのときは互い
に遠ざかる。そこでX1 ,X2 を連ねる方向にラインイ
メージセンサを配置し、映像信号上の処理操作で、X1
上の被写体像の映像信号に対して、X2 上の被写体像の
映像信号を少しずつずらせて重ね、両方の映像信号の相
関が最大になるずらせ量を検出することによって、被写
体の像が正しいピント位置からどちら側へどれだけ寄っ
ているかが算定できる。以上がこの発明における焦点検
出の原理であるが、映像信号の処理操作に関しては本件
特許出願人により特許出願された特開昭60−2472
10号に記載されている。以上の原理に従ってイメージ
センサ10の面上にはX1 ,X2 の並び方向及びそれと
直交するY1 ,Y2 の並び方向に沿って夫々ラインイメ
ージセンサが配置されている。 【0010】図2では撮影レンズは図外にあり、一眼レ
フレックスミラーの中央部の透明部の後に45°傾けて
下向きに配置されたミラーにより撮影レンス透過光は赤
外線カットフィルタ3、視野マスク2、コンデンサレン
ズ6に向けて転向され、更に45°のミラー4によって
水平方向に転向されて瞳マスク7、再結像レンズ8(二
対四個)を経てイメージセンサ10上に投影される。5
は上述した全ての要素を一ユニットに結合する枠であ
る。イメージセンサ10は上述したように水平方向(X
1 ,X2 を連ねる方向)と垂直方向とに夫々ラインイメ
ージセンサを配置したものであるが、ラインイメージセ
ンサとしてはCCDイメージセンサが用いられている。 【0011】CCDイメージセンサは、フォトダイオー
ドとその出力光電流を積分するコンデンサとが一画素分
の要素となり、このような要素がアレイ状に並んだもの
で、各要素一斉に適当時間光電流積分を行なった所で積
分コントロールゲートにシフトパルスを印加することに
より、各要素毎の蓄積電荷による光量信号をシフトレジ
スタにパラレルに転送し、その後シフトレジスタに転送
クロックを印加するとにより、シフトレジスタ内の電荷
信号を順次電圧信号として読出すことにより、映像信号
を得るようになっている。図3は本発明実施例における
CCDイメージセンサ周辺の回路構成を示す。この図で
PDアレイI〜PDアレイIVはCCDイメージセンサに
おける上記した要素のアレイであって、PDアレイIは
図1におけるX1 の位置に、PDアレイIII は同じくX
2 の位置に、またPDアレイIIはY1 の位置に、PDア
レイIVはY2 の位置に配置されている。またPDアレイ
上に投影されている像の平均輝度によって光電流の積分
時間を決めるため、PDアレイIに沿わせてモニタ用の
フォトダイオード(PD)M1 をまたPDアレイIIに沿
わせてモニタ用フォトダイオード(PD)M2 が配置し
てある。G1 〜G4はPDアレイI〜PDアレイIVに対
応する積分コントロールゲート列でPDアレイの各要素
と一対一対応している。R1 ,R2 はシフトレジスタで
ある。シフトレジスタR1 はPDアレイIとIVとに対応
しており、積分コントロールゲートG1 及びG4 にシフ
トパスルが印加されると、PDアレイI及びIV内の各要
素の光電流積分電荷が並列的にシフトレジスタR1 に転
送される。積分コントロールゲートG1 ,G4 に印加れ
るシフトパルスのタイミングは異なっている。シフトレ
ジスタR2 はPDアレイII,III に対応していて、PD
アレイII,III 内の電荷信号が転送される。これらのシ
フトレジスタは二相の転送クロックパルスφ1 ,φ2 に
よって駆動され、同レジスタに記憶された情報が順次出
力される。 【0012】以後の説明の便宜上、幾つかの言葉を決め
ておく。ラインイメージセンサの方向に関して、図1に
示したようにx方向(水平)y方向(垂直)を決める。
この二方向は図3で矢印x,yで示した方向である。総
コントラストと云うのは映像信号における隣接する差分
データの差の絶対値の総和のことで、明暗の差が大きい
程、また明暗が細かく入り混じっている程総コントラス
トは大きくなる。“LowCon”はLow Conf
idenceの略で焦点検出の信頼性が低いと云う意味
である。以下装置各部の構成及び動作について詳述す
る。 【0013】(CCDイメージセンサ回路)図3におい
て、CCDアナログシフトレジスタR1 ,R2 は二相ク
ロックφ1,φ2 で電荷転送を行う。その出力端には電
圧変換部とバッファが設けられPDアレイI及びIVの蓄
積電荷はアナログシフトレジスタR1 を介しOSI端子
から出力され、PDアレイII及びIII の蓄積電荷はアナ
ログシフトレジスタR2 を介しOSII端子から出力され
る。またモニタ用PDの出力側はPDアレイの蓄積電荷
と同様の構成となっており、電圧変換部とバッファを介
しモニタ(PD)M1の蓄積電荷はAGCOSI端子か
ら、モニタ(PD)M2 の蓄積電荷はAGCOSII端子
から出力される。またこのモニタPDの基準電圧出力の
ために、PDが接続されないかまたはアルミ遮光された
PDを接続した電圧変換部が設けられており、基準電圧
DOSが出力される。この出力は後述のシフトパルスの
発生タイミングを制御するのに用いられる。 【0014】積分コントロールゲートG1 ,G3 は、x
方向のPDアレイI及びIII に対応し、端子SH1 を介
して共通のシフトパルスSH1 が印加される。同様にし
て積分コントロールゲートG2 ,G4 はy方向のPDア
レイII及びIVに対応し、端子SH2 を介して共通のシフ
トパルスSH2 が印加されるようになっている。また各
積分コントロールゲートG1 〜G4 には端子SHを介し
て一斉にシフトパルスSHを印加することもできるよう
になっている。CCDイメージセンサから得られる映像
信号は被写体輝度にかかわりなく、焦点検出に適する信
号レベルになっている必要があるから、積分時間はモニ
タ用フォトダイオード(PD)M1 ,(PD)M2 の出
力によって制御される。ここで被写体のx方向,y方向
の帯状部分の平均輝度が異なる場合があるから、シフト
パルスSH1 とSH2 とは別々に印加できるようになっ
ている。 【0015】PDアレイI〜IVは積分クリヤ信号ICG
パルスによって一斉にクリヤされ、その時点から光電流
積分が開始される。ここで例えば被写体のx方向帯状部
分の方がy方向より平均輝度が高い場合、シフトパルス
SH1 が先に出力されて、PDアレイI,III の光電流
積分信号が積分コントロールゲートG1 ,G3 に中間的
に保持される。その後PDアレイII,IVの映像信号が適
正値に達すると、シフトパルスSH2 が発せられ、PD
アレイII,IVの光電流積分信号が積分コントロールゲー
トG2 ,G4 に中間的に保持される。その後各ゲートG
1 〜G4 に一斉にシフトパルスSHが印加されること
で、x方向,y方向の映像信号が全てシフトレジスタR
1 ,R2 に転送される。 【0016】上述したように積分コントロールゲートG
1 〜G4 はPDアレイI〜IVの出力を一時的に保持して
これをシフトレジスタR1 ,R2 に並列的に転送する機
能を有するが、そのための回路構成を図4に示す。図4
は一画素分の構成を示しPDアレイで光電変換された電
荷はバリアゲートを介して積分クリヤパルスICGによ
り略電源レベルまで充電される第一蓄積部C1 にバリア
ゲートを介して蓄積される。このPDアレイ列の平均輝
度をモニタPDによってモニタした積分信号が適正積分
レベルに達した時SH1 或はSH2 パルスが印加され各
画素の電荷は蓄積部C1 から並列にC2に移送される。
この時V1 ,V2 ,C1 ,C2 の容量差により電荷移送
は略完全に行なわれる。こうしてICGパルスの印加か
らSHn(n=1又は2)パルスの印加までの間に蓄積
された電荷は蓄積部C1 からC2に移送され、このまゝ
の状態でもう一方の像が投影されているPDアレイの電
荷の蓄積が完了するのを待つ。この第二蓄積部C2 では
光電流は発生することがなくその電荷量は略維持され
る。もう一方のPDアレイも電荷蓄積が完了すると、C
CDイメージセンサの全画素の電荷が第二蓄積部C2 に
合焦検出演算に適したレベルで揃えられた状態となる。
次に、SHゲートにSHパルスを印加することによりア
ナログシフトレジスタに全画素の情報を適正なレベルで
並列に移送し、以後転送クロックに同期して、OSI,
OSII端子より順次この電荷が出力される。 【0017】(合焦検出及び合焦調整を行う回路)次に
図5に、イメージセンサを駆動し合焦検出,合焦調整を
行う回路構成を示す。20はイメージセンサ10を駆動
し、その情報を入力し合焦検出演算を行い、モータ駆動
回路90を通じてレンズ駆動を行い、合焦状態表示回路
100を通じて行う制御を司るAF用マイクロコンピュ
ータである。AF用マイクロコンピュータはAFスター
トスイッチSAFSのONで動作を開始する。30はx
方向のモニタ出力AGCOS1 を検出し、x方向のPD
アレイI,III に対して積分完了を行なわせるシフトパ
ルスSH1 を発生するシフトパルス発生回路、31はy
方向のモニタ出力AGCOS2 を検出し、y方向のPD
アレイII,IVに対して積分完了を行わせるシフトパルス
SH2 を発生するシフトパルス発生回路である。この回
路は、図6に示すような回路で構成される。基準電圧D
OSはバッファ回路Buf1 に入力され、その出力から
抵抗R31と定電流I31による定電圧ΔV1分だけ降ろさ
れた電圧がコンパレータCom1 の(+)入力に印加さ
れる。このコンパレータの(−)入力にはモニタ出力A
GCOSnが印加されている。積分クリヤパルスICG
の印加により両出力DOS,AGCOSnは等電位とな
るが、その後AGCOSnの電位はモニタPDでの電荷
発生分、すなわち入射光量に比例して低下する。コンパ
レータCom1 の入力レベルでみるとICG印加時点で
は(−)入力はΔV1 だけ高いが電荷蓄積とともに低下
し、(−)入力が(+)入力を下回るとコンパレータの
出力が反転する。この反転時の映像信号の平均レベルで
合焦検出を行うと適正な合焦検出結果が得られるようR
31,I31すなわちΔV1 を設定しておく。この時このコ
ンパレータCOM1 の反転信号はパルスICGでリセッ
トされたフリップフロップFF31をセットし、FF31出
力反転がAND31,INV31,遅延回路32によってパ
ルスに変換されSHn(n=1又は2)信号として出力
される。またパルスICGの印加からこのSHn信号が
出力されるまでの時間は、低輝度になる程長い時間が必
要となるので、最大積分時間を設けこの時間の経過時に
シフトパルスSHをマイクロコンピュータにより発生さ
せて、積分時間に制限をつけることも可能となってい
る。これらの低輝度時の扱いについては、特開昭60−
125817号等で説明されたものと同等である。 【0018】回路40は転送クロック発生回路で、CK
端子にマイクロコンピュータから供給される基本クロッ
クを分周しφ1 ,φ2 パルスを発生させる。Sφ端子に
は転送クロック周波数を切換えるための信号がマイクロ
コンピュータ20から供給され、この信号はx,y両方
向の出力を入力する際にはHighとなり、x,y方向
のうちの一方向の出力のみを入力する際にはSφ信号を
Lowとして転送クロック周波数を前述両方向出力の入
力時の倍として入力することで電荷転送時間の短縮を計
っている。また、前述の第二の蓄積手段C2 よりアナロ
グシフトレジスタへの電荷移送の際同期をとる必要があ
るため、SH信号が入力されている。50,51は各画
素出力OSI,OSIIのアナログ処理回路で基本的構成
は図7に示す。各画素出力は差動増幅器Amp51にお
いて、基準電圧V52との差として出力される。この出
力は各フォトダイオードアレイPDI〜IVの出力の最前
部に設けられたアルミ遮光画素の暗出力信号が出力され
る時マイクロコンピュータ20により出力されるSP1
或はSP2 の信号でサンプリングされ、C51によりホー
ルドされ、以後出力される光出力との差を差動増幅器A
mp52でとることで光出力成分のみの抽出を行う。 【0019】ここで各PDアレイI〜IVで暗出力をサン
プルホールドするのは、PDアレイI,III とII,IVと
が異なる積分時間で制御されており、暗出力電圧に差が
生じるためである。こうして光成分のみ抽出された画素
出力は次にサンプルホールド回路60,61に入力され
た後マルチプレクサ70に入力される。ここでマルチプ
レクサ70はサンプルホールドされた画素出力I1 ,I
2 のうちの一方を入力データ選択ゾーン信号SZによっ
て選択してA/D変換回路80にD1 端子から出力す
る。前述のようにマイクロコンピュータがx,y両方向
のデータ入力を行う場合はSφ信号Hiを出力し転送ク
ロックを通常速で発生させるとともにAND2 ,OR1
を介してマルチプレクサ70の出力切換えを転送クロッ
クφ1 に同期して切換える。この結果タイミングチャー
ト図8(a)に示すようにCCDシフトレジスタR1 ,
CCDシフトレジスタR2 の出力信号が交互に出力さ
れ、A/D変換回路80でデジタル化されマイクロコン
ピュータに入力される。一方x方向或はy方向のみを入
力する場合においてはSφ信号をLowとし、AND2
の一入力をLowにすることでマルチプレクサの出力切
換えはマイクロコンピュータの選択信号SZによるもの
になる。またこの時CCDイメージセンサの転送ロック
周波数は倍速になる。マイクロコンピュータはx方向な
ら基準部出力、y方向なら参照部出力を入力し次にSZ
信号を反転させ、CCDシフトレジスタI,IIの出力x
方向の参照部出力y方向の基準部出力を入力する。この
ようにA/D変換時間をフルに活用することでデータの
転送時間の短縮を計ることができるこの時のタイミング
を図8(b)に示す。 【0020】(自動焦点検出動作)本発明においては自
動焦点検出に当っては幾つかの動作モードが可能であ
る。これらのモードにおける動作の具体例をフローチャ
ート図9〜図11に示す。図9はx方向,y方向で合焦
検出演算を行い、その結果被写体がよりカメラに近いと
判断された方向についての合焦検出結果に基づきレンズ
駆動を行うフローである。図10はx,y両方向の総コ
ントラストを比較し、コントラストの高い方向を優先的
に合焦検出演算を行ってレンズ駆動し、LowConと
なった場合のみもう一方の合焦検出演算を行いレンズ駆
動を行うフローである。ここでコントラスト値が大きく
LowConとなるのは、LowCon判別基準とし
て、特開昭60−247210号で本出願人が提案して
いるように、相関演算による評価関数YM(XN)/C
Nが所定値以下であることも条件にされているためで、
遠近競合被写体のような場合評価関数が著しく劣化する
場合等が考えられる。図11にはx方向の合焦検出機能
を優先して合焦調整を行い、x方向がLowConとな
った場合のみy方向の合焦検出機能を活用させる例を示
す。 【0021】まず図9について説明する。AFスイッチ
SAFSがONになると、マイクロコンピュータ20が
起動される。マイクロコンピュータはまずCCDイメー
ジセンサの初期化を行う。これは電源供給以前或は転送
クロック停止中にレジスタ及び光電変換部に予め蓄積さ
れた不要電荷の排出を行うためで起動時に一度行う必要
がある。次にマイクロコンピュータ20はCCDイメー
ジセンサ10にICGパルスを供給し積分開始する。こ
のICGパルスの印加によりイメージセンサは各画素の
蓄積電荷を排出するとともに、モニタ出力の蓄積電荷を
も排出し、このパルスの消滅とともにその両者で発生電
荷の蓄積が開始される。以後マイクロコンピュータはT
INT1 ,TINT2 両端子の反転すなわちPDアレイ
IとIII 、PDアレイIIとIVの各画素蓄積電荷の平均が
予め設定されたレベルに達してシフトパルスSH1 ,S
H2 が発生し、各画素の第二蓄積部C2 にPDアレイ
I,III の蓄積電荷が、各画素の第二蓄積部C2 にPD
アレイII,IVの蓄積電荷が移送完了するのを待つ。この
完了をマイクロコンピュータが検知すると、マイクロコ
ンピュータはSHパルスを発生させPDアレイI,IVの
蓄積電荷をアナログシフトレジスタ(CCDレジスタ)
R1 に、PDアレイII,III の蓄積電荷をアナログシフ
トレジスタ(CCDレジスタ)R2 に並列移送する。 【0022】以後転送クロックに同期して、OSI,O
SII両端子から各画素信号が出力され、マイクロコンピ
ュータはこれ以後の一画素信号のA/D変換完了信号A
/DEOCをカウントすることで出力画素数を知り、ま
た各PDアレイI〜IVに設置されたアルミ遮光画素の暗
出力サンプル信号SP1 ,SP2 を出力し、これに引続
いて出力される各光出力画素のA/D変換値を順次入力
することで像情報を得る。このタイミングは後述する。
このようにして合焦検出演算に必要な全画素出力のデジ
タル情報をマイクロコンピュータ内に格納し終えると、
マイクロコンピュータは合焦検出演算を開始する。マイ
クロコンピュータはまずx方向の相関演算を行う。まず
x方向差分データの作成を行う。この差分データはUx
(k)=Sx(k)−Sx(k+4),Vx(k)=T
x−Tx(k+4)というように四つおきの生データの
差分をとる。これは合焦検出演算不能な低周波成分をカ
ットするためである。基準部,参照部の差分データ27
ケ,35ケが揃うと、マイクロコンピュータは像ズラシ
量を一ピッチずつ増加させながら、それぞれの像ズラシ
量で相関値YM(l)を求める。また総コントラスト
値、すなわち差分データの隣接データの和を求める。こ
うして求められた相関値YM(l)のうち最も相関度の
高い像ズレ量、すなわち相関値YM(l)の値が最小と
なるlxを求める。このlxはレンズデフオーカス量に
対して関与したものであるが、ここで用いるシステムで
はより精度を求めるために、隣接像ズレ時の相関値とそ
の像ズレ量での相関値を用いて補間演算を行う。この補
間演算についは特開昭60−247211号で詳しく本
出願人が説明しているので参照されたい。こうして精度
良く、詳細な像スレ量XM,相関評価関数YM(XM)
/CXが求められる。この相関評価関数YM(XM)/
CX,総コントラスト値CX、及び全出力生データ値の
三点でLowCon判別を行う。このLowCon判別
については同様に特開昭60−247210号で説明し
ているのでここでは省略する。尚lx=1又は9の両端
での相関値が最小となる場合はLowConとする。 【0023】LowConでないと判断された場合には
PX値としてXM−5、すなわち合焦時像ズレ量との差
を求めメモリしておく。またlmin=lx−1として
メモリしy方向の相関演算の像ズラシ範囲に制限を加え
る。一方LowConと判別された場合にはy方向の相
関演算の像ズラシ範囲を設けず、全範囲に渡って相関演
算を行う。こうしてy方向の相関演算範囲の制限をメモ
リした後、y方向の差分データをx方向の場合と同様に
して作成する。Uy(k)=Sy(k)−Sy(k+
4),Vy(k)=Ty(k)−Ty(k+4)こうし
て作成された差分データを基にx方向で求めたのと同様
に相関値の演算を行う。但しここではx方向の相関演算
結果で求められたlmin以上の像ズレ量に対してのみ
相関演算を行う。これは被写体が近接被写体である程そ
の像間隔は大きいものとなるため、x,y両方向での相
関演算結果の像ズレ量が大の方を選択する。そのため先
に求めたx方向の像ズレ量より大の部分のみ相関演算を
施すことで充分であり、相関演算の短縮化が計れる。こ
うしてy方向においても相関値を求め、その相関の最も
高い部分を算出する。次にx方向時と同様に補間演算を
施し、y方向の相関演算結果として像ズレ量xN、相関
評価関数YM(XN)/Cyを算出する。この評価関数
YM(XN)/Cy、y方向の総コントラスト値Cy、
y方向生データピーク値を判別するとともに相関演算像
ズレ量の両端lmin、9に算出最小相関値像間隔lx
1がないかどうかの四点を判別し、LowConでない
と判断された場合にはPYとして合焦状態からの像ズレ
量xN−5をメモリする。こうしてx,y両方向につい
て相関演算が完了するとマイクロコンピュータはこの
x,y両方向の両相関演算結果によりレンズ駆動を行
う。 【0024】まず両方向ともにLowConであると判
別された場合にはマイクロコンピュータはレンズを駆動
させコントラストの検出できるレンズ位置をさがす動作
(LowCon Scan)を行う。この動作は全レン
ズ駆動範囲を少なくとも一度走査し終えた状態でレンズ
駆動を停止し、そのままのレンズ位置で合焦検出演算の
みを繰返し、コントラストが検知された状態でレンズ駆
動を再開するモードである。少なくとも一方がLowC
onでない場合には求められたx方向の像ズレ量の大小
比較を行い大きい方をPとして以後のレンズ駆動に用い
る像間隔量として採用する。ここでLowCon時には
Px乃至Pyの値はMin値(−4)にセットされてい
るものとする。y方向の演算時に制限を加えたにも拘ら
ず、あえてここで大小比較を行うのは像ズレ量一ピッチ
内でかなりのデフオーカス量を有し補間演算による値で
デフオーカス量に大きな差を生じるためである。この演
算像ズレ量Pをデフオーカス量に換算し、レンズによっ
て異なるレンズ駆動量変換係数を乗算することでレンズ
駆動量を算出し、合焦判別を行う。レンズ駆動量が極め
て小さく、レンズ駆動を行う必要のない場合には、合焦
表示を行い、そうでない時はそのレンズ駆動量に従って
レンズ駆動を行い、再度合焦検出動作を行うためにイメ
ージセンサの再積分を行う。 【0025】次に図10のフローチャートを用いて、総
コントラスト量が大となる方向についての相関演算を優
先的に行ってレンズ駆動し、その方向が遠近競合被写体
である等の影響によりLowCon状態となった時には
じめて他方の合焦検出相関演算を行い、その結果により
レンズ駆動を行う合焦検出装置の動作について説明す
る。動作を開始し、データ入力が完了するところまでは
前述の図9の場合と同様にx,y両方向についてのイメ
ージセンサデータがマイクロコンピュータ内に格納され
る。マイクロコンピュータはまずx方向の差分データを
図9の場合と同様に作成し、差分データの隣接差の和を
求めることによりx方向総コントラスト値Cxを算出す
る。引続いてy方向の差分データを作成し同様にy方向
総コントラスト値Cyを算出する。こうしてx,y両方
向の総コントラスト値Cx,Cyを算出した後この両者
の大小比較を行う。ここで総コントラスト値が大となる
方向についての相関演算結果は、総コントラスト値が小
となる方向についての相関演算結果より信頼性が高いと
通常考えられる。 【0026】そこで総コンントラスト値の大きな方向Z
について優先的に相関演算を行う。この相関演算につい
ては図9で示した手法と同じ手法を用いて行う。相関の
高い部分の算出,補間演算を行い像ズレ量xM、相関評
価関数YM(XM)/CZを算出する。この結果を用い
てLowCon判別を行い、LowConでないと判別
された場合にはこの像ズレ量XMにより、合焦時との像
ズレ量算出を行い、デフオーカス量、レンズ駆動量の算
出を行う。合焦か否かの判別で合焦時には合焦表示を行
い、非合焦時にはレンズ駆動量に従いレンズ駆動を行
う。一方、LowConと判別された場合には、今度は
逆方向についての相関演算を行う。この結果により相関
の高い部分の算出,補間演算を行い、像ズレ量XM,Y
M(XM)/CZの算出を行う。再びこの結果を用いて
LowCon判別を行い、LowConでないと判別さ
れた場合にはこの像ズレ量XMにより、合焦時との像ズ
レ量算出を行い、デフオーカス量、レンズ駆動量の算出
を行う。合焦か否かの判別で合焦時には合焦表示を行
い、非合焦時にはレンズ駆動量に従いレンズ駆動を行
う。また、LowConと判別された場合には今度は
x,y両方向がLowConと判別されたわけで、前述
のLowCon Scanを行う。最後にコントラスト
の高い部分が配置される頻度の高いx方向(水平方向)
を優先して合焦検出演算し、x方向がLowConと判
別された時のみy方向について合焦検出演算を行う合焦
検出装置について図11のフローチャートを用いて説明
する。この合焦検出装置では上記図9及び図10の2例
と異なり、x方向のデータのみを優先的に入力する。積
分時間及びデータ転送時間の短縮を計り、システムの応
答性を高めるために、AF動作開始後CCDのイニシャ
ライズが完了した時点でマイクロコンピュータは転送ク
ロック周波数を上記例の場合の倍速に設定しSφ=Lo
wを出力し高速で一方向のみの出力を図8(b)に示し
たような形で実施する。 【0027】積分開始するために積分クリヤパルスを印
加後マイクロコンピュータはx方向の積分完了を示すT
INT1 信号の反転信号を待つ。TINT1 信号の反転
を検知するとマイクロコンピュータはy方向の積分の完
了、未完了に関係なくシフトパルスを発生させ、x方向
の画素出力データの入力を開始する。まずOS1 よりP
DアレイI、x方向基準部画素出力が出力されるのでS
Z=Hiを出力し、マルチプレクサ70のD1 出力をI
1 信号すなわちOS1 処理信号とすることでx方向の基
準部画素の出力をA/D変換しマイクロコンピュータに
入力する。この間OS2から出力されるy方向基準部出
力は無視される。このx方向基準部の入力が完了すると
マイクロコンピュータはSz=Lowを出力しマルチプ
レクサ70のD1 出力をI2 信号すなわちイメージセン
サのOS2 処理信号とすることでx方向の参照部の出力
をA/D変換して入力する。こうしてx方向の基準部、
参照部の入力が完了すると、これらのデータについて前
述の二例と同様に差分データ作成、相関値算出、最高相
関の抽出、補間計算、LowCon判定を行う。上記二
例で示したのと同様のLowCon判定の結果、Low
Conでなく求められた像ズレ量が信頼性の高いデータ
であると判別されると、その像ズレ量から合焦像ズレ量
との差P=XM−5を算出デフオーカス量PF、レンズ
駆動量の算出を行い、レンズ駆動量が極めて小の時は合
焦と判断し合焦表示を行い、そうでない時は算出された
レンズ駆動量に従いレンズの駆動を行い、x方向の各画
素について再積分、再合焦検出演算を繰返す。 【0028】一方x方向の合焦検出演算結果がLowC
onであると判別された場合には、マイクロコンピュー
タは次にy方向のイメージセンサの積分、合焦検出演算
を開始する。マイクロコンピュータは一方向のデータ入
力を行うためにSφ=Lowを出力しながら、積分クリ
ヤ信号ICGを発生させ以後y方向の積分完了信号TI
NT2 の反転を待つ。このTINT2 の反転を検知する
と今度はx方向の積分の完了,未完了に拘らずSHパル
スを発生しy方向データの入力を開始する。この時上述
のx方向入力時とは逆にまずSZ=Lowを出力しx方
向基準部出力を無視しながら、y方向基準部出力のみI
2 をマルチプレクサで通過させA/D変換後データ入力
を行い、これが完了するとSZ=Hiを出力しx方向参
照部出力を無視しながら、y方向参照部出力のみI1 を
マルチプレクサで通過させA/D変換後データ入力を行
う。 【0029】こうしてy方向のみの全データを入力し終
えると、マイクロコンピュータはy方向の差分データ作
成、相関値算出、最高相関の抽出、補間計算、LowC
on判別をx方向について行なったのと同様の手順で行
う。LowCon判定の結果LowConでなく求めら
れた像ズレ量が信頼性の高いデータであると判別される
と、その像ズレ量から合焦像ズレ量との差P=xM−5
の算出、デフオーカス量DF、レンズ駆動量の算出を行
い、レンズ駆動量が極めて小の時は合焦と判断し合焦表
示を行い、そうでない時は算出されたレンズ駆動量に従
いレンズの駆動を行い、x方向の再合焦検出動作は一切
行なわずy方向の各画素についての再積分、再合焦検出
演算を繰返す。一方、y方向においてもLowConで
あると判別された場合x,y両方向についてLowCo
nと判定されたことになりLowCon Scanを行
いながら、イメージセンサx,y両方向についての再積
分、再合焦検出を繰返しLowConでなくなる状態を
待つ。 【0030】 【効果】本発明によれば、マイクロコンピュータの制御
動作を、複数のラインイメージセンサの光量積分時間の
制御を行っている時間帯と、各ラインイメージセンサの
映像出力の読み出し制御を行っている時間帯とに分ける
ことにより、両制御を同時並行的に行わせるのに比し、
制御プログラムが簡単化でき、コスト低減に寄与すると
共に、このようにしても焦点検出動作所要時間が長くな
ると云うことはないのである。
を用いて被写体像を受光することにより撮影レンズの焦
点状態を検出し、検出された焦点状態に基づいて撮影レ
ンズを駆動し焦点調節を行う自動焦点調節装置に関す
る。 【0002】 【従来の技術】従来上記のようなラインイメージセンサ
が、例えばカメラの焦点検出装置に用いられている。し
かしこのラインイメージセンサでは、単一方向のライン
状の光量分布しか検出できないため、以下のような問題
があった。 【0003】イメージセンサによって得られる映像信号
を解析する型の焦点検出装置ではイメージセンサ上の像
に或る程度以上のコントラストがないと信頼性のある焦
点検出ができない。イメージセンサとしてラインイメー
ジセンサを用いる場合、イメージセンサ上の像のライン
方向のコントラストが低いと焦点検出ができないが、そ
のときでもセンサのラインと異なる方向における像のコ
ントラストは充分である場合が多い。人物とか外景を写
真撮影する場合、水平方向のコントラストの方が垂直方
向のコントラストより高い場合の方が多いので、焦点検
出にラインイメージセンサを用いるときは、イメージセ
ンサを水平方向に配置するのが合理的である。しかしこ
のようにすると、たまたま水平方向のコントラストは低
いが垂直方向のコントラストは高い被写体の場合、焦点
検出ができないことになる。又、カメラを縦位置で使用
する場合にも同様の問題が生じる。この問題は二次元的
なイメージセンサを用いることで解決される。この種の
焦点検出装置として、特開昭59−174807号によ
る提案がなされている。この提案の要旨は受光素子を二
次元的に並べて、その上に被写体像を形成するように
し、この受光素子の配列から一方向の一列の受光素子の
出力を読出してコントラストが不足であった場合、方向
を変えて受光素子列から出力を読取る。このようにして
充分なコントラストが得られる方向を探して、焦点検出
演算を行うものであるが、二次元的なイメージセンサを
用いるので高価なものとなる。 【0004】そこで安価なラインイメージセンサを複数
個互いにライン方向を異ならせて配置することにより、
二次元的なイメージセンサに代えることが考えられる。
この場合、各ラインイメージセンサは被写体の異なる部
分を撮像するので、被写体各部の明るさの相違に従って
各ラインイメージセンサの光量積分時間を変える必要が
あり、センサ毎に積分時間終了のタイミングが異なるこ
とになる。 【0005】 【発明が解決しようとする課題】上述したような多数の
ラインイメージセンサを用いて焦点検出を行う場合、各
イメージセンサの積分終了時期が異なる。自動焦点検出
装置を制御しているマイクロコンピュータは、各ライン
イメージセンサの積分時間の制御も、各センサからの映
像信号の読み出しの制御も行うが、積分時間が終了した
センサから順に映像信号の読み出しを行うと、一方で読
み出しを行いながら、他のセンサの積分時間の制御も行
うと云うことになって、プログラムが大変複雑になり、
コンピュータが余程高速でないと、一つのイメージセン
サの積分時間の終了から他のセンサの積分時間の終了ま
での間に、その一つのセンサの映像信号の読み出しを終
わることはできず、結局は各ラインイメージセンサの出
力を順次読み出して行くのと所要時間は余り違わないこ
とになり、プログラムが複雑になる分だけコストアップ
につながることになる。そこで本発明は、マイクロコン
ピュータで各イメージセンサの積分時間の制御も映像信
号の読み出しの制御も行わせる場合、プログラムの簡単
化を図るものである。 【0006】 【問題点を解決するための手段】複数のラインイメージ
センサ毎に積分時間を制御する手段に加えて、各ライン
イメージセンサの映像データ即ち蓄積電荷を最後のライ
ンイメージセンサの積分時間終了まで保持する手段を設
け、全センサの積分終了後に全センサの映像データを順
次読み出すようにした。 【0007】 【作用】上述構成の意味は、制御装置に同時並行的に積
分時間の制御とラインイメージセンサからの映像信号の
読み出しを行わせず、全部のイメージセンサの積分時間
終了後にデータ読み出しを行い、積分時間の制御とデー
タ読み出しの制御とを時間的に分離することで、プログ
ラムを簡単化したものである。このとき、積分時間の短
かったセンサは最終の積分時間終了までデータ読み出し
を待つことになるが、蓄積電荷を保持させる手段を設け
てあるので、何等支障はないのである。 【0008】 【発明の実施の形態】本発明の内容は図4及びそれに関
連する段落番号0013〜0016に開示されている
が、以下の説明は本発明装置の全体について順次詳説し
ている。 【0009】図1は本発明の一実施例の光学系及びイメ
ージセンサの配置の斜視図で、図2は同実施例装置の分
解斜視図である。図1で1はカメラの撮影レンズ、6は
コンデンサレンズ、8は四個の再結像レンズで10はイ
メージセンサである。コンデンサレンズ6は四個の再結
像レンズ8の前面に置かれた瞳マスクの像を撮影レンズ
1上に形成する。図で撮影レンズ上に画かれた点線の円
がこの投影像である。コンデンサレンズ6の前面には十
字形の開口を持った視野マスク2が配置され、このマス
ク面は撮影レンズ1の予定焦点面でカメラのフィルム面
と等価な位置にある。再結像レンズ8は視野マスク2の
面の像をイメージセンサ10上に形成する。この構成で
例えば再結像レンズ8のうちの一つイ′のコンデンサレ
ンズ6によるレンズ1上の像はイ、同様にしてロ′の像
はロであって、撮影レンズ1のイの円で囲まれた領域を
通過した被写体光によって視野マスク2上に形成された
像が、再結像レンズイ′によってイメージセンサ10上
に形成される。同様にして、撮影レンズ上のロの領域を
通過した被写体光によって視野マスク2上に形成された
像が、再結像レンズロ′によってイメージセンサ上に形
成される。イメージセンサ10上で十字形に並んだ長方
形は、X1 が再結像レンズイ′よる視野マスク2の十字
形の開口の水平部分の像であり、X2 が再結像レンズ
ロ′による視野マスクの十字形開口の水平部分の像であ
る。Y1 ,Y2 も同様にして縦方向に並んだ一対の再結
像レンズによる視野マスクの十字形開口の縦の部分の像
である。X1 ,X2 上には被写体の同じ部分の像が形成
されているが、被写体の撮影レンズ1による像が丁度視
野マスク2上に形成されている、つまりピントが合って
いるとき、被写体の同一部分のX1 ,X2 上の再結像像
の位置を基準にすると、被写体像が視野マスクより撮影
レンズ寄りにできているとき(前ピン)、X1 ,X2 上
の再結像像は互いに近づき、反対に後ピンのときは互い
に遠ざかる。そこでX1 ,X2 を連ねる方向にラインイ
メージセンサを配置し、映像信号上の処理操作で、X1
上の被写体像の映像信号に対して、X2 上の被写体像の
映像信号を少しずつずらせて重ね、両方の映像信号の相
関が最大になるずらせ量を検出することによって、被写
体の像が正しいピント位置からどちら側へどれだけ寄っ
ているかが算定できる。以上がこの発明における焦点検
出の原理であるが、映像信号の処理操作に関しては本件
特許出願人により特許出願された特開昭60−2472
10号に記載されている。以上の原理に従ってイメージ
センサ10の面上にはX1 ,X2 の並び方向及びそれと
直交するY1 ,Y2 の並び方向に沿って夫々ラインイメ
ージセンサが配置されている。 【0010】図2では撮影レンズは図外にあり、一眼レ
フレックスミラーの中央部の透明部の後に45°傾けて
下向きに配置されたミラーにより撮影レンス透過光は赤
外線カットフィルタ3、視野マスク2、コンデンサレン
ズ6に向けて転向され、更に45°のミラー4によって
水平方向に転向されて瞳マスク7、再結像レンズ8(二
対四個)を経てイメージセンサ10上に投影される。5
は上述した全ての要素を一ユニットに結合する枠であ
る。イメージセンサ10は上述したように水平方向(X
1 ,X2 を連ねる方向)と垂直方向とに夫々ラインイメ
ージセンサを配置したものであるが、ラインイメージセ
ンサとしてはCCDイメージセンサが用いられている。 【0011】CCDイメージセンサは、フォトダイオー
ドとその出力光電流を積分するコンデンサとが一画素分
の要素となり、このような要素がアレイ状に並んだもの
で、各要素一斉に適当時間光電流積分を行なった所で積
分コントロールゲートにシフトパルスを印加することに
より、各要素毎の蓄積電荷による光量信号をシフトレジ
スタにパラレルに転送し、その後シフトレジスタに転送
クロックを印加するとにより、シフトレジスタ内の電荷
信号を順次電圧信号として読出すことにより、映像信号
を得るようになっている。図3は本発明実施例における
CCDイメージセンサ周辺の回路構成を示す。この図で
PDアレイI〜PDアレイIVはCCDイメージセンサに
おける上記した要素のアレイであって、PDアレイIは
図1におけるX1 の位置に、PDアレイIII は同じくX
2 の位置に、またPDアレイIIはY1 の位置に、PDア
レイIVはY2 の位置に配置されている。またPDアレイ
上に投影されている像の平均輝度によって光電流の積分
時間を決めるため、PDアレイIに沿わせてモニタ用の
フォトダイオード(PD)M1 をまたPDアレイIIに沿
わせてモニタ用フォトダイオード(PD)M2 が配置し
てある。G1 〜G4はPDアレイI〜PDアレイIVに対
応する積分コントロールゲート列でPDアレイの各要素
と一対一対応している。R1 ,R2 はシフトレジスタで
ある。シフトレジスタR1 はPDアレイIとIVとに対応
しており、積分コントロールゲートG1 及びG4 にシフ
トパスルが印加されると、PDアレイI及びIV内の各要
素の光電流積分電荷が並列的にシフトレジスタR1 に転
送される。積分コントロールゲートG1 ,G4 に印加れ
るシフトパルスのタイミングは異なっている。シフトレ
ジスタR2 はPDアレイII,III に対応していて、PD
アレイII,III 内の電荷信号が転送される。これらのシ
フトレジスタは二相の転送クロックパルスφ1 ,φ2 に
よって駆動され、同レジスタに記憶された情報が順次出
力される。 【0012】以後の説明の便宜上、幾つかの言葉を決め
ておく。ラインイメージセンサの方向に関して、図1に
示したようにx方向(水平)y方向(垂直)を決める。
この二方向は図3で矢印x,yで示した方向である。総
コントラストと云うのは映像信号における隣接する差分
データの差の絶対値の総和のことで、明暗の差が大きい
程、また明暗が細かく入り混じっている程総コントラス
トは大きくなる。“LowCon”はLow Conf
idenceの略で焦点検出の信頼性が低いと云う意味
である。以下装置各部の構成及び動作について詳述す
る。 【0013】(CCDイメージセンサ回路)図3におい
て、CCDアナログシフトレジスタR1 ,R2 は二相ク
ロックφ1,φ2 で電荷転送を行う。その出力端には電
圧変換部とバッファが設けられPDアレイI及びIVの蓄
積電荷はアナログシフトレジスタR1 を介しOSI端子
から出力され、PDアレイII及びIII の蓄積電荷はアナ
ログシフトレジスタR2 を介しOSII端子から出力され
る。またモニタ用PDの出力側はPDアレイの蓄積電荷
と同様の構成となっており、電圧変換部とバッファを介
しモニタ(PD)M1の蓄積電荷はAGCOSI端子か
ら、モニタ(PD)M2 の蓄積電荷はAGCOSII端子
から出力される。またこのモニタPDの基準電圧出力の
ために、PDが接続されないかまたはアルミ遮光された
PDを接続した電圧変換部が設けられており、基準電圧
DOSが出力される。この出力は後述のシフトパルスの
発生タイミングを制御するのに用いられる。 【0014】積分コントロールゲートG1 ,G3 は、x
方向のPDアレイI及びIII に対応し、端子SH1 を介
して共通のシフトパルスSH1 が印加される。同様にし
て積分コントロールゲートG2 ,G4 はy方向のPDア
レイII及びIVに対応し、端子SH2 を介して共通のシフ
トパルスSH2 が印加されるようになっている。また各
積分コントロールゲートG1 〜G4 には端子SHを介し
て一斉にシフトパルスSHを印加することもできるよう
になっている。CCDイメージセンサから得られる映像
信号は被写体輝度にかかわりなく、焦点検出に適する信
号レベルになっている必要があるから、積分時間はモニ
タ用フォトダイオード(PD)M1 ,(PD)M2 の出
力によって制御される。ここで被写体のx方向,y方向
の帯状部分の平均輝度が異なる場合があるから、シフト
パルスSH1 とSH2 とは別々に印加できるようになっ
ている。 【0015】PDアレイI〜IVは積分クリヤ信号ICG
パルスによって一斉にクリヤされ、その時点から光電流
積分が開始される。ここで例えば被写体のx方向帯状部
分の方がy方向より平均輝度が高い場合、シフトパルス
SH1 が先に出力されて、PDアレイI,III の光電流
積分信号が積分コントロールゲートG1 ,G3 に中間的
に保持される。その後PDアレイII,IVの映像信号が適
正値に達すると、シフトパルスSH2 が発せられ、PD
アレイII,IVの光電流積分信号が積分コントロールゲー
トG2 ,G4 に中間的に保持される。その後各ゲートG
1 〜G4 に一斉にシフトパルスSHが印加されること
で、x方向,y方向の映像信号が全てシフトレジスタR
1 ,R2 に転送される。 【0016】上述したように積分コントロールゲートG
1 〜G4 はPDアレイI〜IVの出力を一時的に保持して
これをシフトレジスタR1 ,R2 に並列的に転送する機
能を有するが、そのための回路構成を図4に示す。図4
は一画素分の構成を示しPDアレイで光電変換された電
荷はバリアゲートを介して積分クリヤパルスICGによ
り略電源レベルまで充電される第一蓄積部C1 にバリア
ゲートを介して蓄積される。このPDアレイ列の平均輝
度をモニタPDによってモニタした積分信号が適正積分
レベルに達した時SH1 或はSH2 パルスが印加され各
画素の電荷は蓄積部C1 から並列にC2に移送される。
この時V1 ,V2 ,C1 ,C2 の容量差により電荷移送
は略完全に行なわれる。こうしてICGパルスの印加か
らSHn(n=1又は2)パルスの印加までの間に蓄積
された電荷は蓄積部C1 からC2に移送され、このまゝ
の状態でもう一方の像が投影されているPDアレイの電
荷の蓄積が完了するのを待つ。この第二蓄積部C2 では
光電流は発生することがなくその電荷量は略維持され
る。もう一方のPDアレイも電荷蓄積が完了すると、C
CDイメージセンサの全画素の電荷が第二蓄積部C2 に
合焦検出演算に適したレベルで揃えられた状態となる。
次に、SHゲートにSHパルスを印加することによりア
ナログシフトレジスタに全画素の情報を適正なレベルで
並列に移送し、以後転送クロックに同期して、OSI,
OSII端子より順次この電荷が出力される。 【0017】(合焦検出及び合焦調整を行う回路)次に
図5に、イメージセンサを駆動し合焦検出,合焦調整を
行う回路構成を示す。20はイメージセンサ10を駆動
し、その情報を入力し合焦検出演算を行い、モータ駆動
回路90を通じてレンズ駆動を行い、合焦状態表示回路
100を通じて行う制御を司るAF用マイクロコンピュ
ータである。AF用マイクロコンピュータはAFスター
トスイッチSAFSのONで動作を開始する。30はx
方向のモニタ出力AGCOS1 を検出し、x方向のPD
アレイI,III に対して積分完了を行なわせるシフトパ
ルスSH1 を発生するシフトパルス発生回路、31はy
方向のモニタ出力AGCOS2 を検出し、y方向のPD
アレイII,IVに対して積分完了を行わせるシフトパルス
SH2 を発生するシフトパルス発生回路である。この回
路は、図6に示すような回路で構成される。基準電圧D
OSはバッファ回路Buf1 に入力され、その出力から
抵抗R31と定電流I31による定電圧ΔV1分だけ降ろさ
れた電圧がコンパレータCom1 の(+)入力に印加さ
れる。このコンパレータの(−)入力にはモニタ出力A
GCOSnが印加されている。積分クリヤパルスICG
の印加により両出力DOS,AGCOSnは等電位とな
るが、その後AGCOSnの電位はモニタPDでの電荷
発生分、すなわち入射光量に比例して低下する。コンパ
レータCom1 の入力レベルでみるとICG印加時点で
は(−)入力はΔV1 だけ高いが電荷蓄積とともに低下
し、(−)入力が(+)入力を下回るとコンパレータの
出力が反転する。この反転時の映像信号の平均レベルで
合焦検出を行うと適正な合焦検出結果が得られるようR
31,I31すなわちΔV1 を設定しておく。この時このコ
ンパレータCOM1 の反転信号はパルスICGでリセッ
トされたフリップフロップFF31をセットし、FF31出
力反転がAND31,INV31,遅延回路32によってパ
ルスに変換されSHn(n=1又は2)信号として出力
される。またパルスICGの印加からこのSHn信号が
出力されるまでの時間は、低輝度になる程長い時間が必
要となるので、最大積分時間を設けこの時間の経過時に
シフトパルスSHをマイクロコンピュータにより発生さ
せて、積分時間に制限をつけることも可能となってい
る。これらの低輝度時の扱いについては、特開昭60−
125817号等で説明されたものと同等である。 【0018】回路40は転送クロック発生回路で、CK
端子にマイクロコンピュータから供給される基本クロッ
クを分周しφ1 ,φ2 パルスを発生させる。Sφ端子に
は転送クロック周波数を切換えるための信号がマイクロ
コンピュータ20から供給され、この信号はx,y両方
向の出力を入力する際にはHighとなり、x,y方向
のうちの一方向の出力のみを入力する際にはSφ信号を
Lowとして転送クロック周波数を前述両方向出力の入
力時の倍として入力することで電荷転送時間の短縮を計
っている。また、前述の第二の蓄積手段C2 よりアナロ
グシフトレジスタへの電荷移送の際同期をとる必要があ
るため、SH信号が入力されている。50,51は各画
素出力OSI,OSIIのアナログ処理回路で基本的構成
は図7に示す。各画素出力は差動増幅器Amp51にお
いて、基準電圧V52との差として出力される。この出
力は各フォトダイオードアレイPDI〜IVの出力の最前
部に設けられたアルミ遮光画素の暗出力信号が出力され
る時マイクロコンピュータ20により出力されるSP1
或はSP2 の信号でサンプリングされ、C51によりホー
ルドされ、以後出力される光出力との差を差動増幅器A
mp52でとることで光出力成分のみの抽出を行う。 【0019】ここで各PDアレイI〜IVで暗出力をサン
プルホールドするのは、PDアレイI,III とII,IVと
が異なる積分時間で制御されており、暗出力電圧に差が
生じるためである。こうして光成分のみ抽出された画素
出力は次にサンプルホールド回路60,61に入力され
た後マルチプレクサ70に入力される。ここでマルチプ
レクサ70はサンプルホールドされた画素出力I1 ,I
2 のうちの一方を入力データ選択ゾーン信号SZによっ
て選択してA/D変換回路80にD1 端子から出力す
る。前述のようにマイクロコンピュータがx,y両方向
のデータ入力を行う場合はSφ信号Hiを出力し転送ク
ロックを通常速で発生させるとともにAND2 ,OR1
を介してマルチプレクサ70の出力切換えを転送クロッ
クφ1 に同期して切換える。この結果タイミングチャー
ト図8(a)に示すようにCCDシフトレジスタR1 ,
CCDシフトレジスタR2 の出力信号が交互に出力さ
れ、A/D変換回路80でデジタル化されマイクロコン
ピュータに入力される。一方x方向或はy方向のみを入
力する場合においてはSφ信号をLowとし、AND2
の一入力をLowにすることでマルチプレクサの出力切
換えはマイクロコンピュータの選択信号SZによるもの
になる。またこの時CCDイメージセンサの転送ロック
周波数は倍速になる。マイクロコンピュータはx方向な
ら基準部出力、y方向なら参照部出力を入力し次にSZ
信号を反転させ、CCDシフトレジスタI,IIの出力x
方向の参照部出力y方向の基準部出力を入力する。この
ようにA/D変換時間をフルに活用することでデータの
転送時間の短縮を計ることができるこの時のタイミング
を図8(b)に示す。 【0020】(自動焦点検出動作)本発明においては自
動焦点検出に当っては幾つかの動作モードが可能であ
る。これらのモードにおける動作の具体例をフローチャ
ート図9〜図11に示す。図9はx方向,y方向で合焦
検出演算を行い、その結果被写体がよりカメラに近いと
判断された方向についての合焦検出結果に基づきレンズ
駆動を行うフローである。図10はx,y両方向の総コ
ントラストを比較し、コントラストの高い方向を優先的
に合焦検出演算を行ってレンズ駆動し、LowConと
なった場合のみもう一方の合焦検出演算を行いレンズ駆
動を行うフローである。ここでコントラスト値が大きく
LowConとなるのは、LowCon判別基準とし
て、特開昭60−247210号で本出願人が提案して
いるように、相関演算による評価関数YM(XN)/C
Nが所定値以下であることも条件にされているためで、
遠近競合被写体のような場合評価関数が著しく劣化する
場合等が考えられる。図11にはx方向の合焦検出機能
を優先して合焦調整を行い、x方向がLowConとな
った場合のみy方向の合焦検出機能を活用させる例を示
す。 【0021】まず図9について説明する。AFスイッチ
SAFSがONになると、マイクロコンピュータ20が
起動される。マイクロコンピュータはまずCCDイメー
ジセンサの初期化を行う。これは電源供給以前或は転送
クロック停止中にレジスタ及び光電変換部に予め蓄積さ
れた不要電荷の排出を行うためで起動時に一度行う必要
がある。次にマイクロコンピュータ20はCCDイメー
ジセンサ10にICGパルスを供給し積分開始する。こ
のICGパルスの印加によりイメージセンサは各画素の
蓄積電荷を排出するとともに、モニタ出力の蓄積電荷を
も排出し、このパルスの消滅とともにその両者で発生電
荷の蓄積が開始される。以後マイクロコンピュータはT
INT1 ,TINT2 両端子の反転すなわちPDアレイ
IとIII 、PDアレイIIとIVの各画素蓄積電荷の平均が
予め設定されたレベルに達してシフトパルスSH1 ,S
H2 が発生し、各画素の第二蓄積部C2 にPDアレイ
I,III の蓄積電荷が、各画素の第二蓄積部C2 にPD
アレイII,IVの蓄積電荷が移送完了するのを待つ。この
完了をマイクロコンピュータが検知すると、マイクロコ
ンピュータはSHパルスを発生させPDアレイI,IVの
蓄積電荷をアナログシフトレジスタ(CCDレジスタ)
R1 に、PDアレイII,III の蓄積電荷をアナログシフ
トレジスタ(CCDレジスタ)R2 に並列移送する。 【0022】以後転送クロックに同期して、OSI,O
SII両端子から各画素信号が出力され、マイクロコンピ
ュータはこれ以後の一画素信号のA/D変換完了信号A
/DEOCをカウントすることで出力画素数を知り、ま
た各PDアレイI〜IVに設置されたアルミ遮光画素の暗
出力サンプル信号SP1 ,SP2 を出力し、これに引続
いて出力される各光出力画素のA/D変換値を順次入力
することで像情報を得る。このタイミングは後述する。
このようにして合焦検出演算に必要な全画素出力のデジ
タル情報をマイクロコンピュータ内に格納し終えると、
マイクロコンピュータは合焦検出演算を開始する。マイ
クロコンピュータはまずx方向の相関演算を行う。まず
x方向差分データの作成を行う。この差分データはUx
(k)=Sx(k)−Sx(k+4),Vx(k)=T
x−Tx(k+4)というように四つおきの生データの
差分をとる。これは合焦検出演算不能な低周波成分をカ
ットするためである。基準部,参照部の差分データ27
ケ,35ケが揃うと、マイクロコンピュータは像ズラシ
量を一ピッチずつ増加させながら、それぞれの像ズラシ
量で相関値YM(l)を求める。また総コントラスト
値、すなわち差分データの隣接データの和を求める。こ
うして求められた相関値YM(l)のうち最も相関度の
高い像ズレ量、すなわち相関値YM(l)の値が最小と
なるlxを求める。このlxはレンズデフオーカス量に
対して関与したものであるが、ここで用いるシステムで
はより精度を求めるために、隣接像ズレ時の相関値とそ
の像ズレ量での相関値を用いて補間演算を行う。この補
間演算についは特開昭60−247211号で詳しく本
出願人が説明しているので参照されたい。こうして精度
良く、詳細な像スレ量XM,相関評価関数YM(XM)
/CXが求められる。この相関評価関数YM(XM)/
CX,総コントラスト値CX、及び全出力生データ値の
三点でLowCon判別を行う。このLowCon判別
については同様に特開昭60−247210号で説明し
ているのでここでは省略する。尚lx=1又は9の両端
での相関値が最小となる場合はLowConとする。 【0023】LowConでないと判断された場合には
PX値としてXM−5、すなわち合焦時像ズレ量との差
を求めメモリしておく。またlmin=lx−1として
メモリしy方向の相関演算の像ズラシ範囲に制限を加え
る。一方LowConと判別された場合にはy方向の相
関演算の像ズラシ範囲を設けず、全範囲に渡って相関演
算を行う。こうしてy方向の相関演算範囲の制限をメモ
リした後、y方向の差分データをx方向の場合と同様に
して作成する。Uy(k)=Sy(k)−Sy(k+
4),Vy(k)=Ty(k)−Ty(k+4)こうし
て作成された差分データを基にx方向で求めたのと同様
に相関値の演算を行う。但しここではx方向の相関演算
結果で求められたlmin以上の像ズレ量に対してのみ
相関演算を行う。これは被写体が近接被写体である程そ
の像間隔は大きいものとなるため、x,y両方向での相
関演算結果の像ズレ量が大の方を選択する。そのため先
に求めたx方向の像ズレ量より大の部分のみ相関演算を
施すことで充分であり、相関演算の短縮化が計れる。こ
うしてy方向においても相関値を求め、その相関の最も
高い部分を算出する。次にx方向時と同様に補間演算を
施し、y方向の相関演算結果として像ズレ量xN、相関
評価関数YM(XN)/Cyを算出する。この評価関数
YM(XN)/Cy、y方向の総コントラスト値Cy、
y方向生データピーク値を判別するとともに相関演算像
ズレ量の両端lmin、9に算出最小相関値像間隔lx
1がないかどうかの四点を判別し、LowConでない
と判断された場合にはPYとして合焦状態からの像ズレ
量xN−5をメモリする。こうしてx,y両方向につい
て相関演算が完了するとマイクロコンピュータはこの
x,y両方向の両相関演算結果によりレンズ駆動を行
う。 【0024】まず両方向ともにLowConであると判
別された場合にはマイクロコンピュータはレンズを駆動
させコントラストの検出できるレンズ位置をさがす動作
(LowCon Scan)を行う。この動作は全レン
ズ駆動範囲を少なくとも一度走査し終えた状態でレンズ
駆動を停止し、そのままのレンズ位置で合焦検出演算の
みを繰返し、コントラストが検知された状態でレンズ駆
動を再開するモードである。少なくとも一方がLowC
onでない場合には求められたx方向の像ズレ量の大小
比較を行い大きい方をPとして以後のレンズ駆動に用い
る像間隔量として採用する。ここでLowCon時には
Px乃至Pyの値はMin値(−4)にセットされてい
るものとする。y方向の演算時に制限を加えたにも拘ら
ず、あえてここで大小比較を行うのは像ズレ量一ピッチ
内でかなりのデフオーカス量を有し補間演算による値で
デフオーカス量に大きな差を生じるためである。この演
算像ズレ量Pをデフオーカス量に換算し、レンズによっ
て異なるレンズ駆動量変換係数を乗算することでレンズ
駆動量を算出し、合焦判別を行う。レンズ駆動量が極め
て小さく、レンズ駆動を行う必要のない場合には、合焦
表示を行い、そうでない時はそのレンズ駆動量に従って
レンズ駆動を行い、再度合焦検出動作を行うためにイメ
ージセンサの再積分を行う。 【0025】次に図10のフローチャートを用いて、総
コントラスト量が大となる方向についての相関演算を優
先的に行ってレンズ駆動し、その方向が遠近競合被写体
である等の影響によりLowCon状態となった時には
じめて他方の合焦検出相関演算を行い、その結果により
レンズ駆動を行う合焦検出装置の動作について説明す
る。動作を開始し、データ入力が完了するところまでは
前述の図9の場合と同様にx,y両方向についてのイメ
ージセンサデータがマイクロコンピュータ内に格納され
る。マイクロコンピュータはまずx方向の差分データを
図9の場合と同様に作成し、差分データの隣接差の和を
求めることによりx方向総コントラスト値Cxを算出す
る。引続いてy方向の差分データを作成し同様にy方向
総コントラスト値Cyを算出する。こうしてx,y両方
向の総コントラスト値Cx,Cyを算出した後この両者
の大小比較を行う。ここで総コントラスト値が大となる
方向についての相関演算結果は、総コントラスト値が小
となる方向についての相関演算結果より信頼性が高いと
通常考えられる。 【0026】そこで総コンントラスト値の大きな方向Z
について優先的に相関演算を行う。この相関演算につい
ては図9で示した手法と同じ手法を用いて行う。相関の
高い部分の算出,補間演算を行い像ズレ量xM、相関評
価関数YM(XM)/CZを算出する。この結果を用い
てLowCon判別を行い、LowConでないと判別
された場合にはこの像ズレ量XMにより、合焦時との像
ズレ量算出を行い、デフオーカス量、レンズ駆動量の算
出を行う。合焦か否かの判別で合焦時には合焦表示を行
い、非合焦時にはレンズ駆動量に従いレンズ駆動を行
う。一方、LowConと判別された場合には、今度は
逆方向についての相関演算を行う。この結果により相関
の高い部分の算出,補間演算を行い、像ズレ量XM,Y
M(XM)/CZの算出を行う。再びこの結果を用いて
LowCon判別を行い、LowConでないと判別さ
れた場合にはこの像ズレ量XMにより、合焦時との像ズ
レ量算出を行い、デフオーカス量、レンズ駆動量の算出
を行う。合焦か否かの判別で合焦時には合焦表示を行
い、非合焦時にはレンズ駆動量に従いレンズ駆動を行
う。また、LowConと判別された場合には今度は
x,y両方向がLowConと判別されたわけで、前述
のLowCon Scanを行う。最後にコントラスト
の高い部分が配置される頻度の高いx方向(水平方向)
を優先して合焦検出演算し、x方向がLowConと判
別された時のみy方向について合焦検出演算を行う合焦
検出装置について図11のフローチャートを用いて説明
する。この合焦検出装置では上記図9及び図10の2例
と異なり、x方向のデータのみを優先的に入力する。積
分時間及びデータ転送時間の短縮を計り、システムの応
答性を高めるために、AF動作開始後CCDのイニシャ
ライズが完了した時点でマイクロコンピュータは転送ク
ロック周波数を上記例の場合の倍速に設定しSφ=Lo
wを出力し高速で一方向のみの出力を図8(b)に示し
たような形で実施する。 【0027】積分開始するために積分クリヤパルスを印
加後マイクロコンピュータはx方向の積分完了を示すT
INT1 信号の反転信号を待つ。TINT1 信号の反転
を検知するとマイクロコンピュータはy方向の積分の完
了、未完了に関係なくシフトパルスを発生させ、x方向
の画素出力データの入力を開始する。まずOS1 よりP
DアレイI、x方向基準部画素出力が出力されるのでS
Z=Hiを出力し、マルチプレクサ70のD1 出力をI
1 信号すなわちOS1 処理信号とすることでx方向の基
準部画素の出力をA/D変換しマイクロコンピュータに
入力する。この間OS2から出力されるy方向基準部出
力は無視される。このx方向基準部の入力が完了すると
マイクロコンピュータはSz=Lowを出力しマルチプ
レクサ70のD1 出力をI2 信号すなわちイメージセン
サのOS2 処理信号とすることでx方向の参照部の出力
をA/D変換して入力する。こうしてx方向の基準部、
参照部の入力が完了すると、これらのデータについて前
述の二例と同様に差分データ作成、相関値算出、最高相
関の抽出、補間計算、LowCon判定を行う。上記二
例で示したのと同様のLowCon判定の結果、Low
Conでなく求められた像ズレ量が信頼性の高いデータ
であると判別されると、その像ズレ量から合焦像ズレ量
との差P=XM−5を算出デフオーカス量PF、レンズ
駆動量の算出を行い、レンズ駆動量が極めて小の時は合
焦と判断し合焦表示を行い、そうでない時は算出された
レンズ駆動量に従いレンズの駆動を行い、x方向の各画
素について再積分、再合焦検出演算を繰返す。 【0028】一方x方向の合焦検出演算結果がLowC
onであると判別された場合には、マイクロコンピュー
タは次にy方向のイメージセンサの積分、合焦検出演算
を開始する。マイクロコンピュータは一方向のデータ入
力を行うためにSφ=Lowを出力しながら、積分クリ
ヤ信号ICGを発生させ以後y方向の積分完了信号TI
NT2 の反転を待つ。このTINT2 の反転を検知する
と今度はx方向の積分の完了,未完了に拘らずSHパル
スを発生しy方向データの入力を開始する。この時上述
のx方向入力時とは逆にまずSZ=Lowを出力しx方
向基準部出力を無視しながら、y方向基準部出力のみI
2 をマルチプレクサで通過させA/D変換後データ入力
を行い、これが完了するとSZ=Hiを出力しx方向参
照部出力を無視しながら、y方向参照部出力のみI1 を
マルチプレクサで通過させA/D変換後データ入力を行
う。 【0029】こうしてy方向のみの全データを入力し終
えると、マイクロコンピュータはy方向の差分データ作
成、相関値算出、最高相関の抽出、補間計算、LowC
on判別をx方向について行なったのと同様の手順で行
う。LowCon判定の結果LowConでなく求めら
れた像ズレ量が信頼性の高いデータであると判別される
と、その像ズレ量から合焦像ズレ量との差P=xM−5
の算出、デフオーカス量DF、レンズ駆動量の算出を行
い、レンズ駆動量が極めて小の時は合焦と判断し合焦表
示を行い、そうでない時は算出されたレンズ駆動量に従
いレンズの駆動を行い、x方向の再合焦検出動作は一切
行なわずy方向の各画素についての再積分、再合焦検出
演算を繰返す。一方、y方向においてもLowConで
あると判別された場合x,y両方向についてLowCo
nと判定されたことになりLowCon Scanを行
いながら、イメージセンサx,y両方向についての再積
分、再合焦検出を繰返しLowConでなくなる状態を
待つ。 【0030】 【効果】本発明によれば、マイクロコンピュータの制御
動作を、複数のラインイメージセンサの光量積分時間の
制御を行っている時間帯と、各ラインイメージセンサの
映像出力の読み出し制御を行っている時間帯とに分ける
ことにより、両制御を同時並行的に行わせるのに比し、
制御プログラムが簡単化でき、コスト低減に寄与すると
共に、このようにしても焦点検出動作所要時間が長くな
ると云うことはないのである。
【図面の簡単な説明】
【図1】本発明の光学的構成を示す斜視図
【図2】一実施例の光学部分の分解斜視図
【図3】同実施例におけるイメージセンサ周辺の回路図
【図4】同実施例における積分コントロールゲートの回
路図 【図5】同実施例のおけるイメージセンサ駆動及び合焦
検出及び合焦調整を行う部分の回路図 【図6】上記回路中の一部の詳細回路図 【図7】同じく他の一部の詳細回路図 【図8】上記回路の動作のタイムチャート 【図9】上記実施例における一動作モードのフローチャ
ート 【図10】同じく他の動作モードのフローチャート 【図11】同じく他の動作モードのフローチャート 【符号の説明】 1 撮影レンズ 2 視野マスク 6 コンデンサレンズ 8 再結像レンズ(二対四個) 10 イメージセンサ
路図 【図5】同実施例のおけるイメージセンサ駆動及び合焦
検出及び合焦調整を行う部分の回路図 【図6】上記回路中の一部の詳細回路図 【図7】同じく他の一部の詳細回路図 【図8】上記回路の動作のタイムチャート 【図9】上記実施例における一動作モードのフローチャ
ート 【図10】同じく他の動作モードのフローチャート 【図11】同じく他の動作モードのフローチャート 【符号の説明】 1 撮影レンズ 2 視野マスク 6 コンデンサレンズ 8 再結像レンズ(二対四個) 10 イメージセンサ
─────────────────────────────────────────────────────
フロントページの続き
(72)発明者 糊田 寿夫
大阪市中央区安土町2丁目3番13号大阪
国際ビル ミノルタ株式会社内
(72)発明者 谷口 信行
大阪市中央区安土町2丁目3番13号大阪
国際ビル ミノルタ株式会社内
(56)参考文献 特開 昭57−118206(JP,A)
特開 昭50−3744(JP,A)
特開 昭60−177329(JP,A)
特開 昭60−177332(JP,A)
特開 昭55−115020(JP,A)
特開 昭55−111924(JP,A)
(58)調査した分野(Int.Cl.6,DB名)
G02B 7/34
G03B 13/36
Claims (1)
- (57)【特許請求の範囲】 1.被写界の複数領域で焦点状態が検出可能な焦点検出
装置において、 上記複数領域に対応して各別に被写体像を形成する光学
手段と、 上記複数領域に対応して配置され、上記光学手段によっ
て形成された被写体像を受光する複数の電荷蓄積型撮像
手段と、 上記各撮像手段の出力に基づいて、上記各領域毎に焦点
状態を検出する焦点検出手段と、 上記複数の撮像手段毎に独立して電荷蓄積を終了させる
制御手段と、 一つの撮像手段の電荷蓄積が終了後、その蓄積電荷を別
の撮像手段の電荷蓄積終了まで保持しておく電荷保持手
段と、 を備えたことを特徴とする自動焦点検出装置。 2.上記電荷保持手段は、上記複数の撮像手段の全ての
電荷蓄積が終了するまで蓄積電荷を保持しておくことを
特徴とする特許請求の範囲1に記載の自動焦点検出装
置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8096016A JP2850316B2 (ja) | 1996-03-25 | 1996-03-25 | 自動焦点調節装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8096016A JP2850316B2 (ja) | 1996-03-25 | 1996-03-25 | 自動焦点調節装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61057855A Division JP2540801B2 (ja) | 1986-01-21 | 1986-03-14 | 自動焦点調節装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0990211A JPH0990211A (ja) | 1997-04-04 |
JP2850316B2 true JP2850316B2 (ja) | 1999-01-27 |
Family
ID=14153451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8096016A Expired - Fee Related JP2850316B2 (ja) | 1996-03-25 | 1996-03-25 | 自動焦点調節装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2850316B2 (ja) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS503744A (ja) * | 1973-04-25 | 1975-01-16 | ||
JPS57118206A (en) * | 1981-01-14 | 1982-07-23 | Canon Inc | Display system of focusing detector |
-
1996
- 1996-03-25 JP JP8096016A patent/JP2850316B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0990211A (ja) | 1997-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6819360B1 (en) | Image pickup element and apparatus for focusing | |
US4835615A (en) | Image sensor with improved response characteristics | |
JP4007713B2 (ja) | 撮像装置 | |
RU2490715C1 (ru) | Устройство захвата изображения | |
US7041950B2 (en) | Image sensing element for sensing an image formed by an image sensing lens | |
JPH0261006B2 (ja) | ||
US6360059B1 (en) | Focus detector | |
JP2540801B2 (ja) | 自動焦点調節装置 | |
JP4567712B2 (ja) | 撮像装置 | |
JP2853735B2 (ja) | 自動焦点調節装置 | |
JP3006480B2 (ja) | 自動焦点調節装置 | |
JPH09126757A (ja) | 距離測定装置 | |
JP2850316B2 (ja) | 自動焦点調節装置 | |
JP2853734B2 (ja) | 自動焦点調節装置 | |
JP2001305422A (ja) | 測距装置 | |
JP2679700B2 (ja) | 自動焦点調節装置 | |
JPH0990204A (ja) | 自動焦点調節装置 | |
JP2679699B2 (ja) | 自動焦点調節装置 | |
JPH09181954A (ja) | 電子スチルカメラおよびそのフォーカス制御方法 | |
JP2679701B2 (ja) | 自動焦点調節装置 | |
JP2002320236A (ja) | 撮像装置 | |
JPH07281080A (ja) | カメラ | |
JPS6227685B2 (ja) | ||
JPH0926540A (ja) | 自動焦点調節装置 | |
JPH0990205A (ja) | 自動焦点調節装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |