JP2849517B2 - 新規生理活性物質エピモルフィン、それをコードする遺伝子及びエピモルフィンに対する抗体 - Google Patents

新規生理活性物質エピモルフィン、それをコードする遺伝子及びエピモルフィンに対する抗体

Info

Publication number
JP2849517B2
JP2849517B2 JP4301582A JP30158292A JP2849517B2 JP 2849517 B2 JP2849517 B2 JP 2849517B2 JP 4301582 A JP4301582 A JP 4301582A JP 30158292 A JP30158292 A JP 30158292A JP 2849517 B2 JP2849517 B2 JP 2849517B2
Authority
JP
Japan
Prior art keywords
epimorphin
glu
ile
arg
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4301582A
Other languages
English (en)
Other versions
JPH0625295A (ja
Inventor
洋平 平井
誠 高階
京子 武部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAIO MATERIARU KENKYUSHO KK
Original Assignee
BAIO MATERIARU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAIO MATERIARU KENKYUSHO KK filed Critical BAIO MATERIARU KENKYUSHO KK
Priority to JP4301582A priority Critical patent/JP2849517B2/ja
Publication of JPH0625295A publication Critical patent/JPH0625295A/ja
Application granted granted Critical
Publication of JP2849517B2 publication Critical patent/JP2849517B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、少なくともマウスから
ヒトに至る哺乳動物の皮膚、肺、腸等の間充織組織に広
く存在し、上皮組織の形態形成に必須な生理活性物質
(本発明者らは、これをエピモルフィンと命名した)に
関するものであり、更に詳しくは、当該生理活性物質エ
ピモルフィン、エピモルフィンの改変体、エピモルフィ
ンをコードする遺伝子、エピモルフィンに対するポリク
ローナル抗体とモノクローナル抗体、及び当該抗体を利
用したエピモルフィンの精製、検出法に関するものであ
る。本発明は、上皮形態の異常に起因する疾患の発症機
序の解明、ならびにそれらの疾患の診断法、治療法の開
発、あるいは新たな創傷治癒法の開発等に有用な手段を
提供するものである。
【0002】
【従来の技術】上皮の正常な組織化、形態形成は、間充
織のなんらかの制御を受けていることから、また、上皮
形態の異常に起因する疾患の多くは、そのまわりに存在
する間充織が原因となることから、古くから、間充織が
上皮の形態形成を支持するメカニズムについての研究が
なされている。しかしながら、実際に、上皮の形態形成
を制御する分子の単離、精製及びその構造解析について
の研究は、研究対象が複雑な系の中で時間的、空間的な
制御を受けて発現する物質のために、単純化された培養
系での実験が難しく、未だ大きな進展は見られていな
い。
【0003】上皮形態の異常に起因する疾患の発症機序
の解明、ならびにそれらの疾患の診断法、治療法の開発
等を実現するためには、間充織細胞が作る上記のような
上皮形態を制御する作用を有する分子、すなわち当該作
用を有する生理活性物質の単離、精製及びその構造の解
明等が、不可欠の前提であり、当該生理活性物質の単
離、精製及び当該物質の構造の解明等を早期に達成する
事が、当該分野における重要課題となっていた。
【0004】
【発明が解決しようとする課題】そこで、本発明者ら
は、このような課題を解決することを目標として、ま
ず、形態形成の盛んに行われている実験動物マウスの胎
児皮膚組織を用いて、生体内と同様な形態形成が行われ
得る生体外培養実験系を確立した。この技術の特徴は、
生体から取り出した細胞を上皮細胞と間充織細胞に分離
した後、従来であれば間充織細胞の単層培養を行ってそ
の生成物を調べる方法がとられていたのに対し、分離さ
れた間充織細胞を集塊状にして培養する点にある。
【0005】本発明者らは、この培養方法を用いてマウ
ス胎児皮膚から分離した上皮が集塊状の間充織細胞と接
触した時にのみ生体外でも正常な形態形成を行うことを
見出した。そこで、この集塊状の間充織細胞が作り出
す、上皮の形態形成を支持する物質を調べるため、集塊
状で培養した間充織細胞を免疫原としてラットに免疫
し、得られたマウス間充織細胞に対するラットのモノク
ローナル抗体のうちから、マウス間充織に結合すること
により上皮の形態形成を阻害する作用を有する抗体を選
び出した。
【0006】次に、本発明者らは、この抗体を用いて、
この抗体が結合する物質、すなわち間充織成分中に存在
し上皮の形態形成を支持する新規な物質を探索した結
果、目的とする前記作用を有する新規生理活性物質を見
い出し、更に、その物質(マウスエピモルフィン)を単
離し、当該物質の構造、すなわちその遺伝子配列とアミ
ノ酸配列を明らかにすることに始めて成功した。更に、
本発明者らは、得られた遺伝子を用いて、マウスエピモ
ルフィンの他のアイソフォーム2種、及び、それぞれに
対応するヒトエピモルフィンとそのアイソフォーム2種
を同定することに成功した。
【0007】更には、上記で得られた遺伝子を適当な発
現ベクターに組み込んだ後、動物細胞もしくは大腸菌に
導入して発現させることにより、エピモルフィンを人工
的に作ることが可能になった。これらの生成物は、いず
れも、上皮とエピモルフィンを作ることのできない間充
織細胞株の組合せ培養実験に加えることにより、正常な
上皮の形態形成を行わせる作用を有するものであること
が分かった。すなわち、本発明者らは、その生成物の解
析から、エピモルフィンを作る能力をほとんど失ってい
ることが明らかな間充織細胞株と胎児の上皮組織の組合
せ培養では、上皮の正常な形態形成が見られないという
事実と、この間充織細胞株にエピモルフィン遺伝子を導
入して強制発現させるか、あるいは、この培養実験の培
養液中にエピモルフィンを加えることにより、正常な上
皮の形態形成が行われる様になるという事実から、当該
生成物が、前記上皮の形態形成作用を有するものである
ことを確認した。
【0008】また、ポリペプチドのカルボキシ末端に疎
水性のアミノ酸配列を持つ細胞膜結合型のエピモルフィ
ンについては、細胞膜結合部分である疎水性蛋白質部分
を含むカルボキシ末端から、5分の1程度までのポリペ
プチドを取り除くか、あるいは、非疎水性ポリペピチド
に置換することにより、可溶性の、すなわち、培養動物
細胞から培養液中に分泌され、かつ精製分離の容易な形
態の、改変エピモルフィンを作ることに成功した。これ
らの改変エピモルフィンは、アイソフォームを含めた3
種に共通するアミノ酸配列で構成されており、得られた
改変エピモルフィンは、高い可溶性を有し、かつ天然の
エピモルフィンと同様に、正常な上皮の形態形成を行わ
せる作用を有するものであることが分かった。
【0009】更に、本発明者らは、上記方法で得られた
エピモルフィンの完全体もしくはその一部分を用いて、
当該エピモルフィンが由来する動物種と異なるウサギ、
ラット、マウス等の動物に免疫し、前記エピモルフィン
に特に強く結合する作用を有するポリクローナル抗体及
びモノクローナル抗体を得ることにも成功した。
【0010】このような結果として、本発明者らは、上
皮の形態形成作用を有し、上皮の形態形成に必須な分子
である新規生理活性物質エピモルフィン、及び当該エピ
モルフィンをコードする遺伝子を同定し、更に、遺伝子
組換え技術を利用して、当該遺伝子を動物細胞もしくは
大腸菌に導入して発現させることにより前記エピモルフ
ィンを製造し、また、当該エピモルフィンと同等の作用
を有し、かつ高い可溶性を有する改変エピモルフィンを
製造する技術を確立した。そして、これらの物質を用い
て、当該エピモルフィンに特に強く結合する作用を有
し、当該エピモルフィンの発現調査や精製に利用し得る
ポリクローナル抗体とモノクローナル抗体の製造を完成
し、更に、これらの物質が、上皮形態の異常に起因する
疾患の発症機序の解明、ならびにそれらの疾患の診断
法、治療法の開発、あるいは新たな創傷治癒法の開発等
に有用な材料であることを見い出し、本発明を完成する
に至った。
【0011】すなわち、本発明の目的は、少なくともマ
ウスからヒトに至る哺乳動物の皮膚、肺、腸等の間充織
に存在し、下記の式(1)の塩基配列と相補的な塩基配
列で構成される遺伝子プローブとハイブリダイズする遺
伝子によって発現され得る新規生理活性物質エピモルフ
ィンを提供することである。 式(1) ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG
【0012】また、本発明の目的は、アミノ末端のアミ
ノ酸残基の構造が、下記の式(2)のとおりである前記
の新規生理活性物質エピモルフィンを提供することであ
る。 式(2) Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys
【0013】また、本発明の目的は、ヒト由来の間充織
細胞が作る、後記式(3)、(4)、又は(5)のアミ
ノ酸配列で表される上皮の形態形成に必須な新規生理活
性物質ヒトエピモルフィン、及び当該ヒトエピモルフィ
ンのアイソフォームを提供することである。ここで、後
記の、式(3)は、ヒトエピモルフィンのアミノ酸配列
を、式(4)は、別のヒトエピモルフィン(アイソフォ
ームA)のアミノ酸配列を、そして、式(5)は、別の
ヒトエピモルフィン(アイソフォームB)のアミノ酸配
列を、それぞれ、示す。
【0014】また、本発明の目的は、前記ヒトエピモル
フィン、及び当該ヒトエピモルフィンのアイソフォーム
をコードする、後記式(6)、(7)、又は(8)の塩
基配列で表される遺伝子を提供することである。ここ
で、後記の、式(6)は、ヒトエピモルフィンをコード
する遺伝子の塩基配列を、式(7)は、別のヒトエピモ
ルフィン(アイソフォームA)をコードする遺伝子の塩
基配列を、そして、式(8)は、別のヒトエピモルフィ
ン(アイソフォームB)をコードする遺伝子の塩基配列
を、それぞれ、示す。
【0015】また、本発明の目的は、マウス由来の間充
織細胞が作る、後記式(9)、(10)、又は(11)
のアミノ酸配列で表される上皮の形態形成に必須な新規
生理活性物質マウスエピモルフィン、及び当該マウスエ
ピモルフィンのアイソフォームを提供することである。
ここで、後記の、式(9)は、マウスエピモルフィンの
アミノ酸配列を、式(10)は、別のマウスエピモルフ
ィン(アイソフォームA)のアミノ酸配列を、そして、
式(11)は、別のマウスエピモルフィン(アイソフォ
ームB)のアミノ酸配列を、それぞれ、示す。
【0016】また、本発明の目的は、前記マウスエピモ
ルフィン、及び当該マウスエピモルフィンのアイソフォ
ームをコードする、後記式(12)、(13)、又は
(14)の塩基配列で表される遺伝子を提供することで
ある。ここで、後記の、式(12)は、マウスエピモル
フィンをコードする遺伝子の塩基配列を、式(13)
は、別のマウスエピモルフィン(アイソフォームA)を
コードする遺伝子の塩基配列を、そして、式(14)
は、別のマウスエピモルフィン(アイソフォームB)を
コードする遺伝子の塩基配列を、それぞれ、示す。
【0017】また、本発明の目的は、前記エピモルフィ
ンのポリペプチドのカルボキシ末端疎水性部分を、欠損
もしくは非疎水性ポリペプチドに置換した、改変エピモ
ルフィンを提供することである。
【0018】また、本発明の目的は、前記ヒトエピモル
フィン、及び当該ヒトエピモルフィンのアイソフォーム
のカルボキシ末端の疎水性アミノ酸配列を含む部分を取
り除くか、もしくは非疎水性ポリペプチドに置換するこ
とにより改変した、可溶性の、改変ヒトエピモルフィ
ン、及び当該改変ヒトエピモルフィンのアイソフォーム
を提供することである。
【0019】また、本発明の目的は、前記マウスエピモ
ルフィン、及び当該マウスエピモルフィンのアイソフォ
ームのカルボキシ末端の疎水性アミノ酸配列を含む部分
を取り除くか、もしくは非疎水性ポリペプチドに置換す
ることにより改変した、可溶性の、改変マウスエピモル
フィン、及び当該改変マウスエピモルフィンのアイソフ
ォームを提供することである。
【0020】また、本発明の目的は、前記エピモルフィ
ンの完全体もしくはその一部を、エピモルフィンが由来
する動物種と異なる種の動物に免疫し、その動物の血清
から得られるエピモルフィンに対するポリクローナル抗
体を提供することである。
【0021】また、本発明の目的は、前記エピモルフィ
ンに対するモノクローナル抗体を提供することである。
【0022】また、本発明の目的は、前記エピモルフィ
ンの完全体もしくはその一部を、エピモルフィンが由来
する動物種と異なる種の動物に免疫し、その動物から取
り出した抗体産生細胞をミエローマ細胞と融合すること
により形成したハイブリドーマより得られるエピモルフ
ィンに対するモノクローナル抗体を提供することであ
る。
【0023】また、本発明の目的は、前記マウスモルフ
ィンの完全体もしくはその一部を、ラットに免疫し、そ
のラットから取り出した抗体産生細胞を、ミエローマ細
胞と融合することにより形成したハイブリドーマより得
られるエピモルフィンに対するモノクローナル抗体を提
供することである。
【0024】また、本発明の目的は、前記エピモルフィ
ンに対するモノクローナル抗体を用いて、抗原抗体反応
を利用した免疫学的精製方法で、各エピモルフィン及び
各エピモルフィンのアイソフォームを精製する方法を提
供することである。
【0025】また、本発明の目的は、前記エピモルフィ
ンに対するポリクローナル抗体もしくはモノクローナル
抗体を用いて、抗原抗体反応を利用した免疫学的測定方
法で、各エピモルフィン及び各エピモルフィンのアイソ
フォームを検出する方法を提供することである。
【0026】更に、本発明の目的は、上皮の形態形成に
必須な新規生理活性物質である前記エピモルフィン及び
エピモルフィンのアイソフォーム(アイソフォームA、
及びアイソフォームB)、前記エピモルフィンの改変体
及びエピモルフィンのアイソフォームの改変体、前記エ
ピモルフィン及びエピモルフィンのアイソフォームに特
に強く結合するポリクローナル抗体及びモノクローナル
抗体等、上皮形態の異常に起因する疾患の発症機序の解
明、ならびにそれらの疾患の診断法、治療法の開発、あ
るいは新たな創傷治癒法の開発等に有用な材料を提供す
ることである。
【0027】
【課題を解決するための手段】以下に、本発明の前記エ
ピモルフィンのアミノ酸配列、及び当該エピモルフィン
をコードする遺伝子の塩基配列の具体的な配列構造を示
す。なお、下記の式(3)〜(14)は、特許請求の範
囲の請求項7〜10の式(3)〜(14)に、それぞ
れ、対応するものである。
【0028】以下の式(3)は、ヒトエピモルフィンの
アミノ酸配列を示す。 式(3) Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp 5 10 15 Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe Met Asp Asp Phe 20 25 30 Phe His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35 40 45 Tyr Val Glu Glu Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala Pro 50 55 60 Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu 65 70 75 80 Ile Lys Lys Thr Ala Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85 90 95 Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg Thr Ser Val Asp Leu 100 105 110 Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu 115 120 125 Ala Met Ala Glu Tyr Asn Glu Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135 140 Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr Thr 145 150 155 160 Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe 165 170 175 Thr Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185 190 Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser Ile 195 200 205 Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210 215 220 Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val Met Asn Ala Thr 225 230 235 240 Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr 245 250 255 Gln Ser Lys Ala Arg Arg Lys Lys Trp Ile Ile Ile Ala Val Ser Val 260 265 270 Val Leu Val Val Ile Ile Val Leu Ile Ile Gly Leu Ser Val Gly Lys 275 280 285
【0029】以下の式(4)は、別のヒトエピモルフィ
ン(アイソフォームA)のアミノ酸配列を示す。 式(4) Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp 5 10 15 Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe Met Asp Asp Phe 20 25 30 Phe His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35 40 45 Tyr Val Glu Glu Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala Pro 50 55 60 Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu 65 70 75 80 Ile Lys Lys Thr Ala Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85 90 95 Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg Thr Ser Val Asp Leu 100 105 110 Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu 115 120 125 Ala Met Ala Glu Tyr Asn Glu Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135 140 Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr Thr 145 150 155 160 Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe 165 170 175 Thr Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185 190 Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser Ile 195 200 205 Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210 215 220 Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val Met Asn Ala Thr 225 230 235 240 Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr 245 250 255 Gln Ser Lys Ala Arg Arg Lys Leu Met Phe Ile Ile Ile Cys Val Ile 260 265 270 Val Leu Leu Val Ile Leu Gly Ile Ile Leu Ala Thr Thr Leu Ser 275 280 285
【0030】以下の式(5)は、また別のヒトエピモル
フィン(アイソフォームB)のアミノ酸配列を示す。 式(5) Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp 5 10 15 Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe Met Asp Asp Phe 20 25 30 Phe His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35 40 45 Tyr Val Glu Glu Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala Pro 50 55 60 Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu 65 70 75 80 Ile Lys Lys Thr Ala Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85 90 95 Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg Thr Ser Val Asp Leu 100 105 110 Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu 115 120 125 Ala Met Ala Glu Tyr Asn Glu Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135 140 Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr Thr 145 150 155 160 Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe 165 170 175 Thr Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185 190 Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser Ile 195 200 205 Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210 215 220 Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val Met Asn Ala Thr 225 230 235 240 Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr 245 250 255 Gln Ser Lys Ala Arg Arg Gln Gln His Cys His Ser Asn His Ile Pro 260 265 270 Arg Ala Ile Tyr Pro 275
【0031】以下の式(6)は、ヒトエピモルフィンを
コードする遺伝子の配列を示す。 式(6) ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG AAG AAT GAT GAT 16 GGA GAC ACA GTT GTT GTG GTT GAG AAA GAT CAT TTC ATG GAT GAT TTC 32 TTC CAT CAG GTG GAG GAG ATT AGA AAC AGT ATT GAT AAA ATA ACT CAA 48 TAT GTT GAA GAA GTA AAG AAA AAC CAC AGC ATC ATT CTT TCT GCA CCA 64 AAC CCG GAA GGA AAA ATA AAA GAA GAG CTT GAA GAT CTG AAC AAA GAA 80 ATC AAG AAA ACT GCG AAT AAA ATT CGA GCC AAG TTA AAG GCT ATT GAA 96 CAA AGT TTT GAT CAG GAT GAG AGT GGG AAC CGG ACT TCA GTG GAT CTT 112 CGG ATA CGA AGA ACC CAG CAT TCG GTG CTG TCT CGG AAG TTT GTG GAA 128 GCC ATG GCG GAG TAC AAT GAG GCA CAG ACT CTG TTT CGG GAG CGG AGC 144 AAA GGC CGC ATC CAG CGC CAG CTG GAG ATA ACT GGG AGA ACC ACC ACA 160 GAC GAC GAG CTA GAA GAG ATG CTG GAG AGC GGG AAG CCA TCC ATC TTC 176 ACT TCC GAC ATT ATA TCA GAT TCA CAA ATT ACT AGA CAA GCT CTC AAT 192 GAA ATC GAG TCA CGT CAC AAG GAC ATC ATG AAG CTG GAG ACC AGC ATC 208 CGA GAG TTG CAT GAG ATG TTC ATG GAC ATG GCT ATG TTT GTG GAG ACT 224 CAG GGT GAA ATG ATC AAC AAC ATA GAA AGA AAT GTT ATG AAT GCC ACA 240 GAC TAT GTA GAA CAC GCT AAA GAA GAA ACA AAA AAA GCT ATC AAA TAT 256 CAG AGC AAG GCA AGA AGG AAA AAG TGG ATA ATT ATT GCT GTG TCA GTG 272 GTT CTG GTT GTC ATA ATC GTT CTA ATT ATT GGC TTG TCA GTT GGC AAA 288 TGA 289
【0032】以下の式(7)は、別のヒトエピモルフィ
ン(アイソフォームA)をコードする遺伝子の配列を示
す。 式(7) ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG AAG AAT GAT GAT 16 GGA GAC ACA GTT GTT GTG GTT GAG AAA GAT CAT TTC ATG GAT GAT TTC 32 TTC CAT CAG GTG GAG GAG ATT AGA AAC AGT ATT GAT AAA ATA ACT CAA 48 TAT GTT GAA GAA GTA AAG AAA AAC CAC AGC ATC ATT CTT TCT GCA CCA 64 AAC CCG GAA GGA AAA ATA AAA GAA GAG CTT GAA GAT CTG AAC AAA GAA 80 ATC AAG AAA ACT GCG AAT AAA ATT CGA GCC AAG TTA AAG GCT ATT GAA 96 CAA AGT TTT GAT CAG GAT GAG AGT GGG AAC CGG ACT TCA GTG GAT CTT 112 CGG ATA CGA AGA ACC CAG CAT TCG GTG CTG TCT CGG AAG TTT GTG GAA 128 GCC ATG GCG GAG TAC AAT GAG GCA CAG ACT CTG TTT CGG GAG CGG AGC 144 AAA GGC CGC ATC CAG CGC CAG CTG GAG ATA ACT GGG AGA ACC ACC ACA 160 GAC GAC GAG CTA GAA GAG ATG CTG GAG AGC GGG AAG CCA TCC ATC TTC 176 ACT TCC GAC ATT ATA TCA GAT TCA CAA ATT ACT AGA CAA GCT CTC AAT 192 GAA ATC GAG TCA CGT CAC AAG GAC ATC ATG AAG CTG GAG ACC AGC ATC 208 CGA GAG TTG CAT GAG ATG TTC ATG GAC ATG GCT ATG TTT GTG GAG ACT 224 CAG GGT GAA ATG ATC AAC AAC ATA GAA AGA AAT GTT ATG AAT GCC ACA 240 GAC TAT GTA GAA CAC GCT AAA GAA GAA ACA AAA AAA GCT ATC AAA TAT 256 CAG AGC AAG GCA AGA AGG AAA TTG ATG TTC ATT ATT ATT TGT GTA ATT 272 GTT TTG CTT GTG ATC CTT GGA ATT ATC CTA GCA ACA ACA TTG TCA TAG 288
【0033】以下の式(8)は、また別のヒトエピモル
フィン(アイソフォームB)をコードする遺伝子の配列
を示す。 式(8) ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG AAG AAT GAT GAT 16 GGA GAC ACA GTT GTT GTG GTT GAG AAA GAT CAT TTC ATG GAT GAT TTC 32 TTC CAT CAG GTG GAG GAG ATT AGA AAC AGT ATT GAT AAA ATA ACT CAA 48 TAT GTT GAA GAA GTA AAG AAA AAC CAC AGC ATC ATT CTT TCT GCA CCA 64 AAC CCG GAA GGA AAA ATA AAA GAA GAG CTT GAA GAT CTG AAC AAA GAA 80 ATC AAG AAA ACT GCG AAT AAA ATT CGA GCC AAG TTA AAG GCT ATT GAA 96 CAA AGT TTT GAT CAG GAT GAG AGT GGG AAC CGG ACT TCA GTG GAT CTT 112 CGG ATA CGA AGA ACC CAG CAT TCG GTG CTG TCT CGG AAG TTT GTG GAA 128 GCC ATG GCG GAG TAC AAT GAG GCA CAG ACT CTG TTT CGG GAG CGG AGC 144 AAA GGC CGC ATC CAG CGC CAG CTG GAG ATA ACT GGG AGA ACC ACC ACA 160 GAC GAC GAG CTA GAA GAG ATG CTG GAG AGC GGG AAG CCA TCC ATC TTC 176 ACT TCC GAC ATT ATA TCA GAT TCA CAA ATT ACT AGA CAA GCT CTC AAT 192 GAA ATC GAG TCA CGT CAC AAG GAC ATC ATG AAG CTG GAG ACC AGC ATC 208 CGA GAG TTG CAT GAG ATG TTC ATG GAC ATG GCT ATG TTT GTG GAG ACT 224 CAG GGT GAA ATG ATC AAC AAC ATA GAA AGA AAT GTT ATG AAT GCC ACA 240 GAC TAT GTA GAA CAC GCT AAA GAA GAA ACA AAA AAA GCT ATC AAA TAT 256 CAG AGC AAG GCA AGA AGG CAA CAA CAT TGT CAT AGC AAC CAT ATC CCA 272 AGA GCC ATT TAT CCT TGA 278
【0034】以下の式(9)は、マウスエピモルフィン
のアミノ酸配列を示す。 式(9) Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Thr Asn Asp Asp 1 5 10 15 Gly Asp Thr Ala Val Val Ile Val Glu Lys Asp His Phe Met Asp Gly 20 25 30 Phe Phe His Gln Val Glu Glu Ile Arg Ser Ser Ile Ala Arg Ile Ala 35 40 45 Gln His Val Glu Asp Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala 50 55 60 Pro Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asp Lys 65 70 75 80 Glu Ile Lys Lys Thr Ala Asn Arg Ile Arg Gly Lys Leu Lys Ser Ile 85 90 95 Glu Gln Ser Cys Asp Gln Asp Glu Asn Gly Asn Arg Thr Ser Val Asp 100 105 110 Leu Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val 115 120 125 Asp Val Met Thr Glu Tyr Asn Glu Ala Gln Ile Leu Phe Arg Glu Arg 130 135 140 Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160 Thr Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile 165 170 175 Phe Ile Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu 180 185 190 Asn Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser 195 200 205 Ile Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu 210 215 220 Thr Gln Gly Glu Met Val Asn Asn Ile Glu Arg Asn Val Val Asn Ser 225 230 235 240 Val Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys 245 250 255 Tyr Gln Ser Lys Ala Arg Arg Lys Lys Trp Ile Ile Ala Ala Val Ala 260 265 270 Val Ala Val Ile Ala Val Leu Ala Leu Ile Ile Gly Leu ser Val Gly 275 280 285 Lys
【0035】以下の式(10)は、別のマウスエピモル
フィン(アイソフォームA)のアミノ酸配列を示す。 式(10) Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Thr Asn Asp Asp 1 5 10 15 Gly Asp Thr Ala Val Val Ile Val Glu Lys Asp His Phe Met Asp Gly 20 25 30 Phe Phe His Gln Val Glu Glu Ile Arg Ser Ser Ile Ala Arg Ile Ala 35 40 45 Gln His Val Glu Asp Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala 50 55 60 Pro Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asp Lys 65 70 75 80 Glu Ile Lys Lys Thr Ala Asn Arg Ile Arg Gly Lys Leu Lys Ser Ile 85 90 95 Glu Gln Ser Cys Asp Gln Asp Glu Asn Gly Asn Arg Thr Ser Val Asp 100 105 110 Leu Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val 115 120 125 Asp Val Met Thr Glu Tyr Asn Glu Ala Gln Ile Leu Phe Arg Glu Arg 130 135 140 Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160 Thr Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile 165 170 175 Phe Ile Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu 180 185 190 Asn Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser 195 200 205 Ile Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu 210 215 220 Thr Gln Gly Glu Met Val Asn Asn Ile Glu Arg Asn Val Val Asn Ser 225 230 235 240 Val Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys 245 250 255 Tyr Gln Ser Lys Ala Arg Arg Lys Val Met Phe Val Leu Ile Cys Val 260 265 270 Val Thr Leu Leu Val Ile Leu Gly Ile Ile Leu Ala Thr Ala Leu Ser 275 280 285
【0036】以下の式(11)は、また別のマウスエピ
モルフィン(アイソフォームB)のアミノ酸配列を示
す。 式(11) Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Thr Asn Asp Asp 1 5 10 15 Gly Asp Thr Ala Val Val Ile Val Glu Lys Asp His Phe Met Asp Gly 20 25 30 Phe Phe His Gln Val Glu Glu Ile Arg Ser Ser Ile Ala Arg Ile Ala 35 40 45 Gln His Val Glu Asp Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala 50 55 60 Pro Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asp Lys 65 70 75 80 Glu Ile Lys Lys Thr Ala Asn Arg Ile Arg Gly Lys Leu Lys Ser Ile 85 90 95 Glu Gln Ser Cys Asp Gln Asp Glu Asn Gly Asn Arg Thr Ser Val Asp 100 105 110 Leu Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val 115 120 125 Asp Val Met Thr Glu Tyr Asn Glu Ala Gln Ile Leu Phe Arg Glu Arg 130 135 140 Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160 Thr Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile 165 170 175 Phe Ile Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu 180 185 190 Asn Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser 195 200 205 Ile Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu 210 215 220 Thr Gln Gly Glu Met Val Asn Asn Ile Glu Arg Asn Val Val Asn Ser 225 230 235 240 Val Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys 245 250 255 Tyr Gln Ser Lys Ala Arg Arg Gln Gln His Cys His Ser Asn Arg Thr 260 265 270 Pro Arg Ala Leu Cys Pro Arg 275
【0037】以下の式(12)は、マウスエピモルフィ
ンをコードする遺伝子の配列を示す。 式(12) ATG CGG GAC CGG CTG CCC GAC CTC ACG GCG TGT AGG ACA AAC GAC GAT 16 GGA GAC ACT GCT GTC GTC ATT GTG GAG AAG GAT CAT TTC ATG GAC GGT 32 TTC TTC CAT CAG GTA GAG GAG ATT CGA AGC AGC ATA GCC AGG ATT GCT 48 CAG CAT GTA GAA GAC GTG AAG AAG AAC CAC AGC ATC ATC CTG TCT GCT 64 CCA AAC CCA GAA GGA AAA ATA AAA GAA GAG CTG GAG GAC CTG GAC AAA 80 GAG ATC AAG AAA ACT GCT AAC AGG ATC CGG GGC AAG CTG AAG TCT ATT 96 GAG CAG AGC TGT GAT CAG GAC GAG AAT GGG AAC CGA ACT TCA GTG GAT 112 CTG CGG ATA CGA AGG ACC CAG CAC TCG GTG CTG TCA CGG AAG TTT GTG 128 GAC GTC ATG ACA GAA TAC AAT GAA GCG CAG ATC CTG TTC CGG GAG CGA 144 AGC AAA GGC CGC ATC CAG CGC CAG CTG GAG ATC ACT GGG AGG ACC ACC 160 ACT GAC GAC GAG CTG GAA GAG ATG CTG GAG AGC GGG AAG CCG TCC ATC 176 TTC ATC TCG GAT ATT ATA TCA GAT TCA CAA ATC ACT AGG CAA GCT CTC 192 AAT GAG ATC GAG TCC CGC CAC AAA GAC ATC ATG AAG CTG GAG ACC AGC 208 ATC CGA GAG CTG CAC GAG ATG TTC ATG GAT ATG GCC ATG TTT GTC GAG 224 ACT CAG GGT GAA ATG GTC AAC AAC ATC GAG AGA AAT GTG GTG AAC TCT 240 GTA GAT TAC GTG GAA CAT GCC AAG GAA GAG ACG AAG AAA GCC ATC AAA 256 TAC CAG AGC AAG GCC AGG CGG AAA AAG TGG ATA ATT GCT GCT GTG GCG 272 GTG GCT GTC ATT GCC GTC CTG GCT CTA ATC ATT GGC TTG TCG GTT GGC 288 AAA TGA 290
【0038】以下の式(13)は、別のマウスエピモル
フィン(アイソフォームA)をコードする遺伝子の配列
を示す。 式(13) ATG CGG GAC CGG CTG CCC GAC CTC ACG GCG TGT AGG ACA AAC GAC GAT 16 GGA GAC ACT GCT GTC GTC ATT GTG GAG AAG GAT CAT TTC ATG GAC GGT 32 TTC TTC CAT CAG GTA GAG GAG ATT CGA AGC AGC ATA GCC AGG ATT GCT 48 CAG CAT GTA GAA GAC GTG AAG AAG AAC CAC AGC ATC ATC CTG TCT GCT 64 CCA AAC CCA GAA GGA AAA ATA AAA GAA GAG CTG GAG GAC CTG GAC AAA 80 GAG ATC AAG AAA ACT GCT AAC AGG ATC CGG GGC AAG CTG AAG TCT ATT 96 GAG CAG AGC TGT GAT CAG GAC GAG AAT GGG AAC CGA ACT TCA GTG GAT 112 CTG CGG ATA CGA AGG ACC CAG CAC TCG GTG CTG TCA CGG AAG TTT GTG 128 GAC GTC ATG ACA GAA TAC AAT GAA GCG CAG ATC CTG TTC CGG GAG CGA 144 AGC AAA GGC CGC ATC CAG CGC CAG CTG GAG ATC ACT GGG AGG ACC ACC 160 ACT GAC GAC GAG CTG GAA GAG ATG CTG GAG AGC GGG AAG CCG TCC ATC 176 TTC ATC TCG GAT ATT ATA TCA GAT TCA CAA ATC ACT AGG CAA GCT CTC 192 AAT GAG ATC GAG TCC CGC CAC AAA GAC ATC ATG AAG CTG GAG ACC AGC 208 ATC CGA GAG CTG CAC GAG ATG TTC ATG GAT ATG GCC ATG TTT GTC GAG 224 ACT CAG GGT GAA ATG GTC AAC AAC ATC GAG AGA AAT GTG GTG AAC TCT 240 GTA GAT TAC GTG GAA CAT GCC AAG GAA GAG ACG AAG AAA GCC ATC AAA 256 TAC CAG AGC AAG GCC AGG CGG AAG GTG ATG TTC GTC CTC ATT TGT GTA 272 GTC ACT TTG CTT GTG ATC CTT GGA ATT ATT CTC GCA ACA GCA TTG TCA 288 TAG 289
【0039】以下の式(14)は、また別のマウスエピ
モルフィン(アイソフォームB)をコードする遺伝子の
配列を示す。 式(14) ATG CGG GAC CGG CTG CCC GAC CTC ACG GCG TGT AGG ACA AAC GAC GAT 16 GGA GAC ACT GCT GTC GTC ATT GTG GAG AAG GAT CAT TTC ATG GAC GGT 32 TTC TTC CAT CAG GTA GAG GAG ATT CGA AGC AGC ATA GCC AGG ATT GCT 48 CAG CAT GTA GAA GAC GTG AAG AAG AAC CAC AGC ATC ATC CTG TCT GCT 64 CCA AAC CCA GAA GGA AAA ATA AAA GAA GAG CTG GAG GAC CTG GAC AAA 80 GAG ATC AAG AAA ACT GCT AAC AGG ATC CGG GGC AAG CTG AAG TCT ATT 96 GAG CAG AGC TGT GAT CAG GAC GAG AAT GGG AAC CGA ACT TCA GTG GAT 112 CTG CGG ATA CGA AGG ACC CAG CAC TCG GTG CTG TCA CGG AAG TTT GTG 128 GAC GTC ATG ACA GAA TAC AAT GAA GCG CAG ATC CTG TTC CGG GAG CGA 144 AGC AAA GGC CGC ATC CAG CGC CAG CTG GAG ATC ACT GGG AGG ACC ACC 160 ACT GAC GAC GAG CTG GAA GAG ATG CTG GAG AGC GGG AAG CCG TCC ATC 176 TTC ATC TCG GAT ATT ATA TCA GAT TCA CAA ATC ACT AGG CAA GCT CTC 192 AAT GAG ATC GAG TCC CGC CAC AAA GAC ATC ATG AAG CTG GAG ACC AGC 208 ATC CGA GAG CTG CAC GAG ATG TTC ATG GAT ATG GCC ATG TTT GTC GAG 224 ACT CAG GGT GAA ATG GTC AAC AAC ATC GAG AGA AAT GTG GTG AAC TCT 240 GTA GAT TAC GTG GAA CAT GCC AAG GAA GAG ACG AAG AAA GCC ATC AAA 256 TAC CAG AGC AAG GCC AGG CGG CAA CAG CAT TGT CAT AGC AAC CGT ACC 272 CCA AGA GCT CTT TGT CCT CGG TGA 280
【0040】以下、本発明について更に詳述する。本発
明のエピモルフィンは、277ないし289個のアミノ
酸からなる蛋白質をコア蛋白質とし、間充織細胞により
生合成される物質であり、動物細胞内では修飾されて、
マウスの細胞内では、約150kダルトン、ヒトの細胞
内では、約70kダルトン(ドデシル硫酸ナトリウム−
ポリアクリルアミドゲル電気泳動法による)の分子量に
なる。遺伝子のスプライシングにより、少なくとも3種
類のタイプが存在し、そのうちの1種類(エピモルフィ
ンアイソフォームB)は、分泌型であるが、他の2種類
(エピモルフィン、エピモルフィンアイソフォームA)
は、20ないし30アミノ酸残基の疎水性蛋白質の配列
をカルボキシ末端に有しているため細胞膜に結合する性
質を有する。
【0041】これらの分子は、間充織に存在して、上皮
の形態を制御する重要な機能を有する。このことは、皮
膚、小腸、肺等の器官培養に、本発明を完成するのに用
いたエピモルフィンの機能を阻害する抗体を加えた実験
や、そして、エピモルフィンを作る能力の低下した間充
織細胞と上皮組織の組合せ培養実験において、エピモル
フィンが機能しない場合は正常な組織形成が行われない
という事実から、確認できる。更には、このことは、上
記の培養実験において、エピモルフィンを添加すると、
上皮の正常な組織形成能が回復するという事実からも、
確認できる。
【0042】エピモルフィンは、抗体を用いた組織染色
により、特に胎児発生時、及び組織再生時に、組織形成
が進行中の上皮と間充織の境界、もしくはその近傍の間
充織内に、あるいは上皮の分裂が旺盛な部分の近傍の間
充織内に、強く発現することが分かった。例えば、胎児
発生期、及び再生時の皮膚組織においては、エピモルフ
ィンは、真皮と表皮の境界部分や毛包形成を誘導すると
考えられる未熟毛包先端部近くの間充織に、強く発現す
る。また、胎児発生期の小腸や肺においては、エピモル
フィンは、管腔形成や分枝の行われている上皮に接する
間充織で、強く発現する。
【0043】このように、エピモルフィンは、組織形成
が行われる時に、組織形成が行われている上皮の近くの
間充織内で、強く発現するが、しかし、エピモルフィン
は、間充織細胞でのみ作られており、エピモルフィン
は、その時の上皮細胞内においては作られていない。
【0044】また、マウスのエピモルフィンと、ヒトの
エピモルフィンは、アミノ酸レベルで約90%の相同性
があり、動物種が異なっても良く保存されている分子で
あることが分かった。
【0045】更に、本発明者らが見出したエピモルフィ
ン分子群は、いずれも、下記の式(2)で表されるアミ
ノ酸配列をアミノ末端に共通して有しており、そのアミ
ノ末端アミノ酸配列は既知の生体由来蛋白質のそれとは
異なることが分かった。 式(2) Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys
【0046】また、このエピモルフィン分子群に共通す
るアミノ末端アミノ酸配列部分は、その部分をコードす
る遺伝子レベルにおいても、下記の式(1)で表される
塩基配列と同一もしくはほとんど同一の塩基配列を有し
ているため、式(1)で表される塩基配列の相補鎖をプ
ローブとして、エピモルフィン分子群をコードするすべ
ての遺伝子を検出、同定できることが分かった。 式(1) ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG
【0047】本発明のエピモルフィンは、広く動物の間
充織細胞から得ることができるが、本発明においては、
かかるエピモルフィンの活性を損なわない範囲で、単に
その一部のアミノ酸を除去、挿入、修飾あるいは追加す
る等の改変を行ったものも、本発明のエピモルフィンに
包含されることは言うまでもない。
【0048】また、エピモルフィンをコードする遺伝子
も、同じアミノ酸をコードする他の塩基配列への置き換
えはもとより、コードされるエピモルフィンが、活性を
損なわない範囲で、単にその一部の塩基を除去、挿入、
あるいは追加する等の改変を行ったものも、本発明のエ
ピモルフィンをコードする遺伝子に包含される。尚、本
明細書においては、塩基配列については、相補的な塩基
配列を省略し、1本鎖のみを記載した。
【0049】本発明の、エピモルフィン及びそれをコー
ドする遺伝子のDNA断片は、例えば、以下の様な方法
によって得ることができる。
【0050】(mRNAの調製)まず、皮膚、小腸、
肺、胎盤、へその緒等の結合組織を、あるいは間充織由
来の培養株化細胞を、グアニジウムチオシアネート等の
水溶液中でホモジナイズし、そして、Chirgwin
らの方法〔Biochemistry,18,5294
−5299(1979)〕に従って、塩化セシウム平衡
密度勾配遠心法、あるいは蔗糖密度勾配遠心法によっ
て、全RNAを沈澱として分離する。
【0051】分離後、フェノール抽出、エタノール沈澱
により、全RNAを精製し、これをオリゴ(dT)セル
ロースカラムクロマトグラフィにかけて精製して、目的
のエピモルフィンのmRNAを含むポリ(A)含有mR
NA〔poly(A)mRNA〕を単離し、mRNA群
を得る。蔗糖密度勾配遠心法によって、更に、これらの
mRNA群を精製し、目的とするエピモルフィンのmR
NAの含量を高めて、遺伝子を得る可能性を高める。
【0052】このmRNA群を原料として使用し、以下
に詳述する通り、Huynhらが報告している方法〔D
NA Cloning,IRL Press,49−7
8(1984)〕に従って、cDNAライブラリーを作
成し、次に、本発明者等が、動物に間充織細胞を免疫す
ることにより得た、主としてエピモルフィンの活性を阻
害する効果を有することによりエピモルフィンに反応す
ることを確認できた抗エピモルフィンモノクローナル抗
体を用いて、Youngらの方法〔Proc.Nat
l.Acad.Sci.USA,80,1194(19
83)〕に従って、cDNAの翻訳産物と抗体の結合の
有無により、エピモルフィンをコードする遺伝子を同
定、単離する。
【0053】(第1段階)上記で調製したmRNA群
と、例えば、オリゴ(dT)プライマー等のプライマー
DNAとをハイブリダイズさせ、逆転写酵素、及びDN
AポリメラーゼIを用い、Gublerらの方法〔Ge
ne,25,263(1983)〕に従い、2本鎖cD
NAを合成する。
【0054】(第2段階)次いで、得られたcDNA鎖
の両端末に、EcoRI等の酵素切断サイトを片端に持
つアダプターを付加する。
【0055】(第3段階)上記のcDNA鎖を発現可能
なプロモーターを有する、例えば、λgt11などのλ
ファージベクター、又はプラスミドベクターのEcoR
I切断部位等に挿入して、組換えλファージDNA群又
は組換えプラスミドDNA群を得る。
【0056】(第4段階)上記で得られた組換えλファ
ージDNA群を材料とし、市販の、例えば、ギガパック
IIゴールド(Statagene社)などのイン・ビ
トロ・パッケージング・キットを、説明書に従い使用
し、いわゆるイン・ビトロ・パッケージングを行い、組
換えλファージDNAを有するλファージ粒子を得るこ
とが出来る。得られたλファージ粒子を、常法に従い、
宿主、例えば大腸菌に感染導入し、λファージ粒子を増
殖させる。また、組換えプラスミドDNA群では、常法
に従い、宿主、例えば大腸菌を形質転換し、増殖させ
る。
【0057】(第5段階)適当な試薬、例えば、lac
プロモータを有するベクターの場合イソプロピルβチオ
ガラクトピラノシド(IPTG)などを用いて、菌に挿
入したDNAの産物を含む蛋白質を合成させ、それを、
ニトロセルロース等の膜に吸着させた後、抗エピモルフ
ィン抗体を用いて、常法により、エピモルフィンの一部
を合成しているクローンを同定する。エピモルフィンを
コードするcDNAの一部を得た後では、そのcDNA
の一部をプローブとして使用し、例えば、以下のような
方法により、エピモルフィンの非翻訳領域を含む全長c
DNAはもとより、他の動物種のエピモルフィンをコー
ドするcDNA等を、容易に単離することができる。す
なわち、同定したい動物種の結合組織を用いて、上記
(mRNAの調製)から(第4段階)までは、上記と同
じ操作を行い、第5段階を、次の通りに行う。
【0058】(第5段階) 適当な核酸結合能を有する膜、例えば、ナイロン膜にD
NAを移しとり、アルカリ等で変性させ、予め放射性物
質等でラベルした入手済みのエピモルフィン遺伝子をプ
ローブとして使用し、ハイブリダイズさせることによ
り、目的のエピモルフィン遺伝子の全長もしくは一部が
組込まれているクローンを同定する。特にヒトのcDN
Aを得るにはこの方法がよい。
【0059】得られたエピモルフィンをコードするcD
NAを用いて、他の動物種のエピモルフィンをコードす
るcDNA等を単離する別の方法として、ポリメラーゼ
・チェーン・リアクション(PCR)法〔Method
s Enzymol.,155,335−350(19
87)〕がある。
【0060】すなわち、エピモルフィンの遺伝子は、動
物種間の相同性(ホモロジー)が高いので、エピモルフ
ィンの非翻訳領域も含めたcDNAの塩基配列中で、他
の物質との相同性が低い部分を未同定エピモルフィン遺
伝子を増幅させる開始部分として選び、間充織細胞から
精製、調製したcDNA群に加え、ポリメラーゼで相補
鎖を増幅させることにより、相同性の高い遺伝子とし
て、エピモルフィンのアイソフォームや他の動物種のエ
ピモルフィンをコードするcDNAを得ることも可能で
ある。特にヒトのcDNAを得るにはこの方法がよい。
【0061】かくして得られるcDNAの発現は、例え
ば、トランジェントなin vitroの蛋白翻訳系、
具体的には、Nature,329,836−838
(1987)に記載されているような、アフリカツメガ
エルの卵母細胞内での翻訳系、あるいは、該DNAをp
UC19等のプラスミドのプロモーターの下流に翻訳開
始コドンATGとフェーズを合わせて接続した蛋白質発
現用プラスミドを導入した大腸菌、株化動物細胞などの
宿主内で行う翻訳系等、を用いて行うことができる。次
いで、常法に従い、例えば、抗エピモルフィン抗体を結
合させたアフィニティカラムを用いて発現された蛋白質
を回収することにより、本発明のエピモルフィンを得る
ことができる。
【0062】天然のエピモルフィンと同等の機能を有
し、可溶性で、取扱の容易な改変エピモルフィン得る方
法については、エピモルフィン分子自体を生化学的手法
を用いて切断してもよいが、特に、エピモルフィンをコ
ードする遺伝子を改変し、これを用いて、改変エピモル
フィンを得る方法が好適に用いられる。この場合の具体
的な手法は、特に限定されないが、例えば、疎水領域を
コードする配列を制限酵素等で切断、削除することもで
きるし、また、連続した疎水性アミノ酸が正しく翻訳さ
れないよう、この翻訳領域上流からフレームシフトを起
こさせることもできる。
【0063】特に、疎水性アミノ酸配列を含む部分を非
疎水性アミノ酸配列に置換する場合は、疎水性アミノ酸
配列を含む部分をコードする遺伝子を削除後、所望の非
疎水性アミノ酸配列をコードする遺伝子を削除部分につ
なぎ込めば、容易に目的の改変エピモルフィンをコード
する遺伝子が得られる。すなわち、前述の各種方法によ
り単離されたcDNAを、動物細胞発現ベクター等に組
み込み、次に、適当な制限酵素による消化、末端平滑
化、再連結の操作により、エピモルフィンのC末端疎水
領域をコードする部分を欠損もしくは非疎水性アミノ酸
配列をコードする遺伝子に置換することができる。
【0064】適当なベクターに連結された改変させたエ
ピモルフィン遺伝子は、大腸菌又は動物細胞等に導入さ
れ、これらの宿主を適当な条件で培養して、導入遺伝子
を発現させることにより、改変エピモルフィンが得られ
る。前者では、菌のライセート上清から、改変エピモル
フィンポリペプチドが回収される。また、後者では、培
養上清から、改変エピモルフィンが回収されるが、これ
らの回収方法については、種々の方法、例えば、免疫ア
フィニティクロマトグラフィを用いた方法等を、好適に
利用することができる。
【0065】かくして得られる可溶性の改変エピモルフ
ィンもしくは改変エピモルフィンポリペプチドは、生理
的な溶液に容易に溶解できる特性を有しているので、容
易に大量生産及び精製が可能であり、そして、種々の用
途、例えば、上皮の形態異常の原因解明や、その診断、
治療等に、そのまま使用できる利点がある。
【0066】上述の各種方法で得られたエピモルフィン
もしくはその改変体の製造、ないしは精製工程は、極め
て膨大、かつ複雑であり、その収量の低さからも、実際
の研究開発、応用開発への材料提供に大きな問題を残し
ている。更に、エピモルフィンの測定は、バイオアッセ
イ(生物学的検定法)による上皮組織の形態変化を促す
活性量としての測定方法では、操作性、及び精度に劣る
ことはもとより、常に測定値(活性)に干渉する成分の
存在を考慮する必要がある。
【0067】上記の各種方法で得られたエピモルフィン
を用いて、それらに特異的に結合する新規なポリクロー
ナル抗体もしくはモノクローナル抗体を得ることによ
り、これらの問題を解決することができる。すなわち、
本発明のポリクローナル抗体もしくはモノクローナル抗
体を利用することにより、抗原抗体反応を利用したエピ
モルフィンの免疫学的精製手段、ならびにエピモルフィ
ンの免疫学的測定手段等が提供される。本発明のポリク
ローナル抗体、及びモノクローナル抗体は、エピモルフ
ィンに特異的な結合性を有することをその最大の特徴と
しており、そして、かかる抗体には、エピモルフィンの
活性を阻害しない、ないしは阻害するタイプの抗体が包
含される。また、本発明のポリクローナル抗体には、抗
エピモルフィン抗血清も含まれる。
【0068】エピモルフィンに対するポリクローナル抗
体、及びモノクローナル抗体は、前述の各種方法で得ら
れたエピモルフィンの完全体もしくはその一部分を免疫
抗原として使用して、通常の抗体の製造方法に準じて製
造することができる。当該免疫抗原としてのエピモルフ
ィンは、その完全体に限らず、その適宜の一部分を使用
することができる。但し、本発明の抗体の製造において
は、必ずしもエピモルフィンの精製標品を用いる必要は
なく、これを含む細胞や組織などの粗精製品を使用する
ことも可能である。
【0069】本発明のポリクローナル抗体製造方法は、
より具体的には、上記免疫抗原を、ラット、マウス、ハ
ムスター、ウサギ、ヤギ等の哺乳動物に免疫し、以降、
部分採血した血清中に、免疫抗原に強く結合する抗体群
が検出されるまで、同様の免疫操作を繰り返す。免疫に
用いる動物種は、免疫抗原の由来する動物種とは異なる
ヒトを除く動物種を用いる限りにおいては、特に限定さ
れない。免疫は、一般的方法により、例えば、上記免疫
抗原を哺乳動物に静脈内投与、皮下注射もしくは腹腔内
注射等の方法により投与することにより行われる。
【0070】より具体的には、リン酸緩衝生理食塩水
(PBS)等で適当量に希釈、懸濁した免疫抗原を、所
望により、免疫賦活剤として、通常のアジュバントを併
用して、動物に、2〜21日毎に数回投与し、総投与量
が、約100〜500マイクログラム/動物程度になる
ようにするのが好ましい。
【0071】免疫感作後の動物から血液を採取し、血清
成分を分離して、目的の抗血清、すなわち未精製のポリ
クローナル抗体を得ることができる。更に、得られた抗
血清を、透析、濃硫酸アンモニウム液での塩析出、ゲル
濾過法、抗免疫グロブリン抗体結合アフィニティクロマ
トグラフィ等の従来の技術を用いて、抗体成分を精製
し、目的のポリクローナル抗体を得ることができる。更
に、精製された免疫抗原を用いた免疫アフィニティクロ
マトグラフィにより、ポリクローナル抗体の反応特性を
高めることができる。
【0072】本発明のモノクローナル抗体製造方法は、
より具体的には、上記のエピモルフィンに対するポリク
ローナルを得る方法と同様にして、哺乳動物を免疫感作
し、その動物から採取した抗体産生細胞を、哺乳動物の
ミエローマ細胞と融合させて融合細胞(ハイブリドー
マ)群を作成し、これらより、免疫抗原を認識する抗体
を産生するハイブリドーマのクローンを選択し、該クロ
ーン化されたハイブリドーマにより、目的とするモノク
ローナル抗体を産生させることにより得られる。
【0073】用いる免疫感作動物種は、細胞融合に使用
するミエローマ細胞との適合性を考慮して、選択するの
が好ましく、一般には、アルメニアンハムスター、マウ
ス、ラット等が有利に使用される。実験目的での使用頻
度が高いマウス由来のエピモルフィンの場合、近縁種の
ラットを免疫感作動物として用いても、目的のモノクロ
ーナル抗体を得ることができる。抗体産生細胞として
は、免疫抗原の最終免疫の約3日後に摘出した脾細胞を
使用するのが好ましい。
【0074】上記抗体産生細胞と融合されるミエローマ
細胞としては、既に、公知の種々の細胞株、例えば、P
3×63Ag8(ATCC TIB 9)、P3×63
Ag8.U.1(ATCC CRL 1597)、P3
/NSI/1−Ag4−1(ATCC TIB 1
8)、Sp2/0−Ag14(ATCC CRL 15
81)、FO(ATCC CRL 1646)、P3×
63Ag8.653(ATCC CRL 1580)、
S194/5.XXO.BU.1(ATCC TIB
20)等や、ラットにおけるYB2/0(ATCC C
RL 1662)等が使用される。
【0075】上記抗体産生細胞とミエローマ細胞との融
合反応は、基本的には、公知の方法、例えば、ミルスタ
インら(Milstein et al. )の方法〔Methods Enzymo
l., 73,3−46(1981)〕等に準じて行い得
る。より具体的には、上記融合反応は、例えば、融合促
進剤の存在下に通常の栄養培地中で行われる。融合促進
剤としては、通常用いられるもの、例えば、ポリエチレ
ングリコール(PEG)、センダイウイルス(HVJ)
等が使用され、更に、所望により、融合効率を高めるた
めに、ジメチルスルホキシド等の補助剤を添加使用する
こともできる。
【0076】抗体産生細胞とミエローマ細胞との使用数
比は、通常の方法と変わりがなく、例えば、ミエローマ
細胞に対し、免疫細胞を約1〜10倍程度用いればよ
い。上記融合時の培地としては、例えば、上記ミエロー
マ細胞の増殖に使用される如きRPMI−1640培
地、MEM培地、その他、この種の細胞培養に使用され
る通常の各種培地を利用でき、通常は、牛胎児血清等の
血清補液を抜いておくのがよい。
【0077】融合は、上記抗体産生細胞とミエローマ細
胞との所定量を、上記培地内でよく混合し、予め37℃
程度に加温したPEG溶液、例えば、平均分子量100
0〜6000程度のPEGを、通常培地に、約30〜6
0%(W/V)の濃度で加えて、混ぜ合わせることによ
り行われる。以後、適当な培地を逐次添加して、遠心
し、上清を除去する操作を繰返すことにより、所望のハ
イブリドーマが形成される。
【0078】得られる所望のハイブリドーマの分離は、
通常の選別用培地、例えば、HAT培地(ヒポキサンチ
ン、アミノプテリン及びチミジンを含む培地)で培養す
ることにより行われる。該HAT培地での培養は、ハイ
ブリドーマ以外の細胞(未融合細胞等)が死滅するのに
充分な時間、通常数日〜数週間、行えばよい。かくして
得られるハイブリドーマは、通常の限界希釈法に従い、
目的とする抗体の産生株の検索及び単一クローン化が行
われる。
【0079】該産生株の検索は、例えば、ELISA
(enzyme−linked immunosolv
ent assey)法などの、一般に抗体の検出に用
いられている種々の方法〔「ハイブリドーマ法とモノク
ローナル抗体」(株)R&Dプランニング発行,p30
〜53,昭和57年3月5日〕に従って行われる。すな
わち、固相に塗布された免疫抗原に、クローン化された
ハイブリドーマの培養上清、及び酵素を標識された免疫
に用いた動物種の免疫グロブリンに対する抗体を、順
次、加えては、洗浄し、最後に、標識された酵素によ
り、発色反応を起こす基質液を加えて、発色度を調べる
ことにより、クローン化されたハイブリドーマの培養上
清に含まれるモノクローナル抗体の免疫抗原への結合能
を評価できる。尚、上記検索における抗原としては、精
製免疫抗原を好ましく使用できる。
【0080】かくして得られる所望のモノクローナル抗
体を産生するハイブリドーマは、血清を含む通常の培地
で継代培養でき、また液体窒素中で長期間保存可能であ
る。該ハイブリドーマからの本発明モノクローナル抗体
の採取は、該ハイブリドーマを、常法に従って、培養
し、その培養上清として、あるいは、ハイブリドーマを
これと適合性のある哺乳動物に投与して増殖させ、その
腹水として得る方法等が採用される。前者の方法は、高
純度の抗体を得るのに適しており、後者の方法は、抗体
の大量生産に適している。更に、上記の方法により得ら
れるモノクローナル抗体は、前述のポリクローナル抗体
の精製と同様の操作で精製することができる。
【0081】かくして得られる本発明のポリクローナル
抗体、及びモノクローナル抗体は、これを利用して、例
えば、免疫沈降法、免疫アフィニティクロマトグラフ
ィ、プロティンAカラム等の通常の免疫学的精製手段に
より、改変体を含むエピモルフィンを簡易、かつ特異的
に精製できる。更に、放射免疫測定法(RIA)、酵素
免疫測定法(EIA)、蛍光抗体法等の通常の免疫学的
測定手段により、高感度、高精度に、かつ高い特異性を
もって、エピモルフィンを簡易に測定、検出することが
できる。
【0082】
【実施例】以下に実施例1〜14を挙げて本発明をより
具体的に説明するが、本発明は、以下の実施例に限定さ
れるものではない。
【0083】1.マウスエピモルフィンに対するモノク
ローナル抗体の作製 a)免疫抗原として、エピモルフィンを細胞膜表面に持
つマウス胎児の真皮細胞を用いた。集塊状で培養した間
充織細胞では、エピモルフィンが、作られて、上皮の形
態形成を支持するが、これに対して、偏平な細胞形態を
とる単層で培養した間充織細胞では、エピモルフィン
は、ほとんど作られず、上皮の形態形成が行われない、
という本発明者らが見い出した知見に基づいて、以下の
1)〜5)の手順で実験動物のICRマウス胎児5匹分
の皮膚組織から分離した間充織(真皮)細胞を、集塊状
で4日間培養した後、ホモジナイズし、そして、生理食
塩水に懸濁した。
【0084】1)妊娠13日目のICRマウス(日本チ
ャールリバー)より摘出したマウス胎児5匹分の皮膚組
織を手術用のハサミで切り取り、生理食塩水で洗浄し
た。 2)1)で準備したマウス胎児皮膚組織を0.25%ト
リプシン、10mMCaCl2 を含むHEPES−ハン
クス液(pH7.4)中で、4℃条件下12時間インキ
ュベートした後、20μg/mlのDNAaseを加え
てゆっくりとピペッティングすることにより、シート状
の表皮と単離された真皮細胞を得た。
【0085】3)2)の細胞懸濁液を低速遠心分離する
ことにより表皮と、上清中の真皮細胞を分離した。な
お、この操作以降は10%の牛胎児血清を含む、ダルベ
ッコ変法イーグル培地(DME)とハムF12培地の
1:1混合培地(DH培地)を用いた。
【0086】4)単離真皮細胞を培地で洗浄後、100
0rpmで2分間遠心分離し、得られた真皮細胞のペレ
ットからマイクロピペットを用いて100μlずつを吸
引して、培地上に浮かべた多孔性ヌクレポアメンブレン
(13mm径、8μm孔)上に乗せて集塊状で培養し
た。 5)37℃、5%CO2 条件下で4日間培養した上記真
皮細胞を無血清培地中に懸濁し、洗浄後、生理食塩水中
に分散したものを抗原として用いた。
【0087】この懸濁液に、等量のフロインド コンプ
リート アジュバント(Freund complete adjuvant. Di
fco Laboratories. Detroit Michigan USA )を加え
て、よく混合したものを、Lewisラットに腹腔内投
与した。更に、2週間、及び3週間後に、同液を同様に
Lewisラットに投与した。最終投与の3日後に、脾
臓を摘出し、得られた脾細胞を、実施例13と同様の方
法で、マウスミエローマ細胞株P3×63Ag8.U.
1(ATCC CRL 1597)と細胞融合し、ハイ
ブリドーマ群を得た。
【0088】得られたハイブリドーマ群を、後記の実施
例13と同様の方法で、限界希釈法によりクローニング
した後、エピモルフィンに結合する抗体を産生するハイ
ブリドーマのクローンを、次の方法で選別した。すなわ
ち、一次スクリーニングとして、集塊状で培養した間充
織細胞の溶解物と結合し、単層で培養した間充織細胞の
溶解物とは結合しないモノクローナル抗体を作るハイブ
リドーマを選別し、更に、二次スクリーニングとして、
免疫原に用いたエピモルフィンを含むサンプルを、ドデ
シル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動
(SDS−PAGE)で流した時に特異的に出現する、
分子量約150Kダルトンのエピモルフィンのバンドに
反応するモノクローナル抗体を作るハイブリドーマを、
Westernblot法により、モノクローナル抗体(ハイブリ
ドーマの培養上清)と放射性物質をラベルした抗ラット
免疫グロブリン抗体を順次反応させて検出することによ
り選別した。スクリーニングの詳細は次のとおりであ
る。
【0089】1)一次スクリーニング:集塊状で、もし
くは、単層で10%牛胎児血清を含むDH培地で4日間
培養したマウス胎児真皮細胞を、各々2%SDS(ドデ
シル硫酸ナトリウム)溶液中に溶解したものを、抗原と
してドットブロット法で抗体反応を調べた。ドットブロ
ットはバイオラッドラボラトリーズ社のBio−Dot
blotterを用いて行い、ニトロセルロース膜上
に上記抗原を吸着させた。同ニトロセルロース膜にハイ
ブリドーマ培養上清、HRP(ホースラッディシュパー
オキシダーゼ)標識抗ラット免疫グロブリン抗体(2次
抗体)を順次反応させ、最後にジアミノベンチジンを含
む基質液を加えて発色反応させて、集塊状培養の真皮細
胞に対し陽性を示し、単層培養の真皮細胞に対し陰性を
示す抗体を作るハイブリドーマを選別した。
【0090】2)二次スクリーニング:Laemmli
らの方法〔Nature,227,680(197
0)〕に従い、1)で用いた集塊状培養真皮細胞溶解液
をSDS−PAGE用サンプル液に加え、5分間煮沸
後、4〜20%グラジエントゲルで電気泳動を行った。
ウエスタンブロットはテフコ社(長野、日本)のMod
elT.C.808を取扱説明書通りに使用して、ゲル
中の蛋白質をニトロセルロース膜に移し取り、同ニトロ
セルロース膜にハイブリドーマ上清、125 Iラベル抗ラ
ット免疫グロブリン抗体を順次反応させた。分子量マー
カーで150Kダルトンの位置のエピモルフィンのバン
ドが陽性になった抗体を作るハイブリドーマを選別し
た。かくして、所望の反応特異性を有する本発明のモノ
クローナル抗体を産生するハイブリドーマを得た。
【0091】更に、これらのモノクローナル抗体のう
ち、器官培養系に加えると、上皮の構築を阻害するも
の、すなわち、エピモルフィンの活性部位を認識するも
のを、下記の方法で選び出し、このハイブリドーマをク
ローン12(clone 12)、モノクローナル抗体
をMC−1(mAb12と記することもある)と名付け
た。すなわち、形態形成が活発に行われる時期(妊娠1
1日目の肺、13日目の皮膚、小腸)のマウス胎児組織
の器官培養を、1CR妊娠マウスより無菌的に取り出し
たマウス胎児の組織切片を10%牛胎児血清を含むDH
培地上に浮かべたヌクレポアメンブレン(13mm径、
8μm孔)上に乗せて培養する方法で行った。そのうち
の半分は培地中に、300マイクログラム/mlの下記
b)に示す方法で精製したモノクローナル抗体存在下で
行った。
【0092】対象として、モノクローナル抗体と同様の
手法で精製したラットIgGを同濃度で培地に加えたも
のを同時に用いた。モノクローナル抗体MC−1(mA
b12)を添加した器官培養3日目の組織切片を、図1
に示す。コントロールでは、各臓器が上皮構造が正常に
構築(肺胞形成、小腸ヒダの形成等)されているのに対
し、MC−1(mAb12)の存在下、すなわち、エピ
モルフィンの活性を阻害した場合には、上皮組織が異常
になっていることが判る。
【0093】b)上記a)で得られたクローン12を、
12%の牛胎児血清を含むダルベッコ変法MEMと、H
am F12の等量混合培地(DH)にて、5%炭酸ガ
スインキュベーター中で、37℃にて継代培養を行い、
更に、細胞を無血清DHにて、2回洗浄後、無血清DH
中で、1週間培養することで、MC−1(mAb12)
を含む血清入りDH、及び無血清DHを、それぞれ、6
l得た。これらを、50%硫酸アンモニウムで塩析し、
PBSで透析後、抗ラットIgGカラム(アメリカンコ
ーレックス社)でアフィニティ精製を行った。抗体は、
更に塩析後、DHで十分に透析を行い、約5mg/ml
の精製品を得た。
【0094】2.マウスエピモルフィンcDNAの単離 マウス胎児間充織細胞から調製したmRNAを、オリゴ
(dT)セルロースカラムにより精製し、これを出発材
料として、λgt11(アマシャム社)の系で、cDN
Aライブラリーを作成した。マウス胎児間充織細胞は、
ICR妊娠マウス(日本チャールスリバー社)からマウ
ス胎児を摘出し、実施例1と同様の方法で、カルシウム
の存在下でトリプシン消化を行って、間充織細胞を単離
後、集合塊にして培養したものを使用した。
【0095】mRNAの調整は次の様に行った。細胞を
回収し、5.5Mグアニジウムチオシアネート(GT
C)溶液中で、ポリトロン型ホモジナイザーを用いて、
細胞をホモジナイズした。遠沈管にセシウムトリフロロ
アセテート(CsTFA)−0.1M EDTA液を入
れ、その上に上記の溶液を重層し、23,000rp
m、15℃で24時間遠心し、RNAのベレットを得
た。次に、ペレットを4M GTC液に溶かし、10,
000rpm、10分間の遠心で不溶物を除去した。上
清に1M酢酸100μlとエタノール3mlを加え−2
0℃で3時間静置後、10,000rpm、20分間遠
心し、得られたRNAのペレットをTE(Tris−H
Cl 10mM,EDTA1mM)液、少量に溶かし
た。
【0096】更に、1M Tris(pH9.0)1/
10倍量、5M NaCl 1/50倍量、10%SD
S 1/20倍量、フェノール(0.1M Tris−
HCl(pH9.0)飽和)1/2倍量、クロロホルム
・イソアミルアルコール(24:1)1/2倍量を加え
て10分間振盪後、3000rpm、10分間冷却遠心
し、水層を回収した。更に、等量のクロロホルム・イソ
アミルアルコールを加えて同様の操作を行った。最後
に、3M酢酸ナトリウム1/10倍量、冷エタノール
2.5倍量を加えて、混和後、−20℃で10時間静置
し、15000rpm、10分間の遠心でRNAのベレ
ットを得た。
【0097】λgt11DNAに組み込まれた該ライブ
ラリーを、大腸菌Y1090(アマシャム社)に感染さ
せ、該大腸菌をプレートに播いてプラークを形成させた
後、IPTGをコートしたニトロセルロース膜でプレー
トを覆い、導入cDNAの産物とβガラクトシダーゼの
融合蛋白を、当該大腸菌に合成させた。ニトロセルロー
スに吸着したcDNA産物のうち、実施例1で得られた
抗エピモルフィン抗体により認識されるものを検索し、
それに相当するλgt11のクローンを単離した。最後
に、得られたλgt11から単離したエピモルフィンc
DNA断片をプローブとして、λgt11の系と同様の
手法で合成したλgt10(アマシャム社)のcDNA
ライブラリーを、再度スクリーニングし、下記の式(1
5)で表される、エピモルフィンの全長をコードするc
DNAを単離した。
【0098】 式(15) GGGCGGGCGG GCTGTGCCGT GGCAGCGCCT GCCCGAGGGA GGGCGGCGGC GCGGGGCCAG 60 GACCCCGGCA GCAAGAGGCG GCGATCGGGC CACCGGAGAG TGTGCGGCGG GGCAGCTGAG 120 CGGCGGGTGC CCCGCCCTGC TGGCCGGTGG GGATGCGGGA CCGGCTGCCC GACCTCACGG 180 CGTGTAGGAC AAACGACGAT GGAGACACTG CTGTCGTCAT TGTGGAGAAG GATCATTTCA 240 TGGACGGTTT CTTCCATCAG GTAGAGGAGA TTCGAAGCAG CATAGCCAGG ATTGCTCAGC 300 ATGTAGAAGA CGTGAAGAAG AACCACAGCA TCATCCTGTC TGCTCCAAAC CCAGAAGGAA 360 AAATAAAAGA AGAGCTGGAG GACCTGGACA AAGAGATCAA GAAAACTGCT AACAGGATCC 420 GGGGCAAGCT GAAGTCTATT GAGCAGAGCT GTGATCAGGA CGAGAATGGG AACCGAACTT 480 CAGTGGATCT GCGGATACGA AGGACCCAGC ACTCGGTGCT GTCACGGAAG TTTGTGGACG 540 TCATGACAGA ATACAATGAA GCGCAGATCC TGTTCCGGGA GCGAAGCAAA GGCCGCATCC 600 AGCGCCAGCT GGAGATCACT GGGAGGACCA CCACTGACGA CGAGCTGGAA GAGATGCTGG 660 AGAGCGGGAA GCCGTCCATC TTCATCTCGG ATATTATATC AGATTCACAA ATCACTAGGC 720 AAGCTCTCAA TGAGATCGAG TCCCGCCACA AAGACATCAT GAAGCTGGAG ACCAGCATCC 780 GAGAGCTGCA CGAGATGTTC ATGGATATGG CCATGTTTGT CGAGACTCAG GGTGAAATGG 840 TCAACAACAT CGAGAGAAAT GTGGTGAACT CTGTAGATTA CGTGGAACAT GCCAAGGAAG 900 AGACGAAGAA AGCCATCAAA TACCAGAGCA AGGCCAGGCG GAAAAAGTGG ATAATTGCTG 960 CTGTGGCGGT GGCTGTCATT GCCGTCCTGG CTCTAATCAT TGGCTTGTCG GTTGGCAAAT 1020 GATTGCGTAG ATGGCGCTGG GTGCTTGCCT CTCCCTCAGG GTGGCAAAGG TGATGTTCGT 1080 CCTCATTTGT GTAGTCACTT TGCTTGTGAT CCTTGGAATT ATTCTCGCAA CAGCATTGTC 1140 ATAGCAACCG TACCCCAAGA GCTCTTTGTC CTCGGTGACT CCGACCATAC CTGCAGCTTA 1200 GTCAGCATCC TGTCCTTCCA CGAGTGAACC TCAGACTCCA GGGCTAGCGC CGAGCACTGA 1260 GGTTTTTATT GGTGATGAAG AAGAAAGCAC CGCAGAGGTT TCGTACCATG AAACACCGCG 1320 AGCCCAGTGG ATGCGACATG CCAGCCCAGA GAGCCTGGGT CTCTCTCAAG GACACCACAG 1380 AGATTTCACA ACAGTGGCCT TGCCTTGGTA GCTTTGAAAT AGGAATGATT GAAAAAGCCT 1440 AATTTTTAAA GACAATGTCA GTGTTAAAAA TGTATGTTGT GTGTAATTAG GGTGTGCTCT 1500 GCGCTCAGCT GGCAGTGCTG ACGAAGAGAC TTCGAGCCAG GCCTGATCTC TGTTCATGTC 1560 TTGTTTGCAG AATCATCACA GAACTGTTTT GTAAGGCATC TGTAAGTTAA GTTCCTTAAT 1620 CTATTAACAT CTAAACTCCC TTTCTAAGCT AGACACTGCC TTGCGAAGGA CAATGGGCCA 1680 GCCCCGGGCA AGCATGAACA CTGCCTTACA GCCCCTCAGG GCCCTTCTAT AGTGCCTTCT 1740 GGTGACCCTG ACTAGGAAGT GTGAGGGTCT GAAGAGCCTT GAACGTTAGC TCACGGAGGG 1800 GACAAGCAGT CACATGCCGC ACTCATGTTA CTCTCCCTTG TTCATGTGAG CTGATGAAGT 1860 CTCAAGGCAA GGCGACAGTG ACGATGGACC AAACTCGGTG CTCACTAAAC TCAAGAGAAT 1920 GGCCCCGAGT ACATAGCCAC TCCTGGATGG CACCTGAAGG ACCAGGTCCT CAGCCCAACA 1980 CCCACGAGTG CCCAGAGTTC CTAAGAAACC ATGAAGTGTG GGATAAAGCT GTGCACTGGT 2040 TTACACTTGT GAATAGATGG CCCAGCGACC AAGTATGTGA AGGATACCAT GACTAGTGAA 2100 CTCTGCCAAC TGCTGACTGT GATGAGTGCT CACTCTACCC CAGCCTCACT TGGTGGGATA 2160 TGACGTAGCC ATGCCGGGTC AGAACACCAA GTGTGAGCAA GTGCTACTGA ACTATCTAAA 2220 AACCATGATC CTTTCAGTGG TAAGTGTGCC ACACTGTCAC CTCCTCACAC CTTCTGGTCT 2280 GACACCCCAT GTGCCGAGAG CTACTGCAGC AGGCTGGGCT GTGGGTCCTG GTCTAGAGTT 2340 AGCCTGTAGT GCAGCCACTC CTGGCTGATA GCTCACCCTT CCGCAACCGG GAGCTCACCC 2400 TTCCTGCCTG GAAGCTCACA CTTCCTGTCT GGGAGCTCAC CCTTCTTGCC TGGGAGCTCA 2460 CACTTCCCGT CTGGGAGCTC ACACTTCCTT CCTGGGAGCT CACACTTCCT GCCTGGGAGC 2520 TCACCCTTCC CGCCTGGGAG CTCACACTTC CTGCCTGGGA GCTCTGAAGA TGAACCTGGG 2580 CCTTTGCAGC TCACCCTCTC TGCATCAGTC AGTGCCATCG GATTTAGCTG CAGAGACCAT 2640 GCGTACCACC CAGGCTCCCA CCACCCACAG CCAGGTGTCC CTCCAGTCCA GCCTGAGCCC 2700 TTGGCCTGCA GTGTGCTCGC AGAGCGCTCA GGAGACCTCT CGACCAGGCA GGCAGCTGAA 2760 TCTGGATTTC CAGTGAATCA GGGGTGTGTG GGTGACTGAG TCAGCACTCC AGATACATCT 2820 CTCTGCTGAC TTCATAGCCT ATTTAAAAAT ATATTTACAG ATTCCCTTGT TACCTTTTCC 2880 AAGCATTTCT TCAAATATTT TGTGTTTACA TTAAAAAGTT CTCAGAGATG CAAAAAAAAA 2940
【0099】式(15)のcDNA配列のうち、実際に
アミノ酸に翻訳される領域は、153番目から1019
番目までの塩基配列部分で、更に、終止コドン3塩基を
追加した塩基配列は、前記式(12)に、このcDNA
がコードする蛋白質は、前記式(9)に、それぞれ、対
応する。
【0100】3.マウスエピモルフィンの精製 a)実施例1で得られた精製モノクローナル抗体MC−
1(mAb12)を、イソプロパノール、中性燐酸緩衝
生理食塩水(PBS)で洗浄したアフイゲル10(バイ
オラッドラボラトリーズ社)と、5時間、4℃にて反応
させ、固定した。IMエタノールアミンで未反応の官能
基をブロックした後、PBS、DHにて十分洗浄して、
MC−1(mAb12)固定化アフイゲル10を調製し
た。
【0101】b)ICRマウス胎児(妊娠17日目のも
の)30匹を、ホモジナイズ後、PBSにて洗浄し、2
0mMチャップス(ドータイト製)にて、エピモルフィ
ンを含むものを抽出した。a)で調製したアフィゲル1
0を、カラムに注入し、抽出液を上から注いで、1晩、
4℃でインキュベートした。PBSにてゲルを十分洗浄
後、15mMの塩酸液を用いて、カラム吸着物を回収し
て、電気泳動を行ったところ、図2に示すように、エピ
モルフィンの精製品が得られた。
【0102】4.動物細胞内でのエピモルフィンの合成 実施例2で得られたマウスエピモルフィンcDNAを、
βアクチンのプロモーターを有する動物細胞発現ベクタ
ーpβactCAT9〔Gene,48,1−11,
(1986)〕のHindIII−HpaI部位に組み
込み、内在性のエピモルフィン活性のほとんどないNI
H/3T3細胞(ATCC CRT 1658)に導入
した。得られたトランスフェクタントは、無処理のNI
H/3T3より数倍〜数10倍多い量のエピモルフィン
を発現していることが、確認できた(図3)。次いで、
実施例3と同様の方法で、発現された蛋白質を回収し、
マウスエピモルフィンを得た。
【0103】5.ヒトエピモルフィンcDNAの単離 ヒト胎盤から調製したmRNAを、オリゴ(dT)セル
ロースカラムにより精製し、これを出発材料として、λ
gt10(アマシャム社)の系で、常法〔Huynh
ら,「DNA Cloning」,IRL Pres
s,49−78(1984)〕により、cDNAライブ
ラリーを作成した。当該ライブラリーを、大腸菌NM5
14(アマシャム社)に感染させ、プレートに播種し
た。
【0104】次に、12時間後、ナイロン膜をプレート
にかぶせてDNAを移しとり、0.5M−NaOHでD
NAを変性させて、32Pでラベルした実施例2で得られ
たマウスエピモルフィン遺伝子の翻訳領域をプローブと
して使用し、ヒトエピモルフィン遺伝子の断片を含むク
ローンを単離した。最後に、得られたヒトエピモルフィ
ン断片を、プローブとして使用し、再度、当該cDNA
ライブラリーをスクリーニングし、エピモルフィンの全
長をコードするcDNAを単離した。
【0105】得られたcDNAは、前記式(3)に対応
するヒトエピモルフィンをコードする、前記式(6)に
対応する塩基配列で表される翻訳領域と、3’及び5’
側に非翻訳領域を含む遺伝子であり、その全長は、約
3.0キロベースであることが、アガロースゲル電気泳
動により、確認された。
【0106】同様にして、前記式(4)、及び(5)に
対応するヒトエピモルフィンアイソフォームA、及びB
をコードする遺伝子を、単離した。これらは、それぞ
れ、前記式(7)、及び(8)に対応する塩基配列を翻
訳領域として含み、その全長は、それぞれ、約2.9キ
ロベース、及び2.8キロベースであることが、アガロ
ースゲル電気泳動により確認された(図4)。得られた
ヒトエピモルフィンcDNAの翻訳蛋白質は、実施例2
で得られたマウスエピモルフィンcDNAのそれと90
%近い相同性がみられ、エピモルフィンは、極めて種間
差の少ない物質であることが分かった。
【0107】6.マウスエピモルフィン(アイソフォー
ムA,B)cDNAの単離 マウス胎児間充織細胞から調製したmRNAを、オリゴ
(dT)セルロースカラムにより精製し、これを出発材
料として、実施例5と同様の方法で、マウスエピモルフ
ィンcDNAの単離を行った結果、3種類の異なる長さ
のcDNAを得、アガロースゲル電気泳動による全長
は、それぞれ、約3.0、2.9、2.8キロベースで
あった。
【0108】これらのcDNAの塩基配列を調べた結
果、最長のものは、実施例2で得られたマウスエピモル
フィンと一致し、更に、マウスエピモルフィンのアイソ
フォームとして、前記式(15)の942番目から10
66番目の塩基配列が削除された全長約2.9キロベー
スのアイソフォームAと、前記式(15)の942番目
から1127番目の塩基配列が削除された全長約2.8
キロベースのアイソフォームBが、クローニングされ
た。前者は、前記式(15)の153番目から941番
目までと、1067番目から1141番目までの塩基配
列を直結した部分が、アミノ酸に翻訳される。
【0109】このcDNA配列に、終止コドン3塩基を
追加した塩基配列は、前記式(13)に、このcDNA
がコードする蛋白質は、前記式(10)に、それぞれ、
対応する。後者は、前記式(15)の153番目から9
41番目までと、1128番目から1175番目までの
塩基配列を直結した部分が、アミノ酸に翻訳され、この
cDNA配列に終止コドン3塩基を追加した塩基配列
は、前記式(14)に、このcDNAがコードする蛋白
質は、前記式(11)に、それぞれ、対応する。
【0110】マウス、ヒト以外の動物種についても、各
々の動物組織を用いて、実施例5と同様の方法で、エピ
モルフィンcDNAを、単離することができる。
【0111】7.エピモルフィンによる肺上皮構造の支
持 実施例4で得られたエピモルフィントランスフェクタン
ト、あるいは無処理のNIH/3T3細胞と、マウス胎
児から単離した肺上皮組織を混合し、3次元の培養を行
った。培養数日で、無処理NIH/3T3細胞を用いた
場合には、肺上皮のチューブ形態が破壊されてしまうの
に比べ、エピモルフィントランスフェクタントを用いた
場合には、その形態が保たれたまま上皮が成長をつづ
け、エピモルフィンが、上皮組織の形態形成に、極めて
重要な役割を担う作用を有するものであることが確認で
きた。図5に、1週間後の切片の写真を、また、図6
に、上皮のうちでチューブ構造をとるものの割合を、そ
れぞれ、示す。
【0112】8.無細胞系でのエピモルフィンの合成 実施例5で得られたヒトエピモルフィンcDNAを、B
luscriptIIベクター(Stratagene
社より購入)のポリクローニングサイトに組み込み、R
NAポリメラーゼ、及びStratagene社製のm
CAPTMRNACapping Kitを利用して、エ
ピモルフィンmRNAを合成した。次に、得られたmR
NAを35S−メチオニンの存在下でウサギ網状赤血球ラ
イセート(アマシャム社)を用いた反応系で反応させ
て、35Sでラベルされたヒトエピモルフィンを合成し
た。
【0113】合成したヒトエピモルフィンは、前記式
(3)に対応する288個のアミノ酸配列で表され、そ
の分子量は、約3万3千であることが、SDS−PAG
E電気泳動により確認された(図7)。
【0114】同様にして、前記式(4)に対応する28
7個のアミノ酸配列、及び前記式(5)に対応する27
7個のアミノ酸配列で表されるヒトエピモルフィンアイ
ソフォームA、及びBを得た。当該ヒトエピモルフィン
アイソフォームA、及びBの分子量は、それぞれ、約3
万3千、及び3万2千であることが、SDS−PAGE
電気泳動により確認された。
【0115】9.疎水性部分を欠損した可溶性改変エピ
モルフィンの動物細胞での合成 実施例2で得られたマウスエピモルフィンcDNAを、
実施例4と同様にして、β−アクチンのプロモーターを
有する動物細胞発現ベクターpβactCAT9のHi
ndIII−HpaI部位に組み込みこんだ(βact
EPM1)。
【0116】次に、HincII、NheIによる消
化、末端平滑化、再連結により、エピモルフィンC末端
疎水領域をコードする部分を100%欠損させた遺伝子
を作成した(βactEPM2)。βactEPM1、
βactEPM2を、NIH/3T3細胞に導入してエ
ピモルフィンの発現を調べたところ、βactEPM1
を導入したトランスフェクタントは、主として細胞表面
に、また、βactEPM2を導入したトランスフェク
タントは、主として培養液中に、それぞれ、エピモルフ
ィンが検出され、後者では、エピモルフィンが可溶化さ
れていることが確認された(図8)。
【0117】上記で得られた2種のエピモルフィントラ
ンスフェクタント、あるいは無処理のNIH/3T3細
胞各々と、マウス胎児から単離した肺上皮組織を混合
し、3次元の培養を行った。培養数日で、無処理NIH
/3T3細胞を用いた場合には、肺上皮のチューブ形態
が破壊されてしまうのに比べ、2種のトランスフェクタ
ントを用いた場合には、いずれも上皮形態が保たれたま
ま肺胞が成長をつづけ、可溶性エピモルフィンが活性を
保持していることが確認された(図9)。
【0118】10.疎水性部分を欠損した可溶性改変エ
ピモルフィンの大腸菌での合成 実施例2で得られたマウスエピモルフィンcDNAを、
pBluscriptII KS(十)(Strata
gene社)に組み込んだ後、cDNA3’側に存在す
る制限サイトで切断後、エキソヌクレアーゼIII、M
ung Beanヌクレアーゼを利用して、反応時間を
変えることにより、エピモルフィン遺伝子が種々の大き
さなるように、3’側から欠損させたものを作成した。
【0119】切断面を連結後、それらのプラスミドを、
大腸菌JM109(宝酒造社)に導入して、遺伝子産物
をβガラクトシダーゼとの融合蛋白質として発現させた
ところ、エピモルフィンのC末端疏水性領域のうち、1
2個以上のアミノ酸に相当する遺伝子が削除されていた
ものでは、当該菌をつぶすことにより、容易に融合蛋白
質が可溶化されることが判明した。また、N末端から2
31番目以降のアミノ酸を欠損したエピモルフィンで
も、エピモルフィン活性を有することが確認された。
【0120】11.疎水性部分を親水性蛋白質に置換し
た可溶性改変エピモルフィンの合成 実施例5で得られたヒトエピモルフィンcDNAのC末
端疎水性領域をコードする部分を、実施例10と同様に
して、欠損させた。次に、この欠損cDNAをCD4−
IgG遺伝子が組み込まれたベクターCDM8(Rom
eo andSeed,Cell,64,1037−1
046,1991)のCD4領域に、フレームが合うよ
うに考慮して、組み込んだ。
【0121】これをDeae−Dextran法〔「C
urrent Protocolsin Molecu
lar Biology」Wiley Intersc
ience(1987)〕を用いてCOS−1細胞(A
TCC CRL 1650)に導入し、3日後に、培養
液を回収した。該培養液を、50%の硫酸アンモニウム
にて塩析濃縮後、IgGへの結合能を有するプロテイン
Aの結合した担体を充填したカラム(宝酒造社製)を使
用して、C末端の疎水性残基が親水性ペプチドで置換さ
れたヒトエピモルフィン−IgG融合蛋白質を、精製品
として大量に回収できた。
【0122】当該ヒトエピモルフィンの改変体は、可溶
性が高く、かつエピモルフィンの活性を有することが確
認された。他の動物種の改変エピモルフィンについて
も、各々のエピモルフィンcDNAを用いて、実施例9
ないし11と同様の方法で、得ることができる。
【0123】12.エピモルフィンに対するポリクロー
ナル抗体の製造 a)実施例5で得られたヒトエピモルフィンのcDNA
を用いて、実施例10と同様の方法で、可溶性のヒトエ
ピモルフィン−βガラクトシダーゼ融合蛋白質を、大腸
菌に作らせた。大腸菌をつぶした懸濁液(ライセート)
から溶液を分離し、更に、SDS−PAGEにかけて、
可溶性のヒトエピモルフィン−βガラクトシダーゼ融合
蛋白質に相当するバンドを切り出して、純度の高いヒト
エピモルフィン−βガラクトシダーゼ融合蛋白質の溶液
を得た。
【0124】b)a)で得られた可溶性のヒトエピモル
フィン−βガラクトシダーゼ融合蛋白質溶液を、等量の
フロインド コンプリート アジュバントと混和し、得
られた懸濁液をLewisラットに腹腔内投与した。2
週、3週間後に、同液を同様に投与した。最終投与の3
日後に、ラットの血液を採取し、常法により、血清を分
離し、ヒトエピモルフィンに対する抗血清を得た。更
に、該抗血清を、50%硫酸アンモニウムで塩析しPB
Sで透析後、抗ラットIgGカラム(アメリカンコーレ
ックス社)でアフィニティ精製を行い、ヒトエピモルフ
ィンに対するポリクローナル抗体を得た。該ポリクロー
ナル抗体は、βガラクトシダーゼに対する抗体を含む
が、哺乳動物の実験に用いる場合は、このまま用いて良
い。該ポリクローナル抗体は、ヒトエピモルフィンに特
異的に結合する以外に、マウス、ニワトリ等の他の動物
種のエピモルフィンにも結合した。
【0125】13.エピモルフィンに対するモノクロー
ナル抗体の製造 実施例3で得られたマウスエピモルフィンを、等量のフ
ロインド コンプリート アジュバントと混和し、得ら
れた懸濁液を、Lewisラットに腹腔内投与した。2
週、3週間後に、同液を同様に投与した。最終投与の3
日後に、脾臓を摘出し、脾細胞をダルベッコ変法イーグ
ル培地(DME)と、Ham F12の等量混合培地
(DH)で、3回洗浄した。マウスミエローマ細胞株P
3×63Ag8.U.1(ATCC CRL 159
7)を、同様に洗浄後、その1×107 個と、上記脾細
胞1×108 個とを50ml遠心管に入れ、混合した。
200×G、5分遠心後、上清を、パスツールピペット
で除去した。
【0126】次に、細胞のペレットに、37℃に保温し
たポリエチレングリコール1500(ベーリンガーマン
ハイム山之内社製)50%(W/V)を含むRPMI−
1640溶液1mlを、1分間を要して滴下し、混合
し、次いで、37℃に保温したRPMI−1640溶液
1mlを加えて、1分間放置し、次に、同液2mlを加
えて、2分間放置し、更に、同液1mlを加えた。4分
間放置後、37℃に保温した12%牛胎児血清、0.0
5g力価/l−硫酸ストレプトマイシン、60000U
/l−ペニシリンGカリウムを含有するDH(以下これ
を「DH12」という)の8mlを加え、200×G
で、5分間、遠心分離した。上清を除去し、37℃に保
温したDH12に、脾細胞1×106 個/mlとなるよ
うに懸濁し、24穴のマイクロプレート(コースター
社)に、1mlずつ分注し、37℃下に、5%炭酸ガス
インキユベーター内で、培養した。
【0127】24時間後、1.0×10-4Mヒポキサン
チン、4.0×10-7Mアミノプテリン、及び1.6×
10-5Mチミジンを含む血清入り完全RPMI−164
0培地(以下「HAT培地」という)1mlを、各ウエ
ルに添加した。以後、上清の半分を、第2、3、及び4
日目に、それぞれ新しいHAT培地に代え、第6日目
に、同様に、上清の半分を、1.0×10-4Mヒポキサ
ンチン、及び1.6×10-5Mチミジンを含む血清入り
完全RPMI−1640培地(HT培地)に代えた。以
後、DH12培地で増殖維持した。
【0128】かくして得られるハイブリドーマを、限界
希釈法によりクローニングした。すなわち、ハイブリド
ーマ3×102 個、及びBalb/c系マウス胸腺細胞1×1
8個を含むように調製したDH12培地の20mlを
用いて、ハイブリドーマ3個/ウェルとなるように96
ウェルのプレートに播き、培養した。増殖してくるハイ
ブリドーマを、同様にハイブリドーマ1個/ウェルとし
てクローニングし、更に、増殖してくるハイブリドーマ
を、同様にハイブリドーマ0.3個/ウェルとして、ク
ローニングした。
【0129】目的の抗体を産生するクローンの選別は、
マウスエピモルフィンに対する抗体の結合能を、ELI
SA法で判定することにより行った。すなわち、実施例
10で得られた可溶性のマウスエピモルフィンの溶液
を、96穴のイムノプレート(Nunc Interm
ed社)に50マイクロリッターずつ分注し、4℃で、
一晩静置した後、PBS−0.05%ツィーン20(洗
浄液)で、ウェルを洗浄した。
【0130】ブロッキング液として、PBS−5%スキ
ムミルク液100マイクロリッター/ウェルを分注し、
室温で、1時間静置後、洗浄液でウェルを洗浄した。次
いで、ハイブリドーマの培養上清を50マイクロリッタ
ー/ウェル入れて室温で1時間反応させてから洗浄液で
ウェルを洗浄し、更に、ホースラディッシュパーオキシ
ダーゼ標識抗ラット免疫グログリン溶液(カッペル社)
を、50マイクロリッター/ウェル入れて、室温で、1
時間反応させてから、洗浄液でウェルを洗浄する操作を
行った。
【0131】最後に、常用されるo−フェニレンジアミ
ンと過酸化水素を含む基質液100マイクロリッター/
ウェルを分注し、15分間発色反応させた後、硫酸液で
反応を停止させ、492nmの吸光度を測定した。目的
のモノクローナル抗体を産生するハイブリドーマの培養
上清は、未使用培養液(陰性対照)の3倍以上の高い吸
光度を示した。かくして、マウスエピモルフィンの活性
部位以外の部位に結合するモノクローナル抗体を産生す
るハイブリドーマを得た。このハイブリドーマの培養上
清より、実施例1に述べられているのと同様の方法で、
マウスエピモルフィンの活性部位以外の部位に結合する
モノクローナル抗体を精製できた。
【0132】14.エピモルフィンに対するモノクロー
ナル抗体を用いたエピモルフィンの発現調査 マウス胎児および成獣の各種臓器を摘出し、4%パラホ
ルムアルデヒドで固定後、包埋剤を用いて凍結試料を作
製した。クライオスタットで厚さ10マイクロメートル
の切片を作り、乾燥後に、5%スキムミルクを含むPB
S、100倍希釈した実施例1で得られたモノクローナ
ル抗体MC−1(mAb12)溶液、フルオレッセンイ
ソチオシアネート(FITC)ラベルされた抗ラット免
疫グロブリン(タゴ社)と順次反応させた後、蛍光顕微
鏡を用いて、エピモルフィンの発現様式を調べた。尚、
上記の各反応の間に、PBSで十分に洗浄を行い、非特
異的な抗体の吸着をおさえた。図10に示すように、エ
ピモルフィンは、胎児期および成獣の臓器再生期で発現
量が増大していることが確認できた。
【0133】
【発明の効果】本発明のエピモルフィンは、上皮組織の
形態形成作用を有する間充織成分であるので、エピモル
フィンそれ自体は、先天性の上皮形態異常症はもとよ
り、各種の臓器の損傷や、脱毛等、後天的な上皮形態の
異常の治療薬の開発等に有用である。特に、可溶性に改
変したエピモルフィンは、精製が容易であり、更に、所
望の濃度の溶液として利用できる長所を有する。
【0134】また、エピモルフィンをコードする遺伝子
は、エピモルフィンの大量生産を可能にする他、上記疾
患の診断、及び治療法の開発等に極めて有用なものであ
る。また、エピモルフィンに対する抗体は、エピモルフ
ィンの精製、エピモルフィンの検出、上記疾患の診断、
及び治療法の開発等に極めて有用なものである。
【0135】
【配列表】
配列番号 :1 配列の長さ:36 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:cDNA 配列 ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG
【0136】配列番号 :2 配列の長さ:11 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys
【0137】配列番号 :3 配列の長さ:288 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp 5 10 15 Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe Met Asp Asp Phe 20 25 30 Phe His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35 40 45 Tyr Val Glu Glu Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala Pro 50 55 60 Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu 65 70 75 80 Ile Lys Lys Thr Ala Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85 90 95 Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg Thr Ser Val Asp Leu 100 105 110 Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu 115 120 125 Ala Met Ala Glu Tyr Asn Glu Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135 140 Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr Thr 145 150 155 160 Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe 165 170 175 Thr Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185 190 Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser Ile 195 200 205 Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210 215 220 Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val Met Asn Ala Thr 225 230 235 240 Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr 245 250 255 Gln Ser Lys Ala Arg Arg Lys Lys Trp Ile Ile Ile Ala Val Ser Val 260 265 270 Val Leu Val Val Ile Ile Val Leu Ile Ile Gly Leu Ser Val Gly Lys 275 280 285
【0138】配列番号 :4 配列の長さ:287 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp 5 10 15 Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe Met Asp Asp Phe 20 25 30 Phe His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35 40 45 Tyr Val Glu Glu Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala Pro 50 55 60 Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu 65 70 75 80 Ile Lys Lys Thr Ala Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85 90 95 Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg Thr Ser Val Asp Leu 100 105 110 Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu 115 120 125 Ala Met Ala Glu Tyr Asn Glu Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135 140 Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr Thr 145 150 155 160 Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe 165 170 175 Thr Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185 190 Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser Ile 195 200 205 Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210 215 220 Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val Met Asn Ala Thr 225 230 235 240 Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr 245 250 255 Gln Ser Lys Ala Arg Arg Lys Leu Met Phe Ile Ile Ile Cys Val Ile 260 265 270 Val Leu Leu Val Ile Leu Gly Ile Ile Leu Ala Thr Thr Leu Ser 275 280 285
【0139】配列番号 :5 配列の長さ:277 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp 5 10 15 Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe Met Asp Asp Phe 20 25 30 Phe His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35 40 45 Tyr Val Glu Glu Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala Pro 50 55 60 Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu 65 70 75 80 Ile Lys Lys Thr Ala Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85 90 95 Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg Thr Ser Val Asp Leu 100 105 110 Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu 115 120 125 Ala Met Ala Glu Tyr Asn Glu Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135 140 Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr Thr 145 150 155 160 Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe 165 170 175 Thr Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185 190 Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser Ile 195 200 205 Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210 215 220 Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val Met Asn Ala Thr 225 230 235 240 Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr 245 250 255 Gln Ser Lys Ala Arg Arg Gln Gln His Cys His Ser Asn His Ile Pro 260 265 270 Arg Ala Ile Tyr Pro 275
【0140】配列番号 :6 配列の長さ:867 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:cDNA 配列 ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG AAG AAT GAT GAT 16 GGA GAC ACA GTT GTT GTG GTT GAG AAA GAT CAT TTC ATG GAT GAT TTC 32 TTC CAT CAG GTG GAG GAG ATT AGA AAC AGT ATT GAT AAA ATA ACT CAA 48 TAT GTT GAA GAA GTA AAG AAA AAC CAC AGC ATC ATT CTT TCT GCA CCA 64 AAC CCG GAA GGA AAA ATA AAA GAA GAG CTT GAA GAT CTG AAC AAA GAA 80 ATC AAG AAA ACT GCG AAT AAA ATT CGA GCC AAG TTA AAG GCT ATT GAA 96 CAA AGT TTT GAT CAG GAT GAG AGT GGG AAC CGG ACT TCA GTG GAT CTT 112 CGG ATA CGA AGA ACC CAG CAT TCG GTG CTG TCT CGG AAG TTT GTG GAA 128 GCC ATG GCG GAG TAC AAT GAG GCA CAG ACT CTG TTT CGG GAG CGG AGC 144 AAA GGC CGC ATC CAG CGC CAG CTG GAG ATA ACT GGG AGA ACC ACC ACA 160 GAC GAC GAG CTA GAA GAG ATG CTG GAG AGC GGG AAG CCA TCC ATC TTC 176 ACT TCC GAC ATT ATA TCA GAT TCA CAA ATT ACT AGA CAA GCT CTC AAT 192 GAA ATC GAG TCA CGT CAC AAG GAC ATC ATG AAG CTG GAG ACC AGC ATC 208 CGA GAG TTG CAT GAG ATG TTC ATG GAC ATG GCT ATG TTT GTG GAG ACT 224 CAG GGT GAA ATG ATC AAC AAC ATA GAA AGA AAT GTT ATG AAT GCC ACA 240 GAC TAT GTA GAA CAC GCT AAA GAA GAA ACA AAA AAA GCT ATC AAA TAT 256 CAG AGC AAG GCA AGA AGG AAA AAG TGG ATA ATT ATT GCT GTG TCA GTG 272 GTT CTG GTT GTC ATA ATC GTT CTA ATT ATT GGC TTG TCA GTT GGC AAA 288 TGA 289
【0141】配列番号 :7 配列の長さ:864 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:cDNA 配列 ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG AAG AAT GAT GAT 16 GGA GAC ACA GTT GTT GTG GTT GAG AAA GAT CAT TTC ATG GAT GAT TTC 32 TTC CAT CAG GTG GAG GAG ATT AGA AAC AGT ATT GAT AAA ATA ACT CAA 48 TAT GTT GAA GAA GTA AAG AAA AAC CAC AGC ATC ATT CTT TCT GCA CCA 64 AAC CCG GAA GGA AAA ATA AAA GAA GAG CTT GAA GAT CTG AAC AAA GAA 80 ATC AAG AAA ACT GCG AAT AAA ATT CGA GCC AAG TTA AAG GCT ATT GAA 96 CAA AGT TTT GAT CAG GAT GAG AGT GGG AAC CGG ACT TCA GTG GAT CTT 112 CGG ATA CGA AGA ACC CAG CAT TCG GTG CTG TCT CGG AAG TTT GTG GAA 128 GCC ATG GCG GAG TAC AAT GAG GCA CAG ACT CTG TTT CGG GAG CGG AGC 144 AAA GGC CGC ATC CAG CGC CAG CTG GAG ATA ACT GGG AGA ACC ACC ACA 160 GAC GAC GAG CTA GAA GAG ATG CTG GAG AGC GGG AAG CCA TCC ATC TTC 176 ACT TCC GAC ATT ATA TCA GAT TCA CAA ATT ACT AGA CAA GCT CTC AAT 192 GAA ATC GAG TCA CGT CAC AAG GAC ATC ATG AAG CTG GAG ACC AGC ATC 208 CGA GAG TTG CAT GAG ATG TTC ATG GAC ATG GCT ATG TTT GTG GAG ACT 224 CAG GGT GAA ATG ATC AAC AAC ATA GAA AGA AAT GTT ATG AAT GCC ACA 240 GAC TAT GTA GAA CAC GCT AAA GAA GAA ACA AAA AAA GCT ATC AAA TAT 256 CAG AGC AAG GCA AGA AGG AAA TTG ATG TTC ATT ATT ATT TGT GTA ATT 272 GTT TTG CTT GTG ATC CTT GGA ATT ATC CTA GCA ACA ACA TTG TCA TAG 288
【0142】配列番号 :8 配列の長さ:834 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:cDNA 配列 ATG CGG GAC CGG CTG CCA GAC CTG ACG GCG TGT AGG AAG AAT GAT GAT 16 GGA GAC ACA GTT GTT GTG GTT GAG AAA GAT CAT TTC ATG GAT GAT TTC 32 TTC CAT CAG GTG GAG GAG ATT AGA AAC AGT ATT GAT AAA ATA ACT CAA 48 TAT GTT GAA GAA GTA AAG AAA AAC CAC AGC ATC ATT CTT TCT GCA CCA 64 AAC CCG GAA GGA AAA ATA AAA GAA GAG CTT GAA GAT CTG AAC AAA GAA 80 ATC AAG AAA ACT GCG AAT AAA ATT CGA GCC AAG TTA AAG GCT ATT GAA 96 CAA AGT TTT GAT CAG GAT GAG AGT GGG AAC CGG ACT TCA GTG GAT CTT 112 CGG ATA CGA AGA ACC CAG CAT TCG GTG CTG TCT CGG AAG TTT GTG GAA 128 GCC ATG GCG GAG TAC AAT GAG GCA CAG ACT CTG TTT CGG GAG CGG AGC 144 AAA GGC CGC ATC CAG CGC CAG CTG GAG ATA ACT GGG AGA ACC ACC ACA 160 GAC GAC GAG CTA GAA GAG ATG CTG GAG AGC GGG AAG CCA TCC ATC TTC 176 ACT TCC GAC ATT ATA TCA GAT TCA CAA ATT ACT AGA CAA GCT CTC AAT 192 GAA ATC GAG TCA CGT CAC AAG GAC ATC ATG AAG CTG GAG ACC AGC ATC 208 CGA GAG TTG CAT GAG ATG TTC ATG GAC ATG GCT ATG TTT GTG GAG ACT 224 CAG GGT GAA ATG ATC AAC AAC ATA GAA AGA AAT GTT ATG AAT GCC ACA 240 GAC TAT GTA GAA CAC GCT AAA GAA GAA ACA AAA AAA GCT ATC AAA TAT 256 CAG AGC AAG GCA AGA AGG CAA CAA CAT TGT CAT AGC AAC CAT ATC CCA 272 AGA GCC ATT TAT CCT TGA 278
【0143】配列番号 :9 配列の長さ:289 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Thr Asn Asp Asp 1 5 10 15 Gly Asp Thr Ala Val Val Ile Val Glu Lys Asp His Phe Met Asp Gly 20 25 30 Phe Phe His Gln Val Glu Glu Ile Arg Ser Ser Ile Ala Arg Ile Ala 35 40 45 Gln His Val Glu Asp Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala 50 55 60 Pro Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asp Lys 65 70 75 80 Glu Ile Lys Lys Thr Ala Asn Arg Ile Arg Gly Lys Leu Lys Ser Ile 85 90 95 Glu Gln Ser Cys Asp Gln Asp Glu Asn Gly Asn Arg Thr Ser Val Asp 100 105 110 Leu Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val 115 120 125 Asp Val Met Thr Glu Tyr Asn Glu Ala Gln Ile Leu Phe Arg Glu Arg 130 135 140 Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160 Thr Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile 165 170 175 Phe Ile Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu 180 185 190 Asn Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser 195 200 205 Ile Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu 210 215 220 Thr Gln Gly Glu Met Val Asn Asn Ile Glu Arg Asn Val Val Asn Ser 225 230 235 240 Val Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys 245 250 255 Tyr Gln Ser Lys Ala Arg Arg Lys Lys Trp Ile Ile Ala Ala Val Ala 260 265 270 Val Ala Val Ile Ala Val Leu Ala Leu Ile Ile Gly Leu ser Val Gly 275 280 285 Lys
【0144】配列番号 :10 配列の長さ:288 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Thr Asn Asp Asp 1 5 10 15 Gly Asp Thr Ala Val Val Ile Val Glu Lys Asp His Phe Met Asp Gly 20 25 30 Phe Phe His Gln Val Glu Glu Ile Arg Ser Ser Ile Ala Arg Ile Ala 35 40 45 Gln His Val Glu Asp Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala 50 55 60 Pro Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asp Lys 65 70 75 80 Glu Ile Lys Lys Thr Ala Asn Arg Ile Arg Gly Lys Leu Lys Ser Ile 85 90 95 Glu Gln Ser Cys Asp Gln Asp Glu Asn Gly Asn Arg Thr Ser Val Asp 100 105 110 Leu Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val 115 120 125 Asp Val Met Thr Glu Tyr Asn Glu Ala Gln Ile Leu Phe Arg Glu Arg 130 135 140 Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160 Thr Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile 165 170 175 Phe Ile Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu 180 185 190 Asn Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser 195 200 205 Ile Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu 210 215 220 Thr Gln Gly Glu Met Val Asn Asn Ile Glu Arg Asn Val Val Asn Ser 225 230 235 240 Val Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys 245 250 255 Tyr Gln Ser Lys Ala Arg Arg Lys Val Met Phe Val Leu Ile Cys Val 260 265 270 Val Thr Leu Leu Val Ile Leu Gly Ile Ile Leu Ala Thr Ala Leu Ser 275 280 285
【0145】配列番号 :11 配列の長さ:279 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Thr Asn Asp Asp 1 5 10 15 Gly Asp Thr Ala Val Val Ile Val Glu Lys Asp His Phe Met Asp Gly 20 25 30 Phe Phe His Gln Val Glu Glu Ile Arg Ser Ser Ile Ala Arg Ile Ala 35 40 45 Gln His Val Glu Asp Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala 50 55 60 Pro Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asp Lys 65 70 75 80 Glu Ile Lys Lys Thr Ala Asn Arg Ile Arg Gly Lys Leu Lys Ser Ile 85 90 95 Glu Gln Ser Cys Asp Gln Asp Glu Asn Gly Asn Arg Thr Ser Val Asp 100 105 110 Leu Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val 115 120 125 Asp Val Met Thr Glu Tyr Asn Glu Ala Gln Ile Leu Phe Arg Glu Arg 130 135 140 Ser Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160 Thr Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile 165 170 175 Phe Ile Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu 180 185 190 Asn Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser 195 200 205 Ile Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu 210 215 220 Thr Gln Gly Glu Met Val Asn Asn Ile Glu Arg Asn Val Val Asn Ser 225 230 235 240 Val Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys 245 250 255 Tyr Gln Ser Lys Ala Arg Arg Gln Gln His Cys His Ser Asn Arg Thr 260 265 270 Pro Arg Ala Leu Cys Pro Arg 275
【0146】配列番号 :12 配列の長さ:870 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:cDNA 配列 ATG CGG GAC CGG CTG CCC GAC CTC ACG GCG TGT AGG ACA AAC GAC GAT 16 GGA GAC ACT GCT GTC GTC ATT GTG GAG AAG GAT CAT TTC ATG GAC GGT 32 TTC TTC CAT CAG GTA GAG GAG ATT CGA AGC AGC ATA GCC AGG ATT GCT 48 CAG CAT GTA GAA GAC GTG AAG AAG AAC CAC AGC ATC ATC CTG TCT GCT 64 CCA AAC CCA GAA GGA AAA ATA AAA GAA GAG CTG GAG GAC CTG GAC AAA 80 GAG ATC AAG AAA ACT GCT AAC AGG ATC CGG GGC AAG CTG AAG TCT ATT 96 GAG CAG AGC TGT GAT CAG GAC GAG AAT GGG AAC CGA ACT TCA GTG GAT 112 CTG CGG ATA CGA AGG ACC CAG CAC TCG GTG CTG TCA CGG AAG TTT GTG 128 GAC GTC ATG ACA GAA TAC AAT GAA GCG CAG ATC CTG TTC CGG GAG CGA 144 AGC AAA GGC CGC ATC CAG CGC CAG CTG GAG ATC ACT GGG AGG ACC ACC 160 ACT GAC GAC GAG CTG GAA GAG ATG CTG GAG AGC GGG AAG CCG TCC ATC 176 TTC ATC TCG GAT ATT ATA TCA GAT TCA CAA ATC ACT AGG CAA GCT CTC 192 AAT GAG ATC GAG TCC CGC CAC AAA GAC ATC ATG AAG CTG GAG ACC AGC 208 ATC CGA GAG CTG CAC GAG ATG TTC ATG GAT ATG GCC ATG TTT GTC GAG 224 ACT CAG GGT GAA ATG GTC AAC AAC ATC GAG AGA AAT GTG GTG AAC TCT 240 GTA GAT TAC GTG GAA CAT GCC AAG GAA GAG ACG AAG AAA GCC ATC AAA 256 TAC CAG AGC AAG GCC AGG CGG AAA AAG TGG ATA ATT GCT GCT GTG GCG 272 GTG GCT GTC ATT GCC GTC CTG GCT CTA ATC ATT GGC TTG TCG GTT GGC 288 AAA TGA 290
【0147】配列番号 :13 配列の長さ:867 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:cDNA 配列 ATG CGG GAC CGG CTG CCC GAC CTC ACG GCG TGT AGG ACA AAC GAC GAT 16 GGA GAC ACT GCT GTC GTC ATT GTG GAG AAG GAT CAT TTC ATG GAC GGT 32 TTC TTC CAT CAG GTA GAG GAG ATT CGA AGC AGC ATA GCC AGG ATT GCT 48 CAG CAT GTA GAA GAC GTG AAG AAG AAC CAC AGC ATC ATC CTG TCT GCT 64 CCA AAC CCA GAA GGA AAA ATA AAA GAA GAG CTG GAG GAC CTG GAC AAA 80 GAG ATC AAG AAA ACT GCT AAC AGG ATC CGG GGC AAG CTG AAG TCT ATT 96 GAG CAG AGC TGT GAT CAG GAC GAG AAT GGG AAC CGA ACT TCA GTG GAT 112 CTG CGG ATA CGA AGG ACC CAG CAC TCG GTG CTG TCA CGG AAG TTT GTG 128 GAC GTC ATG ACA GAA TAC AAT GAA GCG CAG ATC CTG TTC CGG GAG CGA 144 AGC AAA GGC CGC ATC CAG CGC CAG CTG GAG ATC ACT GGG AGG ACC ACC 160 ACT GAC GAC GAG CTG GAA GAG ATG CTG GAG AGC GGG AAG CCG TCC ATC 176 TTC ATC TCG GAT ATT ATA TCA GAT TCA CAA ATC ACT AGG CAA GCT CTC 192 AAT GAG ATC GAG TCC CGC CAC AAA GAC ATC ATG AAG CTG GAG ACC AGC 208 ATC CGA GAG CTG CAC GAG ATG TTC ATG GAT ATG GCC ATG TTT GTC GAG 224 ACT CAG GGT GAA ATG GTC AAC AAC ATC GAG AGA AAT GTG GTG AAC TCT 240 GTA GAT TAC GTG GAA CAT GCC AAG GAA GAG ACG AAG AAA GCC ATC AAA 256 TAC CAG AGC AAG GCC AGG CGG AAG GTG ATG TTC GTC CTC ATT TGT GTA 272 GTC ACT TTG CTT GTG ATC CTT GGA ATT ATT CTC GCA ACA GCA TTG TCA 288 TAG 289
【0148】配列番号 :14 配列の長さ:840 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:cDNA 配列 ATG CGG GAC CGG CTG CCC GAC CTC ACG GCG TGT AGG ACA AAC GAC GAT 16 GGA GAC ACT GCT GTC GTC ATT GTG GAG AAG GAT CAT TTC ATG GAC GGT 32 TTC TTC CAT CAG GTA GAG GAG ATT CGA AGC AGC ATA GCC AGG ATT GCT 48 CAG CAT GTA GAA GAC GTG AAG AAG AAC CAC AGC ATC ATC CTG TCT GCT 64 CCA AAC CCA GAA GGA AAA ATA AAA GAA GAG CTG GAG GAC CTG GAC AAA 80 GAG ATC AAG AAA ACT GCT AAC AGG ATC CGG GGC AAG CTG AAG TCT ATT 96 GAG CAG AGC TGT GAT CAG GAC GAG AAT GGG AAC CGA ACT TCA GTG GAT 112 CTG CGG ATA CGA AGG ACC CAG CAC TCG GTG CTG TCA CGG AAG TTT GTG 128 GAC GTC ATG ACA GAA TAC AAT GAA GCG CAG ATC CTG TTC CGG GAG CGA 144 AGC AAA GGC CGC ATC CAG CGC CAG CTG GAG ATC ACT GGG AGG ACC ACC 160 ACT GAC GAC GAG CTG GAA GAG ATG CTG GAG AGC GGG AAG CCG TCC ATC 176 TTC ATC TCG GAT ATT ATA TCA GAT TCA CAA ATC ACT AGG CAA GCT CTC 192 AAT GAG ATC GAG TCC CGC CAC AAA GAC ATC ATG AAG CTG GAG ACC AGC 208 ATC CGA GAG CTG CAC GAG ATG TTC ATG GAT ATG GCC ATG TTT GTC GAG 224 ACT CAG GGT GAA ATG GTC AAC AAC ATC GAG AGA AAT GTG GTG AAC TCT 240 GTA GAT TAC GTG GAA CAT GCC AAG GAA GAG ACG AAG AAA GCC ATC AAA 256 TAC CAG AGC AAG GCC AGG CGG CAA CAG CAT TGT CAT AGC AAC CGT ACC 272 CCA AGA GCT CTT TGT CCT CGG TGA 280
【0149】配列番号 :15 配列の長さ:2940 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:cDNA 配列 GGGCGGGCGG GCTGTGCCGT GGCAGCGCCT GCCCGAGGGA GGGCGGCGGC GCGGGGCCAG 60 GACCCCGGCA GCAAGAGGCG GCGATCGGGC CACCGGAGAG TGTGCGGCGG GGCAGCTGAG 120 CGGCGGGTGC CCCGCCCTGC TGGCCGGTGG GG 152 ATG CGG GAC CGG CTG CCC GAC CTC ACG GCG TGT AGG ACA AAC GAC GAT 200 GGA GAC ACT GCT GTC GTC ATT GTG GAG AAG GAT CAT TTC ATG GAC GGT 248 TTC TTC CAT CAG GTA GAG GAG ATT CGA AGC AGC ATA GCC AGG ATT GCT 296 CAG CAT GTA GAA GAC GTG AAG AAG AAC CAC AGC ATC ATC CTG TCT GCT 344 CCA AAC CCA GAA GGA AAA ATA AAA GAA GAG CTG GAG GAC CTG GAC AAA 392 GAG ATC AAG AAA ACT GCT AAC AGG ATC CGG GGC AAG CTG AAG TCT ATT 440 GAG CAG AGC TGT GAT CAG GAC GAG AAT GGG AAC CGA ACT TCA GTG GAT 488 CTG CGG ATA CGA AGG ACC CAG CAC TCG GTG CTG TCA CGG AAG TTT GTG 536 GAC GTC ATG ACA GAA TAC AAT GAA GCG CAG ATC CTG TTC CGG GAG CGA 584 AGC AAA GGC CGC ATC CAG CGC CAG CTG GAG ATC ACT GGG AGG ACC ACC 632 ACT GAC GAC GAG CTG GAA GAG ATG CTG GAG AGC GGG AAG CCG TCC ATC 680 TTC ATC TCG GAT ATT ATA TCA GAT TCA CAA ATC ACT AGG CAA GCT CTC 728 AAT GAG ATC GAG TCC CGC CAC AAA GAC ATC ATG AAG CTG GAG ACC AGC 776 ATC CGA GAG CTG CAC GAG ATG TTC ATG GAT ATG GCC ATG TTT GTC GAG 824 ACT CAG GGT GAA ATG GTC AAC AAC ATC GAG AGA AAT GTG GTG AAC TCT 872 GTA GAT TAC GTG GAA CAT GCC AAG GAA GAG ACG AAG AAA GCC ATC AAA 920 TAC CAG AGC AAG GCC AGG CGG AAA AAG TGG ATA ATT GCT GCT GTG GCG 968 GTG GCT GTC ATT GCC GTC CTG GCT CTA ATC ATT GGC TTG TCG GTT GGC 1016 AAA 1019 TGATTGCGTA GATGGCGCTG GGTGCTTGCC TCTCCCTCAG GGTGGCAAAG GTGATGTTCG 1079 TCCTCATTTG TGTAGTCACT TTGCTTGTGA TCCTTGGAAT TATTCTCGCA ACAGCATTGT 1139 CATAGCAACC GTACCCCAAG AGCTCTTTGT CCTCGGTGAC TCCGACCATA CCTGCAGCTT 1199 AGTCAGCATC CTGTCCTTCC ACGAGTGAAC CTCAGACTCC AGGGCTAGCG CCGAGCACTG 1259 AGGTTTTTAT TGGTGATGAA GAAGAAAGCA CCGCAGAGGT TTCGTACCAT GAAACACCGC 1319 GAGCCCAGTG GATGCGACAT GCCAGCCCAG AGAGCCTGGG TCTCTCTCAA GGACACCACA 1379 GAGATTTCAC AACAGTGGCC TTGCCTTGGT AGCTTTGAAA TAGGAATGAT TGAAAAAGCC 1439 TAATTTTTAA AGACAATGTC AGTGTTAAAA ATGTATGTTG TGTGTAATTA GGGTGTGCTC 1499 TGCGCTCAGC TGGCAGTGCT GACGAAGAGA CTTCGAGCCA GGCCTGATCT CTGTTCATGT 1559 CTTGTTTGCA GAATCATCAC AGAACTGTTT TGTAAGGCAT CTGTAAGTTA AGTTCCTTAA 1619 TCTATTAACA TCTAAACTCC CTTTCTAAGC TAGACACTGC CTTGCGAAGG ACAATGGGCC 1679 AGCCCCGGGC AAGCATGAAC ACTGCCTTAC AGCCCCTCAG GGCCCTTCTA TAGTGCCTTC 1739 TGGTGACCCT GACTAGGAAG TGTGAGGGTC TGAAGAGCCT TGAACGTTAG CTCACGGAGG 1799 GGACAAGCAG TCACATGCCG CACTCATGTT ACTCTCCCTT GTTCATGTGA GCTGATGAAG 1859 TCTCAAGGCA AGGCGACAGT GACGATGGAC CAAACTCGGT GCTCACTAAA CTCAAGAGAA 1919 TGGCCCCGAG TACATAGCCA CTCCTGGATG GCACCTGAAG GACCAGGTCC TCAGCCCAAC 1979 ACCCACGAGT GCCCAGAGTT CCTAAGAAAC CATGAAGTGT GGGATAAAGC TGTGCACTGG 2039 TTTACACTTG TGAATAGATG GCCCAGCGAC CAAGTATGTG AAGGATACCA TGACTAGTGA 2099 ACTCTGCCAA CTGCTGACTG TGATGAGTGC TCACTCTACC CCAGCCTCAC TTGGTGGGAT 2159 ATGACGTAGC CATGCCGGGT CAGAACACCA AGTGTGAGCA AGTGCTACTG AACTATCTAA 2219 AAACCATGAT CCTTTCAGTG GTAAGTGTGC CACACTGTCA CCTCCTCACA CCTTCTGGTC 2279 TGACACCCCA TGTGCCGAGA GCTACTGCAG CAGGCTGGGC TGTGGGTCCT GGTCTAGAGT 2339 TAGCCTGTAG TGCAGCCACT CCTGGCTGAT AGCTCACCCT TCCGCAACCG GGAGCTCACC 2399 CTTCCTGCCT GGAAGCTCAC ACTTCCTGTC TGGGAGCTCA CCCTTCTTGC CTGGGAGCTC 2459 ACACTTCCCG TCTGGGAGCT CACACTTCCT TCCTGGGAGC TCACACTTCC TGCCTGGGAG 2519 CTCACCCTTC CCGCCTGGGA GCTCACACTT CCTGCCTGGG AGCTCTGAAG ATGAACCTGG 2579 GCCTTTGCAG CTCACCCTCT CTGCATCAGT CAGTGCCATC GGATTTAGCT GCAGAGACCA 2639 TGCGTACCAC CCAGGCTCCC ACCACCCACA GCCAGGTGTC CCTCCAGTCC AGCCTGAGCC 2699 CTTGGCCTGC AGTGTGCTCG CAGAGCGCTC AGGAGACCTC TCGACCAGGC AGGCAGCTGA 2759 ATCTGGATTT CCAGTGAATC AGGGGTGTGT GGGTGACTGA GTCAGCACTC CAGATACATC 2819 TCTCTGCTGA CTTCATAGCC TATTTAAAAA TATATTTACA GATTCCCTTG TTACCTTTTC 2879 CAAGCATTTC TTCAAATATT TTGTGTTTAC ATTAAAAAGT TCTCAGAGAT GCAAAAAAAA 2939 A 2940
【図面の簡単な説明】
【図1】本発明の抗体による、エピモルフィン活性阻害
における形態形成の異常を示す(生物の組織形態の顕微
鏡写真)。
【図2】本発明の抗体による、精製エピモルフィンの電
気泳動パターンを示す。
【図3】エピモルフィンcDNAを導入する場合と、し
ない場合のNIH/3T3のエピモルフィン発現を示す
ウェスタンブロットの一例を示す。
【図4】ヒトエピモルフィン、ヒトエピモルフィンアイ
ソフォームA及びBの各cDNA(いずれも全長)をア
ガロースゲルで電気泳動した結果を示す。
【図5】エピモルフィンcDNAを導入する場合と、し
ない場合のNIH/3T3の培養下での肺上皮形態支持
能を示す組織切片(生物の組織形態の顕微鏡写真)を示
す。
【図6】図5で示した上皮形態を定量化したもの、すな
わち培養4日目で上皮のうちチューブ構造を保って成長
しているものの割合を示す。
【図7】無細胞系で合成したヒトエピモルフィンをSD
S−PAGEで電気泳動した結果を示す。
【図8】C末端に疎水領域が存在するエピモルフィン
と、存在しないエピモルフィンの発現様式を示すウェス
タンブロットの例を示す。
【図9】C末端に疎水領域が存在するエピモルフィン
と、存在しない可溶性エピモルフィンが、いずれも肺上
皮の形態形成能を有することを示す培養実験の観察像
生物の組織形態の顕微鏡写真)を示す。
【図10】本発明抗体による、エピモルフィン発現様式
の調査結果(生物の組織形態の顕微鏡写真)を示す(エ
ピモルフィンを強発現している部分は明るく染まってい
る)。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI (C12P 21/02 C12R 1:19) (31)優先権主張番号 特願平4−135692 (32)優先日 平4(1992)4月30日 (33)優先権主張国 日本(JP) 前置審査 (56)参考文献 Dev Growth Diffe r.,Vol.32,No.4(1990) p.424 (58)調査した分野(Int.Cl.6,DB名) C12P 21/02 C12P 21/08 C07K 14/475 C07K 16/22 C12N 15/12 BIOSIS(DIALOG) WPI(DIALOG) CA(STN) REGISTRY(STN)

Claims (14)

    (57)【特許請求の範囲】
  1. 【請求項1】 アミノ末端のアミノ酸残基の配列が配列
    表の配列番号2に記載のアミノ酸配列であり、SDS−
    PAGE電気泳動で決定される分子量が70kDであ
    り、かつ上皮組織の形態形成作用を有する生理活性物質
    エピモルフィン。
  2. 【請求項2】 アミノ末端のアミノ酸残基の配列が配列
    表の配列番号2に記載のアミノ酸配列であり、SDS−
    PAGE電気泳動で決定される分子量が150kDであ
    り、かつ上皮組織の形態形成作用を有するマウス由来の
    組み換え蛋白質である生理活性物質エピモルフィン。
  3. 【請求項3】 アミノ末端のアミノ酸残基の配列が配列
    表の配列番号2に記載のアミノ酸配列であり、SDS−
    PAGE電気泳動で決定される分子量が32ないし33
    kDであり、かつ上皮組織の形態形成作用を有する生理
    活性物質エピモルフィン。
  4. 【請求項4】 配列表の配列番号3、4又は5のいずれ
    かに記載のアミノ酸配列で表される、請求項3に記載の
    ヒトエピモルフィン。
  5. 【請求項5】 配列表の配列番号9、10又は11のい
    ずれかに記載のアミノ酸配列で表される、請求項3に記
    載のマウスエピモルフィン。
  6. 【請求項6】 請求項4に記載のヒトエピモルフィンを
    コードする遺伝子。
  7. 【請求項7】 請求項5に記載のマウスエピモルフィン
    をコードする遺伝子。
  8. 【請求項8】 配列表の配列番号6、7又は8のいずれ
    かに記載の塩基配列で表される請求項6に記載のヒトエ
    ピモルフィンをコードする遺伝子。
  9. 【請求項9】 配列表の配列番号12、13又は14の
    いずれかに記載の塩基配列で表される請求項7に記載の
    マウスエピモルフィンをコードする遺伝子。
  10. 【請求項10】 請求項1ないし5のいずれか1項に記
    載のエピモルフィンのポリペプチドのカルボキシ末端疎
    水性部分を、欠損もしくは非疎水性ポリペプチドに置換
    した、改変エピモルフィン。
  11. 【請求項11】 請求項4に記載のヒトエピモルフィン
    のポリペプチドのN末端より230番目ないし263番
    目以降のC末端アミノ酸残基を、欠損もしくは非疎水性
    ポリペプチドに置換した、請求項10に記載のヒト改変
    エピモルフィン。
  12. 【請求項12】 請求項5に記載のマウスエピモルフィ
    ンのポリペプチドのN末端より231番目ないし264
    番目以降のC末端アミノ酸残基を、欠損もしくは非疎水
    性ポリペプチドに置換した、請求項10に記載のマウス
    改変エピモルフィン。
  13. 【請求項13】 請求項1ないし5のいずれか1項に記
    載のエピモルフィンの完全体もしくはその免疫抗原とし
    ての一部分を、エピモルフィンが由来する動物種と異な
    る種の動物に免疫し、その動物の血清から得られるエピ
    モルフィンに対するポリクローナル抗体。
  14. 【請求項14】 請求項1ないし5のいずれか1項に記
    載のエピモルフィンに対するモノクローナル抗体。
JP4301582A 1991-10-16 1992-10-15 新規生理活性物質エピモルフィン、それをコードする遺伝子及びエピモルフィンに対する抗体 Expired - Fee Related JP2849517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4301582A JP2849517B2 (ja) 1991-10-16 1992-10-15 新規生理活性物質エピモルフィン、それをコードする遺伝子及びエピモルフィンに対する抗体

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP29485791 1991-10-16
JP29485691 1991-10-16
JP12290692 1992-04-17
JP3-294857 1992-04-30
JP4-135692 1992-04-30
JP13569292 1992-04-30
JP4-122906 1992-04-30
JP3-294856 1992-04-30
JP4301582A JP2849517B2 (ja) 1991-10-16 1992-10-15 新規生理活性物質エピモルフィン、それをコードする遺伝子及びエピモルフィンに対する抗体

Publications (2)

Publication Number Publication Date
JPH0625295A JPH0625295A (ja) 1994-02-01
JP2849517B2 true JP2849517B2 (ja) 1999-01-20

Family

ID=27470892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4301582A Expired - Fee Related JP2849517B2 (ja) 1991-10-16 1992-10-15 新規生理活性物質エピモルフィン、それをコードする遺伝子及びエピモルフィンに対する抗体

Country Status (7)

Country Link
US (1) US5726298A (ja)
EP (1) EP0562123B1 (ja)
JP (1) JP2849517B2 (ja)
AT (1) ATE180275T1 (ja)
CA (1) CA2098397C (ja)
DE (1) DE69229219T2 (ja)
WO (1) WO1993008213A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293800A (ja) * 1992-10-15 1994-10-21 Bio Material Kenkyusho:Kk 新規生理活性物質エピモルフィン、それをコードする 遺伝子及びエピモルフィンに対する抗体
EP1624068A1 (en) * 1993-06-01 2006-02-08 Life Technologies Inc. Genetic immunization with cationic lipids
DE69534958T2 (de) * 1994-06-21 2007-05-31 Sumitomo Electric Industries, Ltd. Modifiziertes Epimorphin
JPH107698A (ja) * 1996-04-24 1998-01-13 Sumitomo Electric Ind Ltd エピモルフィン・アンタゴニスト
JP3903503B2 (ja) * 1996-11-18 2007-04-11 住友電気工業株式会社 可溶性ポリペプチド
JP2000060560A (ja) * 1998-08-20 2000-02-29 Sumitomo Electric Ind Ltd 偶蹄目エピモルフィン
WO2000027795A1 (en) 1998-11-12 2000-05-18 Invitrogen Corporation Transfection reagents
WO2001094382A1 (fr) * 2000-06-05 2001-12-13 Sumitomo Electric Industries, Ltd. Oligopeptides
US7241731B2 (en) * 2000-06-05 2007-07-10 Sumitomo Electric Industries, Ltd. Oligopeptides for promoting hair growth
US20050008602A1 (en) * 2000-06-05 2005-01-13 Sumitomo Electric Industries, Ltd. Oligopeptides for promoting hair growth
AU2002301607B2 (en) * 2001-11-13 2008-12-11 Sumitomo Electric Industries, Ltd. Oligopeptides for promoting hair growth
CA2425021A1 (en) * 2002-04-12 2003-10-12 Sumitomo Electric Industries, Ltd. Control of the ratio of lap to lip
AU2004238713A1 (en) 2003-05-16 2004-11-25 Sumitomo Electric Industries, Ltd. Oligopeptide
JP5228246B2 (ja) * 2007-11-05 2013-07-03 国立大学法人京都大学 三次元疾患皮膚再構築物
WO2016011203A1 (en) 2014-07-15 2016-01-21 Life Technologies Corporation Compositions with lipid aggregates and methods for efficient delivery of molecules to cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dev Growth Differ.,Vol.32,No.4(1990)p.424

Also Published As

Publication number Publication date
CA2098397A1 (en) 1993-04-17
CA2098397C (en) 1999-07-06
EP0562123B1 (en) 1999-05-19
EP0562123A1 (en) 1993-09-29
EP0562123A4 (ja) 1995-03-15
ATE180275T1 (de) 1999-06-15
DE69229219T2 (de) 1999-11-04
US5726298A (en) 1998-03-10
DE69229219D1 (de) 1999-06-24
WO1993008213A1 (fr) 1993-04-29
JPH0625295A (ja) 1994-02-01

Similar Documents

Publication Publication Date Title
Paul Molecular cloning of cDNA for rat liver gap junction protein.
JP2849517B2 (ja) 新規生理活性物質エピモルフィン、それをコードする遺伝子及びエピモルフィンに対する抗体
JP2002238586A (ja) 分泌性の、および膜貫通性のポリぺプチド、およびそれをコードする核酸
JP2002533058A (ja) 97個のヒト分泌タンパク質
WO2006073052A1 (ja) 新規血管新生抑制因子
JP2002526073A (ja) 新規のヒト生長分化因子のコード配列、そのdna配列によりコードされるポリペプチド、およびこれらの製造方法。
US5472856A (en) Recombinant human thymopoietin proteins and uses therefor
JP3428441B2 (ja) タイトジャンクション構成膜蛋白質クローディンファミリー
JP2001517445A (ja) 甲状腺刺激ホルモンの突然変異体およびそれに基づく方法
JP4249927B2 (ja) コラーゲン様新規蛋白clacおよびその前駆体、ならびにそれらをコードする遺伝子
AU713773B2 (en) Molecular cloning and characterization of molecules related to relaxin and the insulin family of ligands
GRUNDMANN et al. Cloning and expression of a cDNA encoding human placental protein 11, a putative serine protease with diagnostic significance as a tumor marker
US5837239A (en) Physiologically active substance designated as epimorphin genes encoding the same and antibodies thereto
JPH04500603A (ja) クローン化腎炎抗原
JPH06293800A (ja) 新規生理活性物質エピモルフィン、それをコードする 遺伝子及びエピモルフィンに対する抗体
US5871916A (en) ECDN protein and DNA encoding the same
JP4990459B2 (ja) 新規ヒトulip/crmpタンパク質と癌及び傍新形成性神経症候群の診断及び治療におけるその使用
US7816132B2 (en) DNA encoding plexin polypeptides and kits thereof
EP0582450A2 (en) Anti-oxytocin receptor antibodies and methods for their production
US5786451A (en) 23 Kd human retinal CAR antigen
JPH10313876A (ja) 抗腫瘍タンパク質およびその遺伝子
JP2000270871A (ja) 新規生理活性ペプチドの製造法
JP2000507085A (ja) 上皮膜タンパク質―1
JP2000060560A (ja) 偶蹄目エピモルフィン
US20090018071A1 (en) Epididymis-specific receptor protein

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees