JP2849134B2 - Improved titania catalyst, its preparation and use in Fischer-Tropsch synthesis - Google Patents

Improved titania catalyst, its preparation and use in Fischer-Tropsch synthesis

Info

Publication number
JP2849134B2
JP2849134B2 JP1306362A JP30636289A JP2849134B2 JP 2849134 B2 JP2849134 B2 JP 2849134B2 JP 1306362 A JP1306362 A JP 1306362A JP 30636289 A JP30636289 A JP 30636289A JP 2849134 B2 JP2849134 B2 JP 2849134B2
Authority
JP
Japan
Prior art keywords
titania
cobalt
binder
catalyst
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1306362A
Other languages
Japanese (ja)
Other versions
JPH02191549A (en
Inventor
ハリソン モールディン チャールズ
ロイド ライリー ケニス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EKUSON RISAACHI ANDO ENG CO
Original Assignee
EKUSON RISAACHI ANDO ENG CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EKUSON RISAACHI ANDO ENG CO filed Critical EKUSON RISAACHI ANDO ENG CO
Publication of JPH02191549A publication Critical patent/JPH02191549A/en
Application granted granted Critical
Publication of JP2849134B2 publication Critical patent/JP2849134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/12Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (1)発明の分野 本発明はフィッシャー・トロプシュ法およびフィッシ
ャー・トロプシュ触媒の改良に関する。詳しくは本発明
は改良されたコバルト触媒、前記触媒の製造方法、並び
に液体炭化水素、殊にC10+留分燃料および他の有用生
成物を製造するフィッシャー・トロプシュ合成における
前記触媒の使用方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a Fischer-Tropsch process and an improvement of a Fischer-Tropsch catalyst. For more cobalt catalyst present invention was improved, a manufacturing method of the catalyst, as well as liquid hydrocarbons, to the use of the catalyst in Fischer-Tropsch synthesis especially production of C 10 + distillate fuels and other useful products .

(2)発明の背景 フィッシャー・トロプシュ合成、一酸化炭素および水
素、すなわち合成ガス、からの炭化水素の製法、は技術
および特許文献中によく証明されている。フィッシャー
・トロプシュ法はまた商業的に使用され、今日世界の若
干の地域で運転中である。
(2) Background of the Invention Fischer-Tropsch synthesis, the production of hydrocarbons from carbon monoxide and hydrogen, ie, synthesis gas, is well documented in the technical and patent literature. The Fischer-Tropsch process is also used commercially and is in operation today in some parts of the world.

これらおよび他の最近開発された形態のコバルト−チ
タニア触媒は、そのよう触媒、殊にCo−Re、Co−Hfおよ
びCo−Ceの1つまた他の形態でルチル形態のチタニア上
に分散させることにより形成された触媒、を利用できる
実施可能な近代大規模商業フィッシャー・トロプシュプ
ラントの将来性を示す。しかし、これらの触媒のすばら
しく高い活性および選択性にもかかわらず、なおフィッ
シャー・トロプシュ触媒と、とりわけコバルト触媒、の
活性、選択性および生産性における一層の改良に対する
要求が残っている。転化した一酸化炭素の標準容積/触
媒容積/時として規定されている生産性は、もちろん商
業運転の生命力である。高い生産性は商業的に実施可能
な運転の達成に不可欠である。しかし、高い生産性が高
いメタン形成なく達成されることもまた不可欠であり、
メタン生成が液体炭化水素の低い生成を生ずるからであ
る。
These and other recently developed forms of cobalt-titania catalysts can be prepared by dispersing such catalysts, particularly one of Co-Re, Co-Hf and Co-Ce, and other forms of rutile titania. Shows the feasibility of a viable modern large-scale commercial Fischer-Tropsch plant that can utilize the catalyst formed by E.I. However, despite the exceptionally high activity and selectivity of these catalysts, there remains a need for further improvements in the activity, selectivity and productivity of Fischer-Tropsch catalysts, and especially cobalt catalysts. The productivity, defined as standard volume of converted carbon monoxide / catalyst volume / hour, is of course the vitality of commercial operation. High productivity is essential for achieving commercially viable operation. However, it is also essential that high productivity is achieved without high methane formation,
This is because methane production results in low production of liquid hydrocarbons.

(3)目 的 従って本発明の主目的は、さらに改良された新規チタ
ニア担体および担持触媒組成物を提供することである。
(3) Purpose Accordingly, a main object of the present invention is to provide a novel and improved titania carrier and a supported catalyst composition.

詳しくは、本発明の目的はチタニア担体およびチタニ
ア担持触媒組成物、前記触媒組成物の製法および合成ガ
スを高生産性において、低メタン形成で高品質留分燃
料、殊にC10+線状パラフィンおよびオレフィンに転化
するため前記触媒組成物を利用する方法を提供すること
である。
In particular, the object of the present invention is to provide a titania carrier and a titania-supported catalyst composition, a process for preparing said catalyst composition and a syngas with high productivity, low methane formation and high quality fraction fuels, in particular C 10 + linear paraffins. And a method for utilizing the catalyst composition for conversion to olefins.

本発明の特定目的は、反応器床中に分散した炭化水素
合成反応に用いると反応器を横切る最小の圧力低下を生
ずる改良された多孔度のチタニア担体およびチタニア担
体コバルト触媒組成物;並びに良好な物理的強度をもつ
上記特性の触媒を提供することである。
It is a particular object of the present invention to provide an improved porosity titania support and a titania supported cobalt catalyst composition that produces a minimal pressure drop across the reactor when used in a hydrocarbon synthesis reaction dispersed in a reactor bed; An object of the present invention is to provide a catalyst having the above properties and having physical strength.

他の目的は上記触媒組成物を、混合ガスから高い生産
性において低いメタン選択率でC10+線状パラィンおよ
びオレフィンを製造するために利用する方法を提供する
ことである。
Another object is to provide a method of utilizing the catalyst composition, to produce a C 10 + linear Parain and olefins with a low methane selectivity at high productivity from a gas mixture.

上記担体および触媒の製法を提供することもまた目的
である。
It is also an object to provide a process for preparing the above supports and catalysts.

(4)発 明 これらおよび他の目的は、新規結合成剤含有チタニア
担体、前記担体上にフィッシャー・トロプシュ反応の実
施において触媒的に活性な金属を触媒有効量分散させる
ことにより形成された粒状触媒、および前記触媒のフィ
ッシャー・トロプシュ反応における使用を含有する本発
明により達成される。触媒活性金属、好ましくはコバル
トは、優先順序でアルミナ、ジルコニアおよびシリカか
らなる群から選ばれる金属酸化物結合剤を全担体の重量
を基にして約0.1〜約20パーセント、好ましくは約0.5〜
約10パーセント、より好ましくは約1〜約5パーセント
の範囲内の濃度で、粒状チタニア、殊に少なくとも約3:
2のルチル:アナタース比を有するチタニア上に分散さ
れる。これらの少量の結合剤のチタニア中への混合は、
殊に小濃度で、金属酸化物結合剤が触媒のチタニア担体
成分内に存在しないこと以外は同様の触媒よりも、触媒
有効金属、殊にコバルトの担体表面上への有意に良好な
分散、高い活性、良好な選択性および高い生産性を生ず
る。金属は粒子の中心から外方へ触媒のチタニア−結合
剤担体成分全体に実質的に均一に、あるいは好ましくは
チタニア−結合剤担体の周囲外面に薄い触媒活性総また
はフィルムとして分布させることができる。これらの触
媒は一酸化炭素および水素の混合物との反応条件におけ
る接触および反応により、主に線状パラフィンおよびオ
レフィンからなる留分燃料、殊にC10+留分を高い生産
性において低いメタン選択性で製造するために使用でき
る。この生物はさらに高品質燃料および他の製品例えば
自動車用ガソリン、ディーゼル燃料およびジェット燃
料、殊にC10〜約C20の範囲内の炭素数のプレミアム中間
留分燃料に精製し、高級品化することができる。
(4) Invention These and other objects are to provide a novel binder-containing titania carrier, a particulate catalyst formed by dispersing a catalytically effective amount of a metal catalytically active in carrying out a Fischer-Tropsch reaction on the carrier. And the use of the catalyst in a Fischer-Tropsch reaction. The catalytically active metal, preferably cobalt, is a metal oxide binder selected from the group consisting of alumina, zirconia and silica in a preferred order from about 0.1 to about 20 percent, preferably from about 0.5 to about 20 percent, based on the weight of the total support.
At a concentration in the range of about 10 percent, more preferably about 1 to about 5 percent, the particulate titania, especially at least about 3:
Dispersed on titania with a rutile: anatase ratio of 2. The mixing of these small amounts of binder into titania
Significantly better dispersion and higher dispersion of catalytically active metals, especially cobalt, on the support surface than similar catalysts, except that at low concentrations, no metal oxide binder is present in the titania support component of the catalyst. Produces activity, good selectivity and high productivity. The metal can be distributed substantially uniformly throughout the titania-binder support component of the catalyst outward from the center of the particles, or preferably as a thin catalytically active total or film on the outer peripheral surface of the titania-binder support. These catalysts are capable of converting distillate fuels consisting mainly of linear paraffins and olefins, in particular C 10 + fractions, with low methane selectivity at high productivity by contact and reaction under reaction conditions with a mixture of carbon monoxide and hydrogen. Can be used for manufacturing. The organism higher quality fuels and other products for example motor gasoline, diesel fuel and jet fuel, and in particular purified premium middle distillate fuels of carbon numbers in the range of C 10 ~ about C 20, to luxury goods of be able to.

チタニア−結合剤担体粒子は所要量のアルミナ、ジル
コニアまたはシリカ結合剤をチタニアに混合、混和また
は他の方法の添加により形成される。示した量、殊に低
濃度における無機結合剤の存在がフィッシャー・トロプ
シュ反応の実施におけるチタニアの有利な効果を排除す
ることなくチタニアの多孔度を高める。チタニア−結合
剤担体は、その上に金属を分散された後フィッシャー・
トロプシュ反応において実質的にチタニアとしての挙動
を継続するが、しかし今度はフィッシャー・トロプシュ
反応が一層多孔性の担体内で起こり、その結果活性およ
び選択性、殊に生産性が、チタニアベースが結合剤を含
まないことを除き他は同様の、同様の条件で同様のフィ
ードを反応させた触媒と比べて高められる。一層大きい
利点が、チタニア−結合剤担体粒子の全量を基にして約
10パーセントを越えない量、好ましくは約5パーセント
を越えない量における結合剤の使用により得られること
が認められる。結合剤は約10パーセントより高い濃度
で、約20パーセント程度に高くても使用できるが、一般
にこれらの高い濃度における結合剤の使用により何ら利
点が得られず;また高濃度の結合剤は有害であることが
できる。
The titania-binder carrier particles are formed by mixing, blending or otherwise adding the required amount of alumina, zirconia or silica binder to the titania. The presence of the inorganic binder in the indicated amounts, especially at low concentrations, increases the porosity of the titania without eliminating the beneficial effect of the titania in carrying out the Fischer-Tropsch reaction. After the metal is dispersed on the titania-binder carrier, the
In the Tropsch reaction, the behavior as titania substantially continues, but this time the Fischer-Tropsch reaction takes place in a more porous support, so that the activity and selectivity, in particular the productivity, is reduced by the titania base as a binder. , Except that it does not contain, the same is the case. An even greater advantage is that, based on the total amount of titania-binder carrier particles,
It will be appreciated that it can be obtained by using a binder in an amount not exceeding 10 percent, preferably not exceeding about 5 percent. Binders can be used at concentrations greater than about 10 percent, and as high as about 20 percent, but use of the binder at these higher concentrations generally does not provide any benefit; There can be.

金属、殊にコバルト、あるいはコバルトおよび助触媒
または変性剤として他の金属または金属類例えばレニウ
ム、ハフニウム、セリウムをチタニア−結合剤担体上に
分散させることにより形成される触媒は、結合剤成分が
十分低い濃度で存在すればチタニア担体成分の普通の利
点だけでなく、より以上、すなわち一層高い活性および
選択性並びに一層高い生産性を低メタン生成で与え続け
る。チタニア−結合剤担体成分は、結合剤成分が十分低
い濃度で存在すれば、このようにチタニア、しかし高多
孔度のチタニア、の挙動を示し続ける。さらに、高多孔
度およびその利点にもかかわらず触媒は良好な物理的強
度を有する。典型的には0.2cc/g未満の細孔容積(Hg)
を有するチタニアの多孔度を、前記量の結合剤の添加に
より0.2cc/g以上、好ましくは約0.2〜約0.5cc/g、より
好ましくは約0.25〜約0.35cc/gに高め、約8〜約70m2/
g、好ましくは約10〜約30m2/gの範囲内の表面積を与え
ることができる。これらの利点が得られ、高多孔度担体
上に金属または金属類の有意に良好な分散が達成される
ので、それが高い炭化水素合成活性、選択性および生産
性を生ずると思われる。
Catalysts formed by dispersing metals, in particular cobalt, or cobalt and other metals or metals as cocatalysts or modifiers, such as rhenium, hafnium, cerium, on a titania-binder carrier have sufficient binder components. The presence of lower concentrations continues to provide not only the usual benefits of the titania carrier component, but also more, ie, higher activity and selectivity, and higher productivity at low methane production. The titania-binder carrier component continues to behave like titania, but high porosity titania, if the binder component is present at a sufficiently low concentration. Furthermore, despite the high porosity and its advantages, the catalyst has good physical strength. Typically pore volume (Hg) less than 0.2 cc / g
The porosity of the titania having the above is increased to 0.2 cc / g or more, preferably from about 0.2 to about 0.5 cc / g, more preferably from about 0.25 to about 0.35 cc / g, About 70m 2 /
g, preferably in the range of about 10 to about 30 m 2 / g. It is believed that these advantages are obtained and that a significantly better dispersion of the metal or metals is achieved on the high porosity support, which results in high hydrocarbon synthesis activity, selectivity and productivity.

チタニア−アルミナ担体が好ましい。四塩化チタンの
酸化により製造された非常に小さいミクロンサイズの粒
子からなる「ヒュームド」チタニアおよびアルミニウム
sec−ブトキシドの加水分解により調製されたアルミナ
結合剤がチタニア−アルミナ担体粒子の製造のために好
ましい物質である。チタニア−アルミナ担体粒子の製造
において、これらの粒子を製造する好ましい方法によ
り、チタニアを所望割合のアルミナ結合剤、水、および
好ましくは潤滑剤、適当にはメチルセルロースまたはポ
リグリコール、と混合し、次いで押出成形する。チタニ
アクリスタリットサイズおよび粒度が満足な押出適正の
達成のために殊に重要であることが認められた。(ウリ
スタリットはチタンおよび酸素原子の秩序配列からなる
チタニアの最小個別粒子を示す。)押出混合物中に使用
されるチタニアのクリスタリッドサイズがX線解析図中
の主要アナタースまたはルチルピークの線幅の測定によ
り決定して約1000オングストローム単位以下の平均クリ
スタリットサイズ、好ましくは約200〜約600オングスト
ローム単位の範囲内の平均クリスタリットサイズである
こと、およびチタニアの平均粒度が、例えば市販機器、
適当にはマイクロトラック・アナライザー(Microtrac
Analyzer)により測定して約10ミクロンより大きくな
い、好ましくは約0.5〜5ミクロンであることが良好な
押出適性に対し殊に好ましい。押出それ自体は常法で低
トルクで行なわれ、事実上任意の所望断面の「グリー
ン」押出物が生成される。適当には、例えば押出物は1/
20インチ直径のトリロベイト(trilobate)、また1/32
インチ直径の円柱の形態にある。押出の実施において、
チタニアの平均クリスタリットサイズが大きすぎるかま
たは平均粒度が大きすぎると、チタニア−アルミナ混合
物は押出すことが困難であり、また押出物が触媒担体に
必要な適当な強度を欠く。(対照的に、5〜75ミクロン
の平均粒度のアルミナは、チタニアが存在しないときに
その押出特性における重大な変動なく容易に押出すこと
ができる。)押出機の型または押出物の形態が賦形チタ
ニア−結合剤担体の多孔度または表面積に有意に影響を
与えないので事実上任意の型の押出機を押出物の形成に
使用できる。グリーン押出物は、典型的には約90〜約15
0℃の範囲内の温度、好ましくは約110〜約120℃の範囲
内の温度で加熱することにより乾燥し、次いで約400℃
以上の温度に加熱することにより、好ましくは約500〜
約850℃の範囲内の温度に加熱することによりか焼する
ことができる。アナタースがルチルに変換されるので、
表面積がか焼の間に低下し、従って、厳密に所望ルチル
含量を与える条件にか焼の温度および時間を最小にする
ことが望ましい。
Titania-alumina supports are preferred. "Fumed" titania and aluminum consisting of very small micron-sized particles produced by the oxidation of titanium tetrachloride
Alumina binder prepared by the hydrolysis of sec-butoxide is a preferred material for the production of titania-alumina carrier particles. In the production of titania-alumina carrier particles, the preferred method of producing these particles involves mixing titania with the desired proportions of alumina binder, water, and preferably a lubricant, suitably methylcellulose or polyglycol, and then extruding. Molding. It has been found that titania crystallite size and particle size are particularly important for achieving satisfactory extrusion suitability. (Uristalit refers to the smallest individual particles of titania consisting of an ordered array of titanium and oxygen atoms.) The size of titania crystallites used in the extrusion mixture is a measure of the line width of the main anatase or rutile peak in the X-ray analysis diagram. An average crystallite size of no more than about 1000 angstroms, preferably an average crystallite size in the range of about 200 to about 600 angstroms, and an average particle size of titania, e.g.
If appropriate, use a Microtrac Analyzer
It is especially preferred for good extrudability that it is no greater than about 10 microns, preferably about 0.5 to 5 microns as measured by an Analyzer). The extrusion itself is carried out in a conventional manner with low torque, producing a "green" extrudate of virtually any desired cross section. Suitably, for example, the extrudate is 1 /
20 inch diameter trilobate, also 1/32
It is in the form of an inch diameter cylinder. In performing the extrusion,
If the average crystallite size of the titania is too large or the average particle size is too large, the titania-alumina mixture is difficult to extrude and the extrudate lacks the proper strength required for a catalyst support. (In contrast, alumina with an average particle size of 5 to 75 microns can be easily extruded in the absence of titania without significant variation in its extrusion properties.) The extruder mold or extrudate morphology Virtually any type of extruder can be used to form the extrudate, as it does not significantly affect the porosity or surface area of the shaped titania-binder carrier. Green extrudates are typically from about 90 to about 15
Drying by heating at a temperature in the range of 0 ° C., preferably in the range of about 110 to about 120 ° C .;
By heating to the above temperature, preferably about 500 ~
It can be calcined by heating to a temperature in the range of about 850 ° C. Since the anatase is converted to rutile,
It is desirable to minimize the calcination temperature and time to conditions where the surface area is reduced during calcination, thus providing exactly the desired rutile content.

触媒活性金属または金属類、好ましくはコバルトある
いは追加の金属または金属類でプロモートまたは変性さ
れたコバルトは、金属または金属類を中心から外方へ向
って粒子全体に均質的に均一に分布させる方法でか焼チ
タニア−結合剤担体粒子上に、あるいは実質的に粒子の
周囲表面上に分散させることができ、後者が好ましい。
例えば他の触媒の調製に対し技術的に知られた方法によ
り触媒をか焼したチタニア−結合剤担体粒子から製造す
ることができる。金属または金属類をか焼チタニア−結
合剤担体粒子全体に均一に分布させるために、例えば金
属または金属類を担体粒子上にそれぞれの金属または金
属類の所望絶対量および重量比を与えるために予め選ん
だ量に溶液から析出させることができる。適当には、例
えばコバルト、またはコバルトおよびレニウムを、担体
をコバルト含有化合物または塩あるいはレニウム含有化
合物または塩の溶液に接触させ、次いで他の成分を含浸
することにより担体との複合体にする。場合によりコバ
ルト、またはコバルトおよびレニウムを担体上に共含浸
することができる。含浸に使用されコバルトはか焼する
と分解してコバルト酸化物を与える任意の有機金属また
は無機化合物、例えばコバルトの硝酸塩、酢酸塩、アセ
チルアセトナート、ナフテン酸塩、カルボニルなどであ
ることができる。同様に、含浸に使用されるレニウム化
合物はか焼すると分解してレニウム酸化物を与える任意
の有機金属または無機化合物、例えば過レニウム酸、過
レニウム酸アンモニウムなどであることができる。使用
される含浸溶液の量は担体の完全な浸漬に十分な、通
常、含浸溶液中の金属または金属類、濃度により、容積
で担体の約1〜20倍の範囲内であるべきである。含浸処
理は室温または高温を含む広範囲の条件下で行なうこと
かできる。一方、触媒活性コバルト成分は、最も好まし
くはか焼チタニア−結合剤粒子の周囲表面上に約20〜約
250ミクロン、好ましくは約40〜約150ミクロンの平均厚
さの範囲内の薄い触媒活性表面層またはフィルムとし
て、約0.01〜約0.15グラム(g)毎立方センチメートル
(cc)、好ましくは約0.03〜約0.09g/cc触媒の範囲内の
金属コバルト重量毎触媒充填かさ容積として示されるコ
バルトの荷重で分散され、担持される。粒子の表面に位
置する薄い触媒活性層中の高コバルト金属荷重の特徴は
合成ガスからの液体炭化水素の生成における触媒の活
性、選択性および生産性を最適化し、同時にメタン形成
を最小化することができる。
The catalytically active metal or metals, preferably cobalt or cobalt promoted or modified with additional metals or metals, may be distributed in a manner that uniformly distributes the metal or metals from the center outwards throughout the particle. It can be dispersed on the calcined titania-binder carrier particles or substantially on the surrounding surface of the particles, the latter being preferred.
For example, the catalyst can be prepared from calcined titania-binder carrier particles by methods known in the art for the preparation of other catalysts. In order to distribute the metal or metals evenly throughout the calcined titania-binder carrier particles, for example, the metals or metals are pre-coated to give the desired absolute amounts and weight ratios of the respective metals or metals on the carrier particles. A selected amount can be precipitated from the solution. Suitably, for example, cobalt, or cobalt and rhenium, is complexed with the carrier by contacting the carrier with a solution of a cobalt-containing compound or salt or a rhenium-containing compound or salt, followed by impregnation with other components. Optionally, cobalt or cobalt and rhenium can be co-impregnated on the support. The cobalt used for the impregnation can be any organometallic or inorganic compound which decomposes upon calcination to give a cobalt oxide, such as cobalt nitrate, acetate, acetylacetonate, naphthenate, carbonyl and the like. Similarly, the rhenium compound used for the impregnation can be any organometallic or inorganic compound that decomposes upon calcination to give a rhenium oxide, such as perrhenic acid, ammonium perrhenate and the like. The amount of impregnating solution used should be in the range of about 1 to 20 times the volume of the support, sufficient for the complete immersion of the support, usually depending on the metal or metals, concentration in the impregnating solution. The impregnation can be performed under a wide range of conditions including room temperature or high temperature. On the other hand, the catalytically active cobalt component is most preferably present on the surrounding surface of the calcined titania-binder particles at about 20 to about
About 0.01 to about 0.15 grams (g) per cubic centimeter (cc), preferably about 0.03 to about 0.09, as a thin catalytically active surface layer or film within an average thickness of 250 microns, preferably about 40 to about 150 microns. Dispersed and loaded with a cobalt load, expressed as the catalyst bulk volume per weight of metal cobalt within the g / cc catalyst range. The feature of high cobalt metal loading in a thin catalytically active layer located on the surface of the particles is to optimize the activity, selectivity and productivity of the catalyst in the production of liquid hydrocarbons from synthesis gas while minimizing methane formation Can be.

表面含浸触媒は、コバルト化合物の単独または助触媒
金属化合物または化合物類との混合物における希溶液を
スプレーとして熱チタニア−結合剤担体粒子に反復接触
させるスプレー技術により製造することができる。粒状
担体粒子はスプレーに接触させるときに約140℃に等し
いかまたはそれ以上の温度に維持され、適当にはチタニ
ア−結合剤担体粒子の温度は約140℃からコバルト化合
物またはそれとの混合物中の化合物類の分解温度まで、
好ましくは約140〜約190℃の範囲内にある。溶液中に使
用されるコバルト化合物は初期の接触またはか焼で分解
してコバルト酸化物を与える任意の有機金属または無機
化合物、例えば硝酸コバルト、酢酸コバルト、コバルト
アセチルアセトナート、ナフテン酸コバルト、コバルト
カルボニルであることができる。硝酸コバルトが殊に好
ましく、コバルトハロゲン化物および硫酸塩は一般に避
けるべきである。コバルト塩は適当な溶媒、例えば水、
有機または炭化水素溶媒例えばアセトン、メタノール、
ペンタンなど中に溶解することができる。使用される溶
液の全量は適当な触媒荷重を供給し、フィルムが担体と
溶媒との間の反復接触により確立されるのに十分である
べきである。好ましい触媒はチタニア−結合剤剤担体、
殊にチタニア部分がルチルからなる担体上に分散された
コバルト、またはコバルトおよび助触媒から実質的にな
るものである。適当には、熱チタニア−結合担体粒子は
コバルト化合物またはコバルト化合物プラス助触媒金属
化合物、約0.05〜約0.25g/ml、好ましくは約0.10〜約0.
20g/mlを含むスプレーに、一般に少くとも約3〜約12接
触、好ましくは約5〜約8接触、接触させ、介在乾燥お
よびか焼段階が所要厚さの表面フィルムの形成に必要で
ある。換言すれば、所要の厚さおよび組成のフィルムを
形成するために熱チタニア−結合剤担体粒子を、スプレ
ー接触自体と次の乾燥およびか焼とを含む第1サイク
ル、それ自体と次の乾燥およびか焼を含む第2サイクル
など中でスプレー接触させる。乾燥段階は一般に約20℃
以上、好ましくは約20〜約125℃の範囲内の温度で、か
焼段階は約150℃以上、好ましくは約150〜約300℃の範
囲内の温度で行なわれる。
The surface impregnated catalyst can be prepared by a spray technique in which a dilute solution of the cobalt compound alone or in a mixture with the co-catalyst metal compound or compounds is repeatedly contacted with the hot titania-binder carrier particles as a spray. The particulate carrier particles are maintained at a temperature equal to or greater than about 140 ° C. when contacted with the spray, and suitably the temperature of the titania-binder carrier particles is from about 140 ° C. to the compound in the cobalt compound or mixture therewith. Up to the decomposition temperature of
Preferably it is in the range of about 140 to about 190C. The cobalt compound used in the solution is any organometallic or inorganic compound that decomposes on initial contact or calcination to give a cobalt oxide, such as cobalt nitrate, cobalt acetate, cobalt acetylacetonate, cobalt naphthenate, cobalt carbonyl Can be Cobalt nitrate is particularly preferred and cobalt halides and sulphates are generally to be avoided. The cobalt salt is a suitable solvent, such as water,
Organic or hydrocarbon solvents such as acetone, methanol,
It can be dissolved in pentane and the like. The total volume of solution used should provide adequate catalytic loading and should be sufficient for the film to be established by repeated contact between the carrier and the solvent. Preferred catalysts are titania-binder carrier,
In particular, the titania moiety consists essentially of cobalt dispersed on a support consisting of rutile, or of cobalt and a cocatalyst. Suitably, the thermal titania-bound carrier particles comprise a cobalt compound or a cobalt compound plus a promoter metal compound, from about 0.05 to about 0.25 g / ml, preferably from about 0.10 to about 0.
A spray containing 20 g / ml is generally contacted with at least about 3 to about 12 contacts, preferably about 5 to about 8 contacts, and an intervening drying and calcining step is required to form a surface film of the required thickness. In other words, to form a film of the required thickness and composition, the hot titania-binder carrier particles are subjected to a first cycle comprising spray contact itself and subsequent drying and calcination, itself and subsequent drying and calcination. Spray contact, such as during a second cycle involving calcination. The drying stage is generally about 20 ° C
Above, preferably at a temperature in the range of about 20 to about 125C, the calcination step is performed at a temperature of about 150C or more, preferably in the range of about 150 to about 300C.

金属例えばレニウム、ジルコニウム、ハフニウム、セ
リウム、トリウムおよびウラン、またはそれらの化合物
をコバルトに添加して触媒の活性および再生性を高める
ことができる。従って、担体粒子全体に均一に分散した
コバルト金属を含む触媒、あるいはコバルトを担体粒子
上に薄い触媒活性層またはフィルムとして分散させたも
のは触媒活性量のコバルトに加えてレニウム、ジルコニ
ウム、ハフニウム、セリウム、ウランおよびトリウムの
任意の1つまたはそれ以上、それらの嵌合物、あるいは
これらと他の金属またはそれらの化合物との混合物を含
むことができる。従って、好ましい触媒活性金属はコバ
ルト−レニウム、コバルト−ジルコニウム、コバルト−
ハフニウム、コバルト−セリウム、コバルト−ウランお
よびコバルト−トリウムを、他の金属またはそれらの化
合物の追加の存在下または存在なく含む。
Metals such as rhenium, zirconium, hafnium, cerium, thorium and uranium, or compounds thereof, can be added to cobalt to enhance the activity and regenerability of the catalyst. Therefore, catalysts containing cobalt metal uniformly dispersed throughout the carrier particles, or those in which cobalt is dispersed as a thin catalytically active layer or film on the carrier particles, include rhenium, zirconium, hafnium, cerium in addition to the catalytically active amount of cobalt. , Uranium and thorium, any one or more of them, their fittings, or mixtures of these with other metals or compounds thereof. Thus, preferred catalytically active metals are cobalt-rhenium, cobalt-zirconium, cobalt-
Hafnium, cobalt-cerium, cobalt-uranium and cobalt-thorium are included in the presence or absence of other metals or compounds thereof.

殊に好ましい触媒はコバルト、またはコバルトおよび
助触媒をチタニア−結合剤担体粒子上に分散させ、その
チタニア成分がASTM D 3720−78:X線回析の使用によ
る二酸化チタン顔料中のアナタース対ルチルの比に対す
る標準試験法、により測定して少なくとも約3:2のルチ
ル:アナタース重量比を有するものである。一般に、触
媒はそのチタニア成分が少なくとも約3:2〜約100:1また
はそれ以上、より好ましくは約4:1〜約100:1またはそれ
以上の範囲内にルチル:アナタース比を有するものであ
る。レニウム、ジルコニウム、ハフニウム、セリウム、
トリウムまたはウラン金属の任意の1つがそれぞれ助触
媒としてコバルトに加えられる場合に、金属は約30:1〜
約2:1の、好ましくは約20:1〜約5:1の範囲内のコバル
ト:金属助触媒の重量比を与える十分な濃度にコバルト
に添加される。レニウムおよびハフニウムは好ましい助
触媒金属であり、レニウムは絶対ベースで改良された活
性維持のプロモートに一層有効であり、ハフニウムは費
用効果ベースで一層有効である。これらの触媒組成物が
低いメタン選択性でありながら高い生産性で、主にC10
+線状パラフィンおよびオレフィンであり、非常にわず
かの酸素化物をもつ生成物を生ずることが認められた。
これらの触媒はまた一酸化炭素および水素の留出物燃料
への転化において高い活性、高い選択性および高い活性
維持を与える。
A particularly preferred catalyst is cobalt or cobalt and a cocatalyst dispersed on titania-binder carrier particles, the titania component of which is ASTM D 3720-78: Anatase to rutile in titanium dioxide pigment by use of X-ray diffraction. It has a rutile: anatase weight ratio of at least about 3: 2 as measured by standard test methods for ratios. Generally, the catalyst is one whose titania component has a rutile: anatase ratio in the range of at least about 3: 2 to about 100: 1 or more, more preferably about 4: 1 to about 100: 1 or more. . Rhenium, zirconium, hafnium, cerium,
When any one of the thorium or uranium metals is added to cobalt as a co-catalyst, respectively, the metals can be from about 30: 1 to about 30: 1.
Cobalt is added to a concentration sufficient to provide a weight ratio of cobalt: metal promoter of about 2: 1, preferably in the range of about 20: 1 to about 5: 1. Rhenium and hafnium are the preferred promoter metals, rhenium is more effective in promoting improved activity retention on an absolute basis, and hafnium is more effective on a cost effective basis. These catalyst compositions have low methane selectivity but high productivity, mainly C 10
+ It was found to be a product of linear paraffins and olefins with very little oxygenates.
These catalysts also provide high activity, high selectivity and high activity retention in the conversion of carbon monoxide and hydrogen to distillate fuel.

合成ガス反応の実施において、COおよびH2反応混合物
に関する全圧は一般に約5.6kg/cm2ゲージ圧(約80psi
g)以上、好ましくは約9.8kg/cm2ゲージ圧(約140psi
g)以上に維持される。生成物中のC10+炭化水素の濃度
を高めるために一酸化炭素および水素を約0.5:1以上、
好ましくは約1.7:1に等しいかまたはそれ以上のH2:COの
モル比で用いることが望ましい。適当には、H2:COモル
比は約0.5:1〜約4:1の範囲内にあり、好ましくは一酸化
炭素および水素は約1.7:1〜約2.5:1の範囲内のモル比
H2:COで使用される。一般に反応は、一酸化炭素および
水素の気体混合物の標準容積(0℃、1気圧)毎時毎触
媒容積として測定して約100〜約5000V/時/V、好ましく
は約300〜約1500V/時/Vの範囲内の時間基準のガス空間
速度で行なわれる。反応は約160〜約290℃、好ましくは
約190〜約260℃の範囲内の温度で行なわれる。圧力は好
ましくは約5.6〜約42.2kg/cm2ゲージ圧(約80〜約600ps
ig)、より好ましくは約9.8〜28.1kg/cm2ゲージ圧(約1
40〜約400psig)の範囲内である。生成物は一般に、好
ましくは60パーセントまたはそれ以上、より好ましくは
75パーセントまたはそれ以上の、160℃(320゜F)以上
で沸騰するC10+液体炭化水素を含む。
In the practice of the synthesis gas reaction, the total pressure about CO and H 2 reaction mixture is generally from about 5.6 kg / cm 2 gauge pressure (about 80psi
g) or more, preferably about 9.8 kg / cm 2 gauge pressure (about 140 psi).
g) is maintained above. About 0.5: 1 or more of carbon monoxide and hydrogen to increase the concentration of C 10 + hydrocarbons in the product,
It is desirable to use a H 2 : CO molar ratio preferably equal to or greater than about 1.7: 1. Suitably, H 2: CO molar ratio of about 0.5: 1 to about 4: 1; preferably carbon monoxide and hydrogen is from about 1.7: 1 to about 2.5 molar ratio in the 1 range
H 2 : Used in CO. Generally, the reaction is carried out at about 100 to about 5000 V / hr / V, preferably about 300 to about 1500 V / hr / V, measured as a standard volume of gaseous mixture of carbon monoxide and hydrogen (0 ° C., 1 atmosphere) per hour per catalyst volume. It is performed at a gas hourly space velocity in the range of V. The reaction is performed at a temperature in the range of about 160 to about 290C, preferably about 190 to about 260C. The pressure is preferably about 5.6 to about 42.2 kg / cm 2 gauge pressure (about 80 to about 600 ps
ig), more preferably about 9.8 to 28.1 kg / cm 2 gauge pressure (about 1
40 to about 400 psig). The product is generally preferably 60 percent or more, more preferably
Of 75 percent or more, including C 10 + liquid hydrocarbons boiling at 160 ° C. (320 ° F) or higher.

次の最初の組の試験において、チタニアとアルミナ、
シリカおよびジルコニアのそれぞれとを混合してチタニ
ア−結合剤担体粒子を形成し、担体粒子の重量を基にし
て結合剤が濃度で1〜21パーセントおよびそれ以上の範
囲内にあり、チタニアがチタニア−結合剤担体粒子の残
部を構成する一連の調製物が記載される。異なる形状の
種々のチタニア−結合剤組成物の細孔容積および表面積
を、結合剤を含まないチタニア担体粒子と比較する。
In the first set of tests below, titania and alumina,
The silica and zirconia are each mixed to form titania-binder carrier particles, wherein the binder is in the concentration range of 1 to 21 percent and more based on the weight of the carrier particles, and the titania is titania- A series of preparations that make up the balance of the binder carrier particles are described. The pore volume and surface area of different titania-binder compositions of different shapes are compared to binder-free titania carrier particles.

実施例1 最初の一連の調製において、チタニアをアルミナ、シ
リカまたはジルコニア結合剤と混合した。アルミナ結合
剤はAl(OC4H9の加水分解により製造し、またはチ
タニア−アルミナ複合体をAl(OC4H9およびTi(OC3
H7の共加水分解により製造した。チタニアは市販源
から直接購入した。チタニアをアルミナ結合剤、水およ
び潤滑剤−メトセルまたはポリグリコールと十分に混合
した。混合物は、押出物が形成される場合、低トルク0.
8インチのウェルデング・エンジニア(Welding Enginee
r)の押出機器、またはカーバー・プレス(Carver Pres
s)押出機の使用により1/20インチ直径のトリローブ(T
RIL)または1/32インチ直径の円柱(1/32)として押出
し、120℃で乾燥し、次いで500〜850℃でか焼した。
Example 1 In a first series of preparations, titania was mixed with an alumina, silica or zirconia binder. The alumina binder is produced by hydrolysis of Al (OC 4 H 9 ) 3 or the titania-alumina composite is made of Al (OC 4 H 9 ) 3 and Ti (OC 3 H 3 ) 3.
Was prepared by co-hydrolysis of H 7) 4. Titania was purchased directly from commercial sources. The titania was mixed well with the alumina binder, water and lubricant-methosel or polyglycol. The mixture is low in torque when extrudates are formed.
8 inch Welding Enginee
r) Extrusion equipment or Carver Pres
s) Trilobes (T
RIL) or extruded as 1/32 inch diameter cylinders (1/32), dried at 120 ° C and then calcined at 500-850 ° C.

個々の調製物は表1の参照により示され、担体No.1〜
8(および47)は標準物質として結合剤なく調製した押
出物および球の両形態における純チタニアを表示する。
表1の担体No.9〜14(および43〜46)は3例を除いてチ
タニアより多く結合剤を含む押出物であり、若干の純ア
ルミナ押出物の例を含む。担体No.15〜41は本発明の担
体を例示し、これらの担体は種々の濃度における結合剤
含量の効果を示す。担体No.15〜22は殊に、650℃でか焼
したトリロベイト形態を用いたアルミナ結合剤含量の効
果を示す。添加アルミナが多いほど生ずる細孔容積およ
び表面積が高い。担体No.23〜29は好ましい組成、すな
わち96.5%TiO2/3.5%Al2O3、に関するか焼の効果を示
す。担体No.30〜33はスチーミングがか焼と等価である
ことを示し、ともにアナタースをルチルに転化し、表面
積の低下を生ずる。細孔容積もまた低下し、中位細孔直
径が増大する。広範囲のアルミナ含有物質が結合剤とし
て有用であると実証される。純アルミナゲルおよびアル
コキシド加水分解により製造したチタニア−アルミナコ
ゲルは、多くの種々の市販アルミナと同様に満足であ
る。担体No.37〜41はシリカおよびジルコニアもまた結
合剤として機能すること、および他源のチタニアが適当
な出発物質であることを示す。
The individual preparations are indicated by reference to Table 1 and have the carrier nos.
8 (and 47) indicate pure titania in both extrudate and sphere form prepared without binder as a standard.
Carrier Nos. 9-14 (and 43-46) in Table 1 are extrudates containing more binder than titania except for three cases, including some examples of pure alumina extrudates. Carriers Nos. 15-41 exemplify the carriers of the present invention, and these carriers show the effect of binder content at various concentrations. Carriers Nos. 15 to 22 show in particular the effect of alumina binder content using the trilobate form calcined at 650 ° C. The higher the added alumina, the higher the resulting pore volume and surface area. Carrier No.23~29 Preferred compositions shown, i.e. 96.5% TiO 2 /3.5%Al 2 O 3 , the effect of calcination related. Carriers Nos. 30-33 show that steaming is equivalent to calcination and both convert anatase to rutile, resulting in a decrease in surface area. Pore volume also decreases and median pore diameter increases. A wide range of alumina-containing materials have been demonstrated to be useful as binders. Pure alumina gels and titania-alumina cogels prepared by alkoxide hydrolysis are as satisfactory as many different commercial aluminas. Carriers Nos. 37-41 show that silica and zirconia also function as binders, and that other sources of titania are suitable starting materials.

次に「表見出しの凡例」および表1について説明す
る。凡例は表1に対する背景情報を与える。
Next, "Legend of Table Heading" and Table 1 will be described. The legend gives background information for Table 1.

これらのデータは第1図の水銀ポロシメトリーにより
測定した細孔容積(PV)対BET分析による表面積(SA)
のプロットにより図示される。データ点は2つの異なる
範疇:(1)純チタニア担体、または結合剤のないチタ
ニア担体の下方曲線、および(2)結合剤を含むチタニ
ア担体の上方曲線、に属する。異なる記号の使用により
示したように、上方曲線は約20パーセントより多い(黒
四角)または未満(黒円)の結合剤を含む物質に分ける
ことができる。後者は所与表面積で純チタニア、または
結合剤を含まないチタニアよりも有意に高い細孔容積を
示す。この曲線の低部分内の細孔容積および表面積の正
確な水準は結合剤含量を約1〜20%の間で、および担体
に適した最終か焼温度を変えることにより得られる。結
合剤濃度が増加すると細孔容積および表面積が増加す
る。か焼温度を高くすると細孔容積および表面積が低下
する。最適には、用いる結合剤の量が約10パーセントを
越えるべきでなく、好ましくは約5パーセントを越える
べきではない。
These data are based on pore volume (PV) measured by mercury porosimetry in FIG. 1 versus surface area (SA) by BET analysis.
Is illustrated by a plot of The data points fall into two different categories: (1) a lower curve for a pure titania carrier or a titania carrier without a binder, and (2) an upper curve for a titania carrier with a binder. As indicated by the use of different symbols, the upper curve can be broken down into substances containing more than about 20 percent (closed squares) or less than (closed circles) binder. The latter show a significantly higher pore volume than pure titania or titania without binder at a given surface area. The exact level of pore volume and surface area within the lower part of this curve is obtained by varying the binder content between about 1-20% and varying the final calcination temperature appropriate for the support. Increasing binder concentration increases pore volume and surface area. Increasing the calcination temperature reduces the pore volume and surface area. Optimally, the amount of binder used should not exceed about 10 percent, and preferably should not exceed about 5 percent.

押出物形状の触媒は他の形態にまさる利点をプロセス
に提供し、前に示唆したようにチタニアのクリスタリッ
ト大きさおよび粒度は満足な押出のため、および満足な
押出物を得るために注意深く制御すべきである。次の実
施例はチタニアのクリスタリット大きさおよび粒度の重
要なことを示す。
Extrudate shaped catalysts offer advantages over other forms to the process, and as suggested earlier, titania crystallite size and particle size are carefully controlled for satisfactory extrusion and to obtain satisfactory extrudate Should. The following examples illustrate the importance of titania crystallite size and particle size.

実施例2 次の表2には種々の出所からの種々のチタニアによる
一連の押出試験の結果が列挙される。表はアナタースお
よびルチル組成、オングストローム単位でクリスタリッ
トサイズ、ミクロンでチタニアの平均粒度直径、および
0.8インチウェルディング・エンジニアの押出機中の3
孔ダイ中のチタニア通過による1/32インチ直径押出物の
製造におえるチタニアの押出適正特性を与える。
Example 2 The following Table 2 lists the results of a series of extrusion tests with various titanias from various sources. The table shows the anatase and rutile composition, crystallite size in Angstroms, average particle size diameter of titania in microns, and
3 in 0.8 inch welding engineer extruder
Gives the extrudable properties of titania in the production of 1/32 inch diameter extrudates by passing the titania through a hole die.

良好な性能が単にクリスタリットサイズが約1000オン
グストローム単位未満、好ましくは約600オングストロ
ーム単位未満であり、粒度が約5ミクロン未満、好まし
くは約2ミクロン未満であるときに得られることが明ら
かである。どちらかの性質がこれらの値を越えるとチタ
ニアは押出しが困難である。しばしば、そのような条件
を満たさないときに押出機が詰まり、生ずる押出物が非
常に弱い。
It is clear that good performance is obtained only when the crystallite size is less than about 1000 Angstroms, preferably less than about 600 Angstroms, and the particle size is less than about 5 microns, preferably less than about 2 microns. If either property exceeds these values, titania is difficult to extrude. Often, when such conditions are not met, the extruder becomes clogged and the resulting extrudate is very weak.

実施例3 この実施例はフィッシャー・トロプシュ合成、すなわ
ち一酸化炭素および水素からの炭化水素の製造、に用い
る触媒として高多孔度チタニア−結合剤担体の使用を示
す。データは有意に良好な金属分散および高い炭化水素
合成活性が、コバルトが一層多孔性の担体上に分散され
たときに生ずることを示す。
Example 3 This example illustrates the use of a high porosity titania-binder support as a catalyst for a Fischer-Tropsch synthesis, i.e., the production of hydrocarbons from carbon monoxide and hydrogen. The data show that significantly better metal dispersion and higher hydrocarbon synthesis activity occur when cobalt is dispersed on a more porous support.

表3に表1中に表示された担体から製造された触媒が
列挙され、各担体は表1中に示されたものに相応する番
号により表3中で確認される。表3は担体から製造され
た触媒の組成、それらのO2化学吸着におけるおよび炭化
水素合成試験における性能を与える。触媒は担体をロー
タリエバポレーター上で硝酸コバルトおよび過レニウム
酸のアセトン溶液で含浸し、140℃で真空乾燥器中で乾
燥し、炉中250℃で流動空気中でか焼することうにより
製造した。酸化化学吸着は25℃で、水素中450℃で16時
間還元した触媒の試料上に通したヘリウム担体ガス流か
らの酸素パルスの吸収を測定することにより行なった。
触媒試験は等容積のチタニアで希釈した触媒の小装入量
を用いて装置中で行なった。触媒は粉砕し、60〜150タ
イラーメツシュ大きさにふるい、水素中450℃で1時間
還元した。試験条件は64%H2/32%CO/4%Neのフィード
で200℃、19.7kg/cm2ゲージ圧(280psig)であった。各
例に用いた空間速度は表3中に示される。
Table 3 lists the catalysts prepared from the supports indicated in Table 1 and each support is identified in Table 3 by a number corresponding to that shown in Table 1. Table 3 The composition of the catalyst prepared from the support, giving at their O 2 chemisorption and performance in hydrocarbon synthesis test. The catalyst was prepared by impregnating the support on a rotary evaporator with an acetone solution of cobalt nitrate and perrhenic acid, drying in a vacuum oven at 140 ° C. and calcining in an oven at 250 ° C. in flowing air. Oxidation chemisorption was performed at 25 ° C by measuring the absorption of oxygen pulses from a helium carrier gas stream passed over a sample of the catalyst reduced at 450 ° C in hydrogen for 16 hours.
The catalyst test was performed in the apparatus with a small charge of catalyst diluted with an equal volume of titania. The catalyst was ground, sieved to 60-150 Tyler mesh size, and reduced in hydrogen at 450 ° C. for 1 hour. The test conditions were 200 ° C., 19.7 kg / cm 2 gauge (280 psig) with a feed of 64% H 2 /32% CO / 4% Ne. The space velocities used for each example are shown in Table 3.

触媒データを「容積生産性」によって示すことが有用
であり、それは転化した分率CO×空間速度×フィールド
中の分率COの掛算により計算される。反応器容積が高価
な項目であるので高い容積生産性が触媒の非常に望まし
い性質である。コバルト触媒上の炭化水素合成に対し、
拡散制限のないときに生産性は3因子:コバルト荷重、
コバルト分散およびコバルト酸化状態、の一次関数であ
る。荷重および分散を最大にし、同時にコバルトを炭化
水素合成において活性な唯一の相である零価状態に維持
することが望ましい。しかし、これらの因子はしばしば
相互に逆に作用し、従って最良の触媒は妥協を意味す
る。これらの3因子は本発明の定義中に考慮される。
It is useful to indicate the catalyst data by "volume productivity", which is calculated by multiplying the converted fraction CO x space velocity x fraction CO in the field. High volume productivity is a highly desirable property of the catalyst because reactor volume is an expensive item. For hydrocarbon synthesis on a cobalt catalyst,
Without diffusion limits, productivity is a factor of three: cobalt loading,
It is a linear function of cobalt dispersion and cobalt oxidation state. It is desirable to maximize loading and dispersion while at the same time keeping the cobalt at zero valence, the only phase active in hydrocarbon synthesis. However, these factors often work counter to each other, so the best catalyst means a compromise. These three factors are considered in the definition of the present invention.

これらの触媒で行なった試験は「コバルト生産性」対
担体中の結合剤含量をプロットした第2図中に要約され
る。コバルト生産性は容積生産性を単に容積コバルト荷
重により割ることにより計算される。第2図に示される
ように、コバルト生産性が少量の結合剤の添加で有意に
増加し、次いで20%以上の結合剤の後降下する。この活
性クレジットが本発明の鍵および新規な特徴である。
The tests performed on these catalysts are summarized in FIG. 2, which plots "cobalt productivity" versus binder content in the support. Cobalt productivity is calculated by simply dividing volumetric productivity by the volumetric cobalt load. As shown in FIG. 2, the cobalt productivity increases significantly with the addition of a small amount of binder and then drops after more than 20% of binder. This activation credit is the key and novel feature of the present invention.

少量の結合剤の混入による活性の増加はコバルト分散
の増加に帰着される。O2化学吸着分析は、相対分散の尺
度であるO/Coの比が担体の細孔容積と相関することを示
す。従って、結合剤が担体の細孔容積を増加するので、
分散が触媒に関して増加する。この傾向は実際にずっと
純アルミナまで続く。しかし、炭化水素合成活性は結合
材が添加されるにつれて増加し続けない。実際に、担体
が「アルミナ状」になりすぎるので活性が低下する。X
線光電子分光法による表面分析は、酸化コバルトが完全
な還元を生ずるチタニアに比べてアルミナ上で単に一部
還元されることを示す。従って、多すぎる結合剤は高い
分散を与えるがしかしこの潜在的利点が不十分な還元性
により相殺以上である。
Increased activity due to incorporation of small amounts of binder results in increased cobalt dispersion. O 2 chemisorption analysis shows that the O / Co ratio, a measure of relative variance, correlates with the pore volume of the support. Thus, since the binder increases the pore volume of the carrier,
Dispersion increases for the catalyst. This trend actually continues all the way to pure alumina. However, the hydrocarbon synthesis activity does not continue to increase as the binder is added. In fact, the activity is reduced because the support becomes too "alumina-like". X
Surface analysis by line photoelectron spectroscopy shows that cobalt oxide is only partially reduced on alumina as compared to titania, which produces complete reduction. Thus, too much binder gives high dispersion but this potential advantage is more than offset by poor reducibility.

チタニアとアルミナとの間の差異は、コバルト生産性
値を次のように「ターンオーバー数」に変換することに
より非常に明瞭に示される: TON対結合剤含量のプロット、第3図、は担体中への
結合剤の混入に伴なう「固有」活性における激しい減少
を示す。20%未満、好ましくは10%未満、最も好ましく
は5%未満ま結合剤が最高のコバルトターンオーバー数
の維持のために存在すべきである。
The difference between titania and alumina is very clearly shown by converting the cobalt productivity values into "turnover numbers" as follows: The plot of TON vs. binder content, FIG. 3, shows a sharp decrease in "intrinsic" activity with incorporation of binder into the carrier. Less than 20%, preferably less than 10%, and most preferably less than 5% of the binder should be present to maintain the highest cobalt turnover number.

従って適当量の結合剤が拡散制限のないときに触媒の
容積生産性を高めることができる。これは、殊に粉末形
態の触媒を含め、すべての触媒形態に対する重要な結果
である。しかし、より多孔性の担体のクレジットは、多
くの固定層形態の触媒の場合のように、若干の拡散制限
に遭遇するときに重要性を増す。これに関し、過剰の多
孔性が反応物の拡散を助け、追加活性および重要な選択
性の利点を生ずる。本発明のこの特徴は、例えばフロメ
ントほか(Froment and Bischoff)の「ケミカル・リア
クター・アナリシス・アンド・デザイン(CHEMICAL REA
CIOR ANALYSIS AND DESIGN)」167頁中に論議された基
礎拡散理論により支持される。
Thus, the volumetric productivity of the catalyst can be increased when the appropriate amount of binder is not diffusion limited. This is an important result for all catalyst forms, especially including those in powder form. However, more porous support credits become more important when some diffusion limitations are encountered, as is the case with many fixed-bed catalysts. In this regard, excess porosity helps reactant diffusion, resulting in additional activity and significant selectivity advantages. This feature of the present invention is described, for example, by Froment and Bischoff in "Chemical Reactor Analysis and Design".
CIOR ANALYSIS AND DESIGN) on page 167.

実施例4 表4中に要約された試験48および49はコバルトを担体
の表面上に被覆させた触媒であり、これらのデータは若
干の拡散制限の条件下の改良された多孔性の利点を示
す。触媒は熱担体粒子の硝酸コバルトおよび過レニウム
酸の水溶液による反復スプレーにより製造した。容積コ
バルト荷重および表面金属コーティングの厚さはこの比
較において実質的に一定である。従って、試験48に比較
して試験49の生産性および選択性クレジットは結合剤と
して3.5%アルミナを含む一層多孔性の担体の使用に帰
着させることができる。
Example 4 Tests 48 and 49, summarized in Table 4, are catalysts with cobalt coated on the surface of the support and these data show the advantage of improved porosity under some diffusion-limited conditions . The catalyst was prepared by repeated spraying of the heat carrier particles with an aqueous solution of cobalt nitrate and perrhenic acid. The volumetric cobalt load and the thickness of the surface metal coating are substantially constant in this comparison. Thus, the productivity and selectivity credit of test 49 as compared to test 48 can be reduced to the use of a more porous support containing 3.5% alumina as a binder.

従って、これらのデータは明らかに、改良された多孔
度を有するチタニア担体が、コバルト炭化水素合成触媒
の製造に用いたときに優れた性質を与えることを示す。
高多孔度が良好なコバルト分散を生じ、それが高い固有
炭化水素合成活性を生ずる。高多孔度はまた若干拡散制
限される、例えば表面金属被覆される触媒の形態に有益
である。
Thus, these data clearly show that titania supports with improved porosity provide superior properties when used in the manufacture of cobalt hydrocarbon synthesis catalysts.
High porosity results in good cobalt dispersion, which results in high intrinsic hydrocarbon synthesis activity. High porosity is also beneficial in the form of catalysts that are somewhat diffusion limited, eg, surface metallized.

炭化水素合成反応はこれらの触媒で固定層または沸騰
層反応器中で、非転化ガスおよび(または)液体生成物
を再循環しまたは再循環しないで考えることができる。
得られるC10+生成物は線状パラフィンおよびオレフィ
ンの混合物であり、それはさらに精製して高品質中間留
分燃料または自動車用ガソリン、ディーゼル燃料、ジェ
ット燃料などに高級品化することができる。約C10〜約C
20の範囲内の炭素数のプレミアム級中間留分燃料もまた
C10+炭化水素生成物から製造できる。
Hydrocarbon synthesis reactions can be considered with or without recycle of unconverted gas and / or liquid products in fixed bed or boiling bed reactors with these catalysts.
The resulting C 10 + product is a mixture of linear paraffins and olefins, which can be further refined and upgraded to high quality middle distillate fuels or automotive gasoline, diesel fuel, jet fuel, and the like. About C 10 to about C
Premium grade middle distillate fuels with carbon numbers in the range of 20
It can be prepared from C 10 + hydrocarbon product.

種々の改変または変更を本発明の精神および範囲から
逸脱することなくなすことができることは明らかであ
る。
Obviously, various modifications or changes can be made without departing from the spirit and scope of the invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図は水銀ポロシメトリーによって測定した細孔容積
(PV)対BET分析による表面積(SA)のプロットを示
し、第2図は本発明の触媒で行なった試験のコバルト生
産性対担体中の結合剤含量のプロットを示し、第3図は
ターンオーバー数対担体中の結合剤含有量のプロットを
示す。
FIG. 1 shows a plot of pore volume (PV) measured by mercury porosimetry versus surface area (SA) by BET analysis, and FIG. 2 shows the cobalt productivity versus binding in the support of a test performed with the catalyst of the present invention. FIG. 3 shows a plot of agent content, and FIG. 3 shows a plot of turnover number versus binder content in the carrier.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 11/02 C07C 11/02 // B01J 21/06 B01J 21/06 Z C07B 61/00 300 C07B 61/00 300 (56)参考文献 特開 昭62−65749(JP,A) 特開 昭59−102440(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01J 21/00 - 38/74──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification code FI C07C 11/02 C07C 11/02 // B01J 21/06 B01J 21/06 Z C07B 61/00 300 C07B 61/00 300 (56) References JP-A-62-65749 (JP, A) JP-A-59-102440 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01J 21/00-38/74

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミナ、ジルコニアおよびシリカからな
る群から選ばれる無機酸化物結合剤がチタニア−結合剤
担体の重量を基にして0.1〜20パーセント混合されてい
るチタニア担体上に分散された、合成ガスの炭化水素へ
の転化に対して活性なコバルトを触媒有効量含む触媒組
成物。
An inorganic oxide binder selected from the group consisting of alumina, zirconia and silica, dispersed on a titania carrier that is 0.1 to 20 percent mixed based on the weight of the titania binder carrier. A catalyst composition comprising a catalytically effective amount of cobalt active for the conversion of gas to hydrocarbon.
【請求項2】チタニア−結合剤担体の細孔容積が0.2〜
0.5cc/gの範囲内にあり、表面積が8〜70m2/gの範囲内
にある、請求項(1)記載の組成物。
2. The titania binder carrier having a pore volume of 0.2 to 0.2.
0.5 cc / g have a in the range of surface area is within the range of 8~70m 2 / g, according to claim (1) composition.
【請求項3】コバルトがレニウム、ハフニウム、ジルコ
ニウム、セリウム、トリウムおよびウランからなる群か
ら選ばれる金属でプロモートされる、請求項(2)記載
の組成物。
3. The composition of claim 2, wherein the cobalt is promoted with a metal selected from the group consisting of rhenium, hafnium, zirconium, cerium, thorium, and uranium.
【請求項4】担体のチタニア成分が少なくとも3:2のル
チル:アナタース重量比を有する、請求項(1)記載の
組成物。
4. The composition according to claim 1, wherein the titania component of the carrier has a rutile: anatase weight ratio of at least 3: 2.
【請求項5】担体のチタニア成分が3:2〜100:1およびそ
れ以上の範囲内のルチル:アナタース重量比を有する、
請求項(4)記載の組成物。
5. The titania component of the carrier having a rutile: anatase weight ratio in the range of 3: 2 to 100: 1 and higher.
The composition according to claim (4).
【請求項6】無機酸化物結合剤がチタニア担体内に0.5
〜10パーセントの範囲内の濃度で含まれる、請求項
(1)記載の組成物。
6. An inorganic oxide binder having a titania content of 0.5%
The composition of claim 1, wherein the composition is included at a concentration in the range of 10 percent.
【請求項7】触媒金属がコバルトであり、無機酸化物結
合剤がアルミナである、請求項(1)記載の組成物。
7. The composition according to claim 1, wherein the catalyst metal is cobalt and the inorganic oxide binder is alumina.
【請求項8】合成ガスを高活性で炭化水素に転化する方
法であって、反応条件において一酸化炭素および水素
の、0.5:1に等しいかまたはそれ以上のH2/COモル比の混
合物からなるフィードを5.6kg/cm2ゲージ圧より高いか
または等しい圧力で、請求項(1)〜(7)のいずれか
1項に記載の触媒組成物に接触させることを含む方法。
8. A process for converting synthesis gas into hydrocarbons with high activity, comprising the step of reacting a mixture of carbon monoxide and hydrogen at a H 2 / CO molar ratio equal to or greater than 0.5: 1 under reaction conditions. A method comprising contacting the feed with a catalyst composition according to any one of claims (1) to (7) at a pressure greater than or equal to 5.6 kg / cm 2 gauge pressure.
JP1306362A 1988-11-23 1989-11-24 Improved titania catalyst, its preparation and use in Fischer-Tropsch synthesis Expired - Fee Related JP2849134B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US275252 1988-11-23
US07/275,252 US4992406A (en) 1988-11-23 1988-11-23 Titania-supported catalysts and their preparation for use in Fischer-Tropsch synthesis

Publications (2)

Publication Number Publication Date
JPH02191549A JPH02191549A (en) 1990-07-27
JP2849134B2 true JP2849134B2 (en) 1999-01-20

Family

ID=23051494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1306362A Expired - Fee Related JP2849134B2 (en) 1988-11-23 1989-11-24 Improved titania catalyst, its preparation and use in Fischer-Tropsch synthesis

Country Status (7)

Country Link
US (1) US4992406A (en)
EP (1) EP0370757B1 (en)
JP (1) JP2849134B2 (en)
AU (1) AU621955B2 (en)
CA (1) CA1337409C (en)
MY (1) MY106192A (en)
NO (1) NO180572C (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34412E (en) * 1981-09-07 1993-10-19 Papst-Motoren Gmbh & Co. Kg Disk storage drive having motor drive with non-corrodible hub
US4945116A (en) * 1988-12-29 1990-07-31 Uop Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst
US5397806A (en) * 1991-11-14 1995-03-14 Exxon Research & Engineering Co. Method for stabilizing titania supported cobalt catalyst (C-2715)
ZA935964B (en) * 1992-08-18 1994-03-15 Shell Res Ltd Process for the preparation of hydrocarbon fuels
GB9221976D0 (en) * 1992-10-20 1992-12-02 Alcan Int Ltd Shaped articles of zirconia
US5811365A (en) * 1992-12-04 1998-09-22 The British Petroleum Company, P.L.C. Zinc oxide composition for use in catalysts
CN1063472C (en) * 1994-07-22 2001-03-21 国际壳牌研究有限公司 Paint formulations
EP0790073A4 (en) * 1994-11-04 1999-05-12 Deqing Chemical Industry And T TITANIA (TiO 2) SUPPORT AND PROCESS FOR ITS PREPARATION AND USE THE SAME
US5962367A (en) * 1994-11-04 1999-10-05 Dequing Chemical Industry And Technologies Co., Ltd. Titania (TiO2) support and process for preparation and use of the same
DZ2013A1 (en) * 1995-04-07 2002-10-23 Sastech Ltd Catalysts.
US6296757B1 (en) 1995-10-17 2001-10-02 Exxon Research And Engineering Company Synthetic diesel fuel and process for its production
US5689031A (en) 1995-10-17 1997-11-18 Exxon Research & Engineering Company Synthetic diesel fuel and process for its production
US5766274A (en) 1997-02-07 1998-06-16 Exxon Research And Engineering Company Synthetic jet fuel and process for its production
DE69823550T2 (en) * 1997-12-30 2005-04-14 Shell Internationale Research Maatschappij B.V. COBALT BASED FISCHER TROPSCH CATALYST
US6117814A (en) * 1998-02-10 2000-09-12 Exxon Research And Engineering Co. Titania catalysts their preparation and use in fischer-tropsch synthesis
US6191066B1 (en) * 1998-05-27 2001-02-20 Energy International Corporation Fischer-Tropsch activity for non-promoted cobalt-on-alumina catalysts
WO2000030745A1 (en) * 1998-11-26 2000-06-02 Idemitsu Kosan Co., Ltd. Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas
US6276287B1 (en) * 1999-05-03 2001-08-21 Toda Kogyo Corporation Iron compound catalyst for inhibiting generation of dioxin and incineration process of municipal solid waste using the same
US6262132B1 (en) * 1999-05-21 2001-07-17 Energy International Corporation Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems
US6451864B1 (en) * 1999-08-17 2002-09-17 Battelle Memorial Institute Catalyst structure and method of Fischer-Tropsch synthesis
JP4949592B2 (en) * 2000-06-12 2012-06-13 サソール テクノロジー(プロプライエタリー)リミテッド Cobalt catalyst
US6706661B1 (en) * 2000-09-01 2004-03-16 Exxonmobil Research And Engineering Company Fischer-Tropsch catalyst enhancement
US7452844B2 (en) 2001-05-08 2008-11-18 Süd-Chemie Inc High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
US6765025B2 (en) 2002-01-17 2004-07-20 Dalian Institute Of Chemical Physics, Chinese Academy Of Science Process for direct synthesis of diesel distillates with high quality from synthesis gas through Fischer-Tropsch synthesis
US6822008B2 (en) * 2002-09-06 2004-11-23 Conocophillips Company Fischer-Tropsch catalysts using multiple precursors
JP4316323B2 (en) * 2002-10-04 2009-08-19 独立行政法人石油天然ガス・金属鉱物資源機構 Hydrocarbon reforming catalyst and method for producing the same
US7253136B2 (en) * 2003-04-11 2007-08-07 Exxonmobile Research And Engineering Company Preparation of titania and cobalt aluminate catalyst supports and their use in Fischer-Tropsch synthesis
US20050203195A1 (en) * 2003-08-05 2005-09-15 Yong Wang Tailored Fischer-Tropsch synthesis product distribution
MY142111A (en) * 2004-04-16 2010-09-15 Nippon Oil Corp Catalyst for fischer-tropsch synthesis and process for producing hydrocarbons
US20050284797A1 (en) * 2004-06-25 2005-12-29 Genetti William B Integrated plant process to produce high molecular weight basestocks from fischer-tropsch wax
US7892511B2 (en) * 2004-07-02 2011-02-22 Kellogg Brown & Root Llc Pseudoisothermal ammonia process
US20090011134A1 (en) * 2005-12-22 2009-01-08 Arend Hoek Zirconium Stabilised Fischer Tropsch Catalyst and Catalyst Support
US8722570B2 (en) 2007-10-26 2014-05-13 Exxonmobil Research And Engineering Company Cobalt catalyst with improved activity maintenance
US8119558B2 (en) * 2008-03-14 2012-02-21 Süd-Chemie Inc. Ultra high temperature shift catalyst with low methanation
US8507720B2 (en) * 2010-01-29 2013-08-13 Lyondell Chemical Technology, L.P. Titania-alumina supported palladium catalyst
US8273682B2 (en) 2009-12-16 2012-09-25 Lyondell Chemical Technology, L.P. Preparation of palladium-gold catalyst
US8329611B2 (en) 2009-12-16 2012-12-11 Lyondell Chemical Technology, L,P. Titania-containing extrudate
KR101297599B1 (en) * 2011-04-26 2013-08-19 한국화학연구원 Fischer-tropsch synthesis catalyst having improved heat transfer capability
US11124885B2 (en) * 2014-06-17 2021-09-21 Plug Power Inc. Anode catalyst suitable for use in an electrolyzer
US10688471B2 (en) 2015-07-14 2020-06-23 Bp P.L.C. Extruded titania-based material comprising mesopores and macropores
EP3322520A1 (en) 2015-07-14 2018-05-23 Bp P.L.C. Extruded titania-based materials comprising one or more acids or prepared using one or more acids
WO2017009432A1 (en) 2015-07-14 2017-01-19 Bp P.L.C. Extruded titania-based materials comprising quaternary ammonium compounds and/or prepared using quaternary ammonium compounds
CN108290137B (en) * 2015-07-14 2022-07-12 英国石油有限公司 Extruded titania-based material comprising zirconia

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843553B1 (en) * 1966-10-21 1973-12-19
US3966790A (en) * 1973-12-10 1976-06-29 Engelhard Minerals & Chemicals Corporation Compositions and methods for high temperature stable catalysts
US4042615A (en) * 1976-04-05 1977-08-16 Exxon Research And Engineering Co. Hydrocarbon synthesis from CO and H2 using Ni supported on a titanium oxide
DE2712909A1 (en) * 1976-04-05 1977-10-13 Exxon Research Engineering Co METHOD OF SYNTHESIS OF HYDROCARBONS
US4233183A (en) * 1979-02-06 1980-11-11 Hitachi Shipbuilding & Engineering Co., Ltd. Process for producing plate-shaped denitrating catalyst
US4593014A (en) * 1982-06-16 1986-06-03 Exxon Research And Engineering Co. Catalyst support compositions
US4508848A (en) * 1983-10-11 1985-04-02 The Standard Oil Company Catalysts and process of making
US4625030A (en) * 1984-05-23 1986-11-25 Union Carbide Corporation Potentiated nickel catalysts for amination
EP0281698B1 (en) * 1987-03-13 1991-08-21 Exxon Research And Engineering Company Improved cobalt catalysts, and use thereof for the conversion of methanol to hydrocarbons and for fischer-tropsch synthesis
US4568663A (en) * 1984-06-29 1986-02-04 Exxon Research And Engineering Co. Cobalt catalysts for the conversion of methanol to hydrocarbons and for Fischer-Tropsch synthesis
EP0231401B1 (en) * 1984-06-29 1992-09-09 Exxon Research And Engineering Company Ruthenium-rhenium-titania catalysts, and use thereof for fischer-tropsch synthesis
US4542122A (en) * 1984-06-29 1985-09-17 Exxon Research And Engineering Co. Cobalt catalysts for the preparation of hydrocarbons from synthesis gas and from methanol
EP0201670B1 (en) * 1985-05-08 1993-05-26 Volkswagen Aktiengesellschaft Device for the preparation of liquids being essentially composed of methanol
US4624942A (en) * 1985-07-03 1986-11-25 Air Products And Chemicals, Inc. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same
US4794099A (en) * 1987-01-28 1988-12-27 Exxon Research And Engineering Company SiO2 -promoted cobalt catalyst on a support of TiO2 for converting synthesis gas to heavy hydrocarbons
FR2621577B1 (en) * 1987-10-09 1990-01-12 Rhone Poulenc Chimie TITANIUM OXIDE WITH STABILIZED PROPERTIES

Also Published As

Publication number Publication date
US4992406A (en) 1991-02-12
EP0370757A1 (en) 1990-05-30
AU621955B2 (en) 1992-03-26
NO180572B (en) 1997-02-03
JPH02191549A (en) 1990-07-27
EP0370757B1 (en) 1994-05-11
MY106192A (en) 1995-03-31
NO894168D0 (en) 1989-10-19
NO180572C (en) 1997-05-14
CA1337409C (en) 1995-10-24
NO894168L (en) 1990-05-25
AU4532989A (en) 1990-05-31

Similar Documents

Publication Publication Date Title
JP2849134B2 (en) Improved titania catalyst, its preparation and use in Fischer-Tropsch synthesis
US5140050A (en) Titania catalysts, their preparation, and use in Fischer-Tropsch synthesis
US6740621B2 (en) Attrition resistant Fischer-Tropsch catalyst and support
CA2274688C (en) Process for the preparation of hydrocarbons
JP2572079B2 (en) Catalyst composition and method for producing the same
EP0935497A1 (en) Catalytic composition suitable for the fischer-tropsch process
JPH11507866A (en) Catalyst and method for producing hydrocarbons
EP0977629A1 (en) Preparation of high activity catalysts; the catalysts and their use
EA008584B1 (en) Process for preparing cobalt catalysts on titania support
US11203717B2 (en) Fischer-Tropsch process, supported Fischer-Tropsch synthesis catalyst and uses thereof
AU631310B2 (en) Process for the conversion of methanol into liquid hydrocarbons
CN113272407B (en) Fischer-Tropsch process
CA3201248A1 (en) Fischer-tropsch processes with modified product selectivity
CA3201249A1 (en) Fischer-tropsch processes producing increased amounts of alcohols
EA043038B1 (en) FISCHER-TROPSCH METHOD, SUPPORTED CATALYST FOR FISCHER-TROPSCH SYNTHESIS AND ITS APPLICATION
EA042792B1 (en) FISHER-TROPSCH METHOD
EP0453674A1 (en) Process for the preparation of surface impregnated dispersed cobalt metal catalysts and hydrocarbon synthesis using said catalysts

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees