JP2846090B2 - Non-contact type transformer - Google Patents

Non-contact type transformer

Info

Publication number
JP2846090B2
JP2846090B2 JP2244885A JP24488590A JP2846090B2 JP 2846090 B2 JP2846090 B2 JP 2846090B2 JP 2244885 A JP2244885 A JP 2244885A JP 24488590 A JP24488590 A JP 24488590A JP 2846090 B2 JP2846090 B2 JP 2846090B2
Authority
JP
Japan
Prior art keywords
coil
secondary coil
magnetic
primary coil
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2244885A
Other languages
Japanese (ja)
Other versions
JPH04122007A (en
Inventor
英敏 松木
孝幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNICHIKA KK
Original Assignee
YUNICHIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNICHIKA KK filed Critical YUNICHIKA KK
Priority to JP2244885A priority Critical patent/JP2846090B2/en
Publication of JPH04122007A publication Critical patent/JPH04122007A/en
Application granted granted Critical
Publication of JP2846090B2 publication Critical patent/JP2846090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば電気カミソリ、電気アイロン、パー
ソナルコンピュータ、ワードプロセッサ、コードレス電
話機などのバッテリー駆動型電子機器において、充電用
又は駆動用電力を、給電ケーブルや接点を用いずに伝達
するために用いることができ、1次側と2次側が接触し
ない形式の非接触型トランスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention supplies power for charging or driving in battery-powered electronic devices such as electric razors, electric irons, personal computers, word processors, and cordless telephones. The present invention relates to a non-contact type transformer that can be used for transmission without using a cable or a contact and that does not contact a primary side and a secondary side.

[従来の技術] 従来、バッテリー駆動型電子機器へ電力を供給する場
合において、当該機器に給電用ケーブルを接続する有機
接続方式が用いられている。この有線接続方式において
は、商用電源から供給された交流電力は直流変換アダプ
タにより降圧されかつ整流された後、変換後の直流電力
が給電用ケーブルを介して当該機器に供給される。
2. Description of the Related Art Conventionally, when power is supplied to a battery-driven electronic device, an organic connection method of connecting a power supply cable to the device has been used. In this wired connection system, AC power supplied from a commercial power supply is stepped down and rectified by a DC conversion adapter, and the converted DC power is supplied to the device via a power supply cable.

また、上記機器に充電池を装着して、上記充電池から
上記機器と上記充電池との間の接点を介して上記機器に
電力供給を行う方式(以下、接点接続方式という。)が
用いられている。
In addition, a method is used in which a rechargeable battery is attached to the device, and power is supplied from the rechargeable battery to the device via a contact between the device and the rechargeable battery (hereinafter, referred to as a contact connection method). ing.

[発明が解決しようとする課題] 上記有線接続方式では、機器と直流変換アダプタとを
接続する給電用ケーブルがあるために、自由に上記機器
を移動させることができないため、機器の操作性を大幅
に低下させるという問題点があり、また、操作者が上記
給電用ケーブルを誤って引っ掛けることによる機器の転
落・破損、給電の中断、及び給電用ケーブルの切断等の
事故が生じることがあるという問題点があった。
[Problem to be Solved by the Invention] In the above-mentioned wired connection method, since there is a power supply cable for connecting the device and the DC conversion adapter, the device cannot be moved freely, so that the operability of the device is greatly increased. In addition, there is a problem that the operator may accidentally hook the above-mentioned power supply cable, which may cause a fall or breakage of the device, interruption of power supply, disconnection of the power supply cable, or other accidents. There was a point.

また、上記接点接続方式では、接点間の電気的接続を
確実にかつ長期にわたって保持することが難しいという
問題点があった。さらに、上記充電池の接点を機器の操
作者が誤って触れる可能性があるため、電力供給に用い
る充電池の電圧を高く設定することができず、例えば電
気アイロンなどの多大の電力を消費する機器に、充電池
を用いることができないという問題点があった。
In addition, the above-described contact connection method has a problem that it is difficult to maintain the electrical connection between the contacts reliably and for a long period of time. Furthermore, since the operator of the device may accidentally touch the contacts of the rechargeable battery, the voltage of the rechargeable battery used for power supply cannot be set to a high value, and a large amount of electric power such as an electric iron is consumed. There was a problem that a rechargeable battery could not be used for the device.

これらの問題点を解決するため、上記有線接続方式及
び接点接続方式を用いず、渦巻き状の2つの平面コイル
を対向させて電力の伝送を非接触で行なう方法が提案さ
れている。しかしながら、この方法では、伝送される電
力が比較的小さい場合であっても、当該渦巻き状の平面
コイルの大きさが極めて大きくなり、言い換えれば、当
該平面コイルの大きさの割りには伝送可能な電力は小さ
くなるという問題点があった。また、ジュール熱による
熱損失が大きいため、所定の伝送電力を得るための励磁
電流が極めて大きくなり、信号伝送用以外の用途では実
質的には応用することができないという問題点があっ
た。
In order to solve these problems, there has been proposed a method in which electric power is transmitted in a non-contact manner by using two spiral flat coils facing each other without using the above-described wired connection method and contact connection method. However, in this method, even when the transmitted power is relatively small, the size of the spiral planar coil becomes extremely large, in other words, the size of the planar coil can be transmitted. There is a problem that the power is reduced. In addition, since the heat loss due to Joule heat is large, the exciting current for obtaining a predetermined transmission power becomes extremely large, so that there is a problem that it cannot be practically used in applications other than signal transmission.

本発明の目的は以上の課題を解決し、上述のケーブル
や接点に関するトラブルを解消することができ、1次側
と2次側が非接触の状態で電力伝送又は信号伝送を安定
にかつ効率的に行い、しかも小型・軽量である非接触ト
ランスを提供することにある。
The object of the present invention is to solve the above problems and solve the above-mentioned troubles concerning cables and contacts, and stably and efficiently perform power transmission or signal transmission in a state where the primary side and the secondary side are in a non-contact state. Another object of the present invention is to provide a small and lightweight non-contact transformer.

[課題を解決するための手段] 請求項1記載の本発明に係る非接続型トランスは、そ
れぞれ渦巻き状に巻回されて形成され第1と第2の面を
有する1次コイルと2次コイルとを備え、上記1次コイ
ルと上記2次コイルの各第1の面に、複数の磁性体を上
記コイルの中心部から放射状に装着し、上記1次コイル
と上記2次コイルを、上記1次コイルと上記2次コイル
の間で電磁的結合が生じるように所定の間隔だけ離れか
つ上記1次コイルと上記2次コイルの各第2の面が対向
するように設けて構成したことを特徴とする。
[Means for Solving the Problems] A non-connection type transformer according to the present invention as set forth in claim 1 is a spirally wound primary coil and a secondary coil each having first and second surfaces. A plurality of magnetic bodies are radially mounted on the first surfaces of the primary coil and the secondary coil from the center of the coil, and the primary coil and the secondary coil are attached to the first surface of the primary coil and the secondary coil, respectively. The secondary coil and the secondary coil are provided so as to be separated from each other by a predetermined distance so that electromagnetic coupling occurs between the primary coil and the secondary coil, and the second surfaces of the primary coil and the secondary coil are opposed to each other. And

また、請求項2記載の本発明に係る非接触トランス
は、それぞれ渦巻き状に巻回されて形成され第1と第2
の面を有する1次コイルと2次コイルとを備え、上記2
次コイルの第1の面に、複数の磁性体を上記2次コイル
の中心部から放射状に装着し、上記1次コイルと上記2
次コイルを、上記1次コイルと上記2次コイルの間で電
磁的結合が生じるように所定の間隔だけ離れかつ上記1
次コイルと上記2次コイルの各第2の面が対向するよう
に設けて構成したことを特徴とする。
Further, the non-contact transformer according to the present invention according to the second aspect is formed by spirally winding the first and second non-contact transformers.
A primary coil and a secondary coil having
A plurality of magnetic bodies are radially mounted on the first surface of the secondary coil from the center of the secondary coil, and
The secondary coils are separated from each other by a predetermined distance so that electromagnetic coupling occurs between the primary coil and the secondary coil, and
The secondary coil and the second surface of the secondary coil are provided so as to face each other.

[作用] 請求項1記載の非接触トランスにおいて、上記1次コ
イルに所定の電圧を印加したとき、上記1次コイルに発
生する磁束は、上記1次コイルに装着された各磁性体、
及び上記2次コイルに装着された各磁性体に沿って閉磁
路を形成する。従って、上記1次コイルに入力した電力
を従来に比較し極めて高い効率で上記2次コイルに伝送
することができる。
[Operation] In the non-contact transformer according to claim 1, when a predetermined voltage is applied to the primary coil, a magnetic flux generated in the primary coil is generated by each magnetic material mounted on the primary coil,
And a closed magnetic circuit is formed along each magnetic body mounted on the secondary coil. Therefore, the power input to the primary coil can be transmitted to the secondary coil with extremely high efficiency as compared with the related art.

また、請求項2記載の非接触トランスにおいて、上記
1次コイルに所定の電圧を印加したとき、上記1次コイ
ルに発生する磁束は、上記2次コイルに装着された各磁
性体に沿って閉磁路を形成する。すなわち、上記1次コ
イルにおける閉磁路の形成は不完全ではあるが、上記2
次コイルにおいて閉磁路が形成される。従って、請求項
1記載の非接触型トランスに比べて電力の伝送効率は低
下するが、上記1次コイルに入力した電力を従来に比較
し高い効率で上記2次コイルに伝送することができる。
In the non-contact transformer according to claim 2, when a predetermined voltage is applied to the primary coil, a magnetic flux generated in the primary coil is closed along each magnetic body mounted on the secondary coil. Form a road. That is, although the formation of the closed magnetic path in the primary coil is incomplete,
A closed magnetic path is formed in the next coil. Therefore, although the power transmission efficiency is lower than that of the non-contact type transformer according to the first aspect, the power input to the primary coil can be transmitted to the secondary coil with higher efficiency as compared with the related art.

[実施例] 以下、図面を参照して本発明による実施例について説
明する。
Embodiment An embodiment according to the present invention will be described below with reference to the drawings.

第1図は本発明に係る実施例1の非接触型トランスの
斜視図であり、第2図は第1図の非接触型トランスの1
次側を上部から見た平面図、第3図は第1図の非接触型
トランスの2次側を下部から見た平面図である。
FIG. 1 is a perspective view of a non-contact type transformer according to a first embodiment of the present invention, and FIG. 2 is a perspective view of one of the non-contact type transformers of FIG.
FIG. 3 is a plan view of the secondary side of the non-contact type transformer of FIG. 1 as viewed from below.

第1図及び第2図に示すように、エナメルで被覆され
た銅線が同一の平面上で円形で渦巻き状に巻回されて1
次コイル11を構成し、この1次コイル11の一端が端子T1
1に接続されるとともに、その他端が端子T12に接続され
る。この1次コイル11の上面に、複数本の円柱形状の磁
性体12から構成される1次磁心部13が、放射状に、すな
わち各磁性体12の長手方向が1次コイル11の渦巻きの中
心から外周部に向かう放射方向になるように、例えば接
着剤を用いて装着される。
As shown in FIG. 1 and FIG. 2, a copper wire covered with enamel is wound in a circular and spiral shape on the same plane, and
One end of the primary coil 11 is connected to a terminal T1.
1 and the other end is connected to terminal T12. On the upper surface of the primary coil 11, a primary magnetic core portion 13 composed of a plurality of columnar magnetic bodies 12 is arranged radially, that is, the longitudinal direction of each magnetic body 12 is set from the center of the spiral of the primary coil 11. It is mounted using, for example, an adhesive so as to be in a radial direction toward the outer peripheral portion.

また、第1図及び第3図に示すように、エナメルで被
覆された銅線が同一の平面上で円形で渦巻き状に巻回さ
れて2次コイル21を構成し、この2次コイル21の一端が
端子T21に接続されるとともに、その他端が端子T22に接
続される。この2次コイル21の下面に、複数本の円柱形
状の磁性体22から構成される2次磁心部23が、放射状
に、すなわち各磁性体22の長手方向が2次コイル21の渦
巻きの中心から外周部に向かう放射方向となるように、
例えば接着剤を用いて装着される。
As shown in FIGS. 1 and 3, a copper wire covered with enamel is wound in a circular spiral on the same plane to form a secondary coil 21. One end is connected to the terminal T21, and the other end is connected to the terminal T22. On the lower surface of the secondary coil 21, a secondary magnetic core portion 23 composed of a plurality of columnar magnetic bodies 22 is formed radially, that is, the longitudinal direction of each magnetic body 22 extends from the center of the spiral of the secondary coil 21. So that the radiation direction is toward the outer periphery,
For example, it is mounted using an adhesive.

以上のように構成された1次磁心部13付き1次コイル
11と、2次磁心部23付き2次コイル21が、それらの各磁
心部13,23が装着されていない各面、すなわち1次コイ
ル11の下面と2次コイル21の上面が対向し、かつ所定間
隔gだけ離れて設けられて、固定具(図示せず。)によ
り固定される。
Primary coil with primary core 13 configured as described above
11 and the secondary coil 21 with the secondary magnetic core portion 23, the respective surfaces on which the respective magnetic core portions 13 and 23 are not mounted, that is, the lower surface of the primary coil 11 and the upper surface of the secondary coil 21 face each other, and It is provided at a predetermined interval g and fixed by a fixture (not shown).

なお、実施例1におけるコイル11,21及び磁心部13,23
の仕様を第1表に示す。上述の図において、図示の簡単
化のため、各磁心部13,23は6本の磁性体12,22のみを示
している。
The coils 11 and 21 and the magnetic cores 13 and 23 in the first embodiment are used.
Table 1 shows the specifications. In the above-described drawings, each of the magnetic core portions 13 and 23 shows only six magnetic bodies 12 and 22 for simplification of the drawing.

一般に、長手方向の長さを有する円柱形状の各磁性体
12,22の磁気抵抗は長手方向に小さくなる。従って、以
上のように構成された実施例1において、端子11,T12間
に所定の電圧V1を印加したとき、以下のように磁束が生
じる。すなわち、1次コイル11の回りに磁束が生じ、こ
の磁束が1次コイル11に装着された各磁性体12に進入
し、各磁性体12におけるコイル11の中心部側から外周部
側に向かう方法、すなわち放射方向で分布する。この1
次コイル11側の磁束は、対向する2次コイル22の下面に
装着された各磁性体22における2次コイル21の外周部側
に進入し、それらの外周部側から中心部側に流れ、最後
に2次コイル21の中心部側から1次コイル11側に戻る。
Generally, each cylindrical magnetic material having a length in the longitudinal direction
The magnetoresistance of 12,22 decreases in the longitudinal direction. Accordingly, In a constructed embodiment 1 as described above, upon application of a predetermined voltages V 1 between the terminals 11, T12, magnetic flux is generated as follows. That is, a magnetic flux is generated around the primary coil 11, the magnetic flux enters each magnetic body 12 attached to the primary coil 11, and goes from the center of the coil 11 to the outer peripheral side of each magnetic body 12. That is, distributed in the radial direction. This one
The magnetic flux on the side of the secondary coil 11 enters the outer peripheral side of the secondary coil 21 in each magnetic body 22 mounted on the lower surface of the opposed secondary coil 22, flows from the outer peripheral side to the center side, and finally flows. Then, it returns from the center of the secondary coil 21 to the primary coil 11 side.

以上説明したように、各コイル11,21の背面に、各コ
イル11,21の放射方向に磁気抵抗の小さい複数本の磁性
体12,22を設けることにより、平面形状の渦巻きコイル1
1,21にもかかわらず、1対のコイル11,21間に第1図に
おいて点線で示すように閉磁路が形成されている。従っ
て、1次コイル11と2次コイル21との間で結合係数を大
きくすることができ、高い伝送効率で電力を1次コイル
11から2次コイル21に伝送することができる。
As described above, by providing a plurality of magnetic bodies 12, 22 having a small magnetic resistance in the radiation direction of each coil 11, 21 on the back surface of each coil 11, 21, the spiral coil 1 having a planar shape is provided.
Despite 1,21, a closed magnetic circuit is formed between the pair of coils 11,21 as shown by the dotted line in FIG. Accordingly, the coupling coefficient between the primary coil 11 and the secondary coil 21 can be increased, and power can be transferred with high transmission efficiency to the primary coil 11.
11 to the secondary coil 21.

また、上述のように構成して閉磁路を形成しているの
で、1次コイル11において発生した磁束が各磁性体12,2
2に進入するときに発生する円周方向の渦電流の発生を
大幅に抑制しており、これによって、変換損失を低下さ
せ、さらに電力の伝送効率を高めることができる。
In addition, since the closed magnetic circuit is formed by the above-described configuration, the magnetic flux generated in the primary coil 11 is generated by the magnetic members 12 and 2.
The generation of eddy current in the circumferential direction that occurs when the vehicle enters the vehicle 2 is greatly suppressed, whereby the conversion loss can be reduced and the power transmission efficiency can be further increased.

以上の実施例1においては、各コイル11,21は磁心部1
3,23を備えているが、本発明はこれに限らず、第4図に
図示する実施例2におけるように、1次コイル11が磁心
部13を備えず、2次コイル21のみが磁心部23を備えるよ
うにしてもよい。この実施例2の構成においては、1次
コイル11に磁心部を備えていないので、1次コイル11に
おいて実施例1に比べて磁束の閉磁路の形成が不完全で
ある。しかしながら、2次コイル21においては磁束の閉
磁路が概ね完全に形成されているので、実施例1に比較
し電力の伝送効率は低下するが、後述の実験結果に示す
ように電力の伝送を十分に行なうことができる。
In the first embodiment described above, each of the coils 11 and 21 is
However, the present invention is not limited to this, and the primary coil 11 does not include the magnetic core portion 13 and only the secondary coil 21 includes the magnetic core portion as in the second embodiment shown in FIG. 23 may be provided. In the configuration of the second embodiment, since the primary coil 11 is not provided with the magnetic core, the formation of the closed magnetic path of the magnetic flux in the primary coil 11 is incomplete compared to the first embodiment. However, since the closed magnetic path of the magnetic flux is almost completely formed in the secondary coil 21, the power transmission efficiency is lower than that of the first embodiment. Can be performed.

以上のように構成された実施例1と実施例2の非接触
型トランスの電気特性を他の構成のものと比較するた
め、本発明者は、第1表に示す仕様を有する実施例1及
び実施例2の各非接触トランスを作成するとともに、第
2表、第3表及び第4表に示すような1次及び2次コイ
ルと1次及び2次磁心部を用いて、比較例1、比較例2
及び比較例3の各非接触型トランスを作成した。すなわ
ち、比較例1は1次コイル及び2次コイルともに磁心部
が無い場合である。また、比較例2においては、磁心1
枚として厚さ25μmのアモルファス薄板をドーナツ状に
打ち抜いたものを用い、この磁心を11枚重ねて各磁心部
として用いた場合である。さらに、比較例3は、各磁心
部として厚さ0.25mmの鉄板をドーナツ状に打ち抜いたも
のを用いた場合である。
In order to compare the electrical characteristics of the non-contact type transformers of the first embodiment and the second embodiment configured as described above with those of other configurations, the inventor of the first embodiment has the first and second embodiments having the specifications shown in Table 1. While making each non-contact transformer of Example 2, using the primary and secondary coils and the primary and secondary cores as shown in Tables 2, 3 and 4, Comparative Example 1, Comparative Example 2
And each non-contact type transformer of Comparative Example 3 was produced. That is, Comparative Example 1 is a case where neither the primary coil nor the secondary coil has a magnetic core. In Comparative Example 2, the magnetic core 1
This is a case where an amorphous thin plate having a thickness of 25 μm is punched out in a donut shape, and 11 such cores are used as each core portion. Further, Comparative Example 3 is a case where a 0.25 mm thick iron plate punched into a donut shape is used as each magnetic core.

上述のように作成したこれらの非接触トランスを用い
て実験をした結果を以下に示す。
The results of an experiment using these non-contact transformers created as described above are shown below.

第5図は実施例1と比較例1におけるコイル間の距離
gに対する結合係数特性を示すグラフである。第5図か
ら、実施例1の結合係数は、比較例1のそれよりも8%
乃至20%だけ向上していることがわかる。
FIG. 5 is a graph showing the coupling coefficient characteristics with respect to the distance g between the coils in Example 1 and Comparative Example 1. From FIG. 5, the coupling coefficient of Example 1 is 8% higher than that of Comparative Example 1.
It can be seen that it has been improved by up to 20%.

第6図は実施例1と比較例1におけるコイル間の距離
gに対する1次電流密度J1特性を示すグラフである。第
6図から、実施例1においては、同一の出力電力を得る
場合の励磁電流の値が、比較例1のそれに比べて、53%
乃至63%でよいということがわかる。
FIG. 6 is a graph showing the first current density J 1 characteristic for the distance g between the coil in the Example 1 and Comparative Example 1. From FIG. 6, in the first embodiment, the value of the exciting current when obtaining the same output power is 53% higher than that in the first comparative example.
It turns out that it is sufficient to be 63%.

第7図は実施例1、比較例1及び比較例2における2
次電流I2に対する電力伝送効率η特性を示すグラフであ
る。第7図から、本発明に係る実施例1においては、比
較例1及び比較例2に比べて良好な電力伝送効率を得る
ことができることがわかる。なお、比較例3について第
7図の測定を行ったが、比較例3に用いた鉄板が電磁誘
導により加熱され、1次コイルに入力された電力が熱エ
ネルギーとして放散し、2次コイルに電力を伝送させる
ことができなかった。
FIG. 7 shows 2 in Example 1, Comparative Example 1 and Comparative Example 2.
It is a graph showing the power transmission efficiency η characteristic for the next current I 2. From FIG. 7, it can be seen that in Example 1 according to the present invention, better power transmission efficiency can be obtained than in Comparative Examples 1 and 2. Note that the measurement shown in FIG. 7 was performed for Comparative Example 3, but the iron plate used in Comparative Example 3 was heated by electromagnetic induction, the power input to the primary coil was dissipated as thermal energy, and the power was Could not be transmitted.

第8図は実施例1と実施例2における2次電流I2に対
する電力伝送効率η特性と出力電力P2特性を示すグラフ
である。第8図から、2次コイル21のみに磁心部23を設
けた実施例2においては、両コイル11,21に磁心部13,23
を設けた実施例1に比較し、電力伝送効率が数%だけ低
下するが、2次電流と出力電力の関係には変化がなく、
1次コイル11から2次コイル21に十分に電力を効率良く
伝送することができるということがわかる。
FIG. 8 is a graph showing the power transmission efficiency η characteristic and the output power P 2 characteristic with respect to the secondary current I 2 in the first and second embodiments. From FIG. 8, in the second embodiment in which the magnetic core portion 23 is provided only in the secondary coil 21, the magnetic core portions 13, 23 are provided in both the coils 11, 21.
Although the power transmission efficiency is reduced by several% as compared with the first embodiment in which
It can be seen that the power can be sufficiently transmitted from the primary coil 11 to the secondary coil 21 efficiently.

以上の実施例においては、磁心部として円柱形状の磁
性体12,22を用いているが、本発明はこれに限らず、各
磁心部13,23として、第9図に図示する、中心部が欠け
た円弧のストリップ形状を有する複数本の磁性体31から
なる磁心部30を用いてもよい。すなわち、中心部が欠け
た円弧のストリップ形状を有する複数本の磁性体31を隙
間無く接着してドーナツ状の磁心を形成し、この磁心を
複数枚重ねて接着し磁心部30を形成する。この変形例で
は、実施例1の磁心部13,23と同様に、各磁性体13が、
各磁性体31の長手方向が、各コイル11,21の中心部から
外周部に向かう放射方向となるように設けられるので、
実施例1と同様の作用と効果を有する非接触トランスを
形成することができる。なお、第9図においては、2次
コイル21側について図示しているが、1次コイル11側に
ついても同様に構成される。
In the above embodiments, the magnetic members 12 and 22 having a columnar shape are used as the magnetic cores. However, the present invention is not limited to this. As the magnetic cores 13 and 23, the center shown in FIG. A magnetic core portion 30 composed of a plurality of magnetic bodies 31 having a strip shape of a missing arc may be used. That is, a plurality of magnetic bodies 31 having an arc-shaped strip shape with a central part missing are adhered without gaps to form a donut-shaped magnetic core, and a plurality of these magnetic cores are laminated and adhered to form a magnetic core portion 30. In this modification, similarly to the magnetic cores 13 and 23 of the first embodiment, each magnetic body 13
Since the longitudinal direction of each magnetic body 31 is provided so as to be a radial direction from the center of each of the coils 11, 21 toward the outer periphery,
A non-contact transformer having the same operation and effect as in the first embodiment can be formed. Although FIG. 9 shows the secondary coil 21 side, the primary coil 11 side has the same configuration.

また、この第9図の変形例では、各磁性体31の間を隙
間無く接着しているが、これに限らず、各磁性体31を所
定の間隔だけ離して各コイル11,21の、対向面でない各
平面上に設けるようにしてもよい。
Further, in the modified example of FIG. 9, the gaps between the magnetic bodies 31 are adhered without any gap. However, the present invention is not limited to this, and the magnetic bodies 31 are separated from each other by a predetermined distance, and the coils 11 and 21 face each other. It may be provided on each plane other than the plane.

以上の実施例においては、電力伝送に用いる場合につ
いて説明しているが、本発明はこれに限らず、信号伝送
用トランスに適用することができる。すなわち、例えば
10kHz程度の周波数の搬送波を信号電圧で、例えば振幅
変調又は周波数変調などの変調方式で変調し、変調波を
1次コイル11に印加して2次コイル21から変調波を取り
出し、取り出した変調波を復調するようにすればよい。
In the above embodiments, the case where the present invention is used for power transmission is described. However, the present invention is not limited to this and can be applied to a signal transmission transformer. That is, for example
A carrier having a frequency of about 10 kHz is modulated by a signal voltage, for example, by a modulation method such as amplitude modulation or frequency modulation, and the modulated wave is applied to the primary coil 11 to take out the modulated wave from the secondary coil 21 and take out the modulated wave. May be demodulated.

なお、磁心部13,23の磁性体12,22の材料は、好ましく
はケイ素鋼、鉄シリコン磁性材料、アモルファス磁性材
料、又は超微細結晶粒からなる鉄系軟磁性材料である。
ここで、磁性材料の磁性特性を考慮すると、使用周波数
が概ね1kHz以下では、ケイ素鋼、又は鉄シリコン磁性材
料を使用し、概ね1kHz以上では、アモルファス磁性材
料、又は超微細結晶粒からなる鉄系軟磁性材料を使用す
ることが好ましい。
The material of the magnetic bodies 12 and 22 of the magnetic cores 13 and 23 is preferably a silicon steel, an iron-silicon magnetic material, an amorphous magnetic material, or an iron-based soft magnetic material made of ultrafine crystal grains.
Here, considering the magnetic properties of the magnetic material, when the operating frequency is approximately 1 kHz or less, silicon steel or iron-silicon magnetic material is used, and when the frequency is approximately 1 kHz or more, an amorphous magnetic material or an iron-based material including ultra-fine crystal grains is used. It is preferable to use a soft magnetic material.

[発明の効果] 以上詳述したように本発明によれば、それぞれ渦巻き
状に巻回されて形成され第1と第2の面を有する1次コ
イルと2次コイルとを備え、少なくとも上記2次コイル
の第1の面に、複数の磁性体を上記コイルの中心部から
放射状に装着し、上記1次コイルと上記2次コイルを、
上記1次コイルと上記2次コイルの間に電磁的結合が生
じるように所定の間隔だけ離れかつ上記1次コイルと上
記2次コイルの各第2の面が対向するように設けて構成
したので、上記1次コイルに所定の電圧を印加したと
き、上記1次コイルに発生する磁束は、上記2次コイル
に装着された各磁性体に沿って閉磁路を形成し、上記1
次コイルに入力した電力を従来い比較し高い効率で上記
2次コイルに伝送することができるという利点がある。
[Effects of the Invention] As described above in detail, according to the present invention, a primary coil and a secondary coil each having a first surface and a second surface formed by being spirally wound are provided. A plurality of magnetic bodies are radially mounted on the first surface of the secondary coil from the center of the coil, and the primary coil and the secondary coil are
The primary coil and the secondary coil are provided so as to be separated from each other by a predetermined distance so that electromagnetic coupling occurs between the primary coil and the secondary coil, and the second surfaces of the primary coil and the secondary coil are provided so as to face each other. When a predetermined voltage is applied to the primary coil, the magnetic flux generated in the primary coil forms a closed magnetic path along each magnetic body mounted on the secondary coil,
There is an advantage that the power input to the secondary coil can be transmitted to the secondary coil with higher efficiency as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る実施例1の非接触型トランスの斜
視図、 第2図は第1図の非接触型トランスの1次側を上部から
見た平面図、 第3図は第1図の非接触型トランスの2次側を下部から
見た平面図、 第4図は本発明に係る実施例2の非接触型トランスの斜
視図、 第5図は実施例1と比較例1におけるコイル間の距離g
に対する結合係数特性を示すグラフ、 第6図は実施例1と比較例1におけるコイル間の距離g
に対する1次電流密度J1特性を示すグラフ、 第7図は実施例1、比較例1及び比較例2における2次
電流I2に対する電力伝送効率η特性を示すグラフ、 第8図は実施例1と実施例2における2次電流I2に対す
る電力伝送効率η特性と出力電力P2特性を示すグラフ、 第9図は本発明に係る変形例において用いられるストリ
ップ状の磁性体からなる磁心部を示す斜視図である。 11……1次コイル、 12……磁性体、 13……1次磁心部、 21……2次コイル、 22……磁性体、 23……2次磁心部、 30……磁心部、 31……磁性体。
FIG. 1 is a perspective view of a non-contact type transformer according to a first embodiment of the present invention, FIG. 2 is a plan view of the primary side of the non-contact type transformer of FIG. 1 viewed from above, and FIG. FIG. 4 is a plan view of the secondary side of the non-contact type transformer shown in the figure from below, FIG. 4 is a perspective view of the non-contact type transformer according to the second embodiment of the present invention, and FIG. Distance g between coils
FIG. 6 is a graph showing coupling coefficient characteristics with respect to the distance between coils in Example 1 and Comparative Example 1.
FIG. 7 is a graph showing a primary current density J 1 characteristic with respect to FIG. 7, FIG. 7 is a graph showing a power transmission efficiency η characteristic with respect to a secondary current I 2 in Example 1, Comparative Examples 1 and 2, and FIG. FIG. 9 is a graph showing a power transmission efficiency η characteristic and an output power P 2 characteristic with respect to a secondary current I 2 according to the second embodiment. FIG. 9 shows a magnetic core made of a strip-shaped magnetic material used in a modification according to the present invention. It is a perspective view. 11: Primary coil, 12: Magnetic material, 13: Primary magnetic core, 21: Secondary coil, 22: Magnetic material, 23: Secondary magnetic core, 30: Magnetic core, 31 ... ... Magnetic material.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】それぞれ渦巻き状に巻回されて形成され第
1と第2の面を有する1次コイルと2次コイルとを備
え、上記1次コイルと上記2次コイルの各第1の面に、
複数の磁性体を上記コイルの中心部から放射状に装着
し、上記1次コイルと上記2次コイルを、上記1次コイ
ルと上記2次コイルの間で電磁的結合が生じるように所
定の間隔だけ離れかつ上記1次コイルと上記2次コイル
の各第2の面が対向するように設けて構成したことを特
徴とする非接触型トランス。
1. A primary coil and a secondary coil, each of which is formed in a spiral shape and has first and second surfaces, wherein each of the first surfaces of the primary coil and the secondary coil is provided. To
A plurality of magnetic bodies are mounted radially from the center of the coil, and the primary coil and the secondary coil are separated by a predetermined distance so that electromagnetic coupling occurs between the primary coil and the secondary coil. A non-contact type transformer, wherein the transformer is provided so as to be separated and the second surfaces of the primary coil and the secondary coil face each other.
【請求項2】それぞれ渦巻き状に巻回されて形成され第
1と第2の面を有する1次コイルと2次コイルとを備
え、上記2次コイルの第1の面に、複数の磁性体を上記
2次コイルの中心部から放射状に装着し、上記1次コイ
ルと上記2次コイルを、上記1次コイルと上記2次コイ
ルの間で電磁的結合が生じるように所定の間隔だけ離れ
かつ上記1次コイルと上記2次コイルの各第2の面が対
向するように設けて構成したことを特徴とする非接触型
トランス。
2. A secondary coil comprising a primary coil and a secondary coil each formed in a spiral shape and having first and second surfaces, wherein a plurality of magnetic materials are provided on the first surface of the secondary coil. Are mounted radially from the center of the secondary coil, and the primary coil and the secondary coil are separated by a predetermined distance so that electromagnetic coupling occurs between the primary coil and the secondary coil. A non-contact type transformer, wherein the second surface of the primary coil and the second surface of the secondary coil are provided so as to face each other.
JP2244885A 1990-09-12 1990-09-12 Non-contact type transformer Expired - Fee Related JP2846090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244885A JP2846090B2 (en) 1990-09-12 1990-09-12 Non-contact type transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244885A JP2846090B2 (en) 1990-09-12 1990-09-12 Non-contact type transformer

Publications (2)

Publication Number Publication Date
JPH04122007A JPH04122007A (en) 1992-04-22
JP2846090B2 true JP2846090B2 (en) 1999-01-13

Family

ID=17125435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244885A Expired - Fee Related JP2846090B2 (en) 1990-09-12 1990-09-12 Non-contact type transformer

Country Status (1)

Country Link
JP (1) JP2846090B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140333A2 (en) 2007-05-10 2008-11-20 Auckland Uniservices Limited Multi power sourced electric vehicle
CN101785073B (en) * 2006-06-05 2012-07-18 美丽亚古乐施股份有限公司 Power transmitting apparatus, power transmitter and power receiver for power transmitting apparatus and method for operating power transmitting apparatus
US10396596B2 (en) 2013-11-13 2019-08-27 Apple Inc. Transmitter for inductive power transfer systems
US10454304B2 (en) 2016-11-18 2019-10-22 Apple Inc. Inductive power transfer coil assembly and system
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly
US10601251B2 (en) 2014-08-12 2020-03-24 Apple Inc. System and method for power transfer
US10978911B2 (en) 2016-12-19 2021-04-13 Apple Inc. Inductive power transfer system
US11043841B2 (en) 2016-05-25 2021-06-22 Apple Inc. Coil arrangement

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0210886D0 (en) * 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
US8193767B2 (en) 2006-03-24 2012-06-05 Kabushiki Kaisha Toshiba Power receiving device, and electronic apparatus and non-contact charger using the same
US8232764B2 (en) 2006-03-24 2012-07-31 Kabushiki Kaisha Toshiba Power receiving device, and electronic apparatus and non-contact charging system using the same
JP4859700B2 (en) * 2007-02-20 2012-01-25 セイコーエプソン株式会社 Coil unit and electronic equipment
JP5160858B2 (en) * 2007-10-25 2013-03-13 メレアグロス株式会社 A coil of a power transmission device, a power transmission device, a power transmission device of the power transmission device, and a power reception device of the power transmission device.
JP2009200174A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
JP4752879B2 (en) 2008-07-04 2011-08-17 パナソニック電工株式会社 Planar coil
JP5329929B2 (en) * 2008-12-02 2013-10-30 昭和飛行機工業株式会社 Non-contact power feeding device
JP5689587B2 (en) * 2009-03-31 2015-03-25 富士通株式会社 Power transmission equipment
JP5372610B2 (en) * 2009-06-08 2013-12-18 Necトーキン株式会社 Non-contact power transmission device
IN2012DN01947A (en) * 2009-08-07 2015-08-21 Auckland Uniservices Ltd
JP5532422B2 (en) * 2010-07-30 2014-06-25 スミダコーポレーション株式会社 coil
WO2012090342A1 (en) * 2010-12-27 2012-07-05 パナソニック株式会社 Coil unit used in contactless power supply system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785073B (en) * 2006-06-05 2012-07-18 美丽亚古乐施股份有限公司 Power transmitting apparatus, power transmitter and power receiver for power transmitting apparatus and method for operating power transmitting apparatus
WO2008140333A2 (en) 2007-05-10 2008-11-20 Auckland Uniservices Limited Multi power sourced electric vehicle
EP2156532A4 (en) * 2007-05-10 2014-04-30 Auckland Uniservices Ltd Multi power sourced electric vehicle
US10396596B2 (en) 2013-11-13 2019-08-27 Apple Inc. Transmitter for inductive power transfer systems
US10601251B2 (en) 2014-08-12 2020-03-24 Apple Inc. System and method for power transfer
US11374431B2 (en) 2014-08-12 2022-06-28 Apple Inc. System and method for power transfer
US11043841B2 (en) 2016-05-25 2021-06-22 Apple Inc. Coil arrangement
US10454304B2 (en) 2016-11-18 2019-10-22 Apple Inc. Inductive power transfer coil assembly and system
US10978911B2 (en) 2016-12-19 2021-04-13 Apple Inc. Inductive power transfer system
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly

Also Published As

Publication number Publication date
JPH04122007A (en) 1992-04-22

Similar Documents

Publication Publication Date Title
JP2846090B2 (en) Non-contact type transformer
US8810196B2 (en) Inductive charger and charging method
JP5364745B2 (en) Magnetic element for wireless power transmission and power supply device
KR101057373B1 (en) Solid State Power Transmitter
EP1368815B1 (en) Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
JP2007124754A (en) Power feed system
US20110210617A1 (en) Power transmission across a substantially planar interface by magnetic induction and geometrically-complimentary magnetic field structures
JP2012143106A (en) Non-contact power feeding device of magnetic field resonance type
JP2008263740A (en) Transmission transformer of noncontact power transmission system
JPH1198706A (en) Non-contact charger
JP2020178034A (en) Non-contact power supply transmission coil unit, manufacturing method thereof, and non-contact power supply device
JPH1198707A (en) Non-contact charging device
WO2012001758A1 (en) Non-contact electric power feeding device
JPH0737737A (en) Noncontact type charger
JP2013214613A (en) Coil unit and power transmission device having coil unit
JP5918020B2 (en) Non-contact power supply coil
JPS63151006A (en) Electric power transmission equipment
JP3330222B2 (en) Non-contact power transmission device
CN113555204A (en) Wireless charging coil piece and wireless charging coil assembly
JP2019122149A (en) Non-contact power supply device
JP3766295B2 (en) Contactless charger
JPH1022131A (en) Winding of high frequency transformer
JPH08205432A (en) Noncontact power transmitter
JP2978100B2 (en) Contactless charger
WO2021199405A1 (en) In-vehicle charger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees