JP2844970B2 - Sliding member - Google Patents

Sliding member

Info

Publication number
JP2844970B2
JP2844970B2 JP17405391A JP17405391A JP2844970B2 JP 2844970 B2 JP2844970 B2 JP 2844970B2 JP 17405391 A JP17405391 A JP 17405391A JP 17405391 A JP17405391 A JP 17405391A JP 2844970 B2 JP2844970 B2 JP 2844970B2
Authority
JP
Japan
Prior art keywords
layer
sliding
rotor
particles
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17405391A
Other languages
Japanese (ja)
Other versions
JPH0525605A (en
Inventor
隆司 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17405391A priority Critical patent/JP2844970B2/en
Publication of JPH0525605A publication Critical patent/JPH0525605A/en
Application granted granted Critical
Publication of JP2844970B2 publication Critical patent/JP2844970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は摺動面を溶射材で構成す
る摺動部材に関する。この摺動部材は例えばブレーキパ
ッドと摺動するブレーキロータに適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member having a sliding surface made of a sprayed material. This sliding member can be applied to, for example, a brake rotor that slides on a brake pad.

【0002】[0002]

【従来の技術】従来より、摺動部材として、重量低減の
目的でアルミ系合金やマグネシウム系合金で母材を形成
し、その摺動面の耐摩耗性確保のために鉄系金属や銅系
金属を溶射等の手段により被覆層を形成したものが知ら
れている。(特開昭62ー70534号公報、特開昭6
0ー89558号公報、実公昭53ー30865号公
報、実公昭53ー30866号公報、実開昭55ー15
8337号公報、特開昭49ー61564号公報、特開
昭49ー90641号公報、特開昭59ー56438号
公報等)。
2. Description of the Related Art Conventionally, as a sliding member, a base material is formed of an aluminum-based alloy or a magnesium-based alloy for the purpose of weight reduction, and an iron-based metal or a copper-based material is used for ensuring the wear resistance of the sliding surface. There is known a metal in which a coating layer is formed by means such as thermal spraying. (JP-A-62-70534, JP-A-6-70534)
0-89558, JP-B-53-30865, JP-B-53-30866, and JP-A-55-15.
8337, JP-A-49-61564, JP-A-49-90641, JP-A-59-56438, and the like.

【0003】また、特開昭61ー218841号公報に
は、0.1μm以上のファインセラミック粒子を分散し
たニッケルメッキ層で被覆されたディスク式のブレーキ
ロータが開示されている。
Further, Japanese Patent Application Laid-Open No. 61-218841 discloses a disk type brake rotor coated with a nickel plating layer in which fine ceramic particles of 0.1 μm or more are dispersed.

【0004】[0004]

【発明が解決しようとする課題】上記した特開昭61ー
218841号公報にかかるブレーキロータでは、ファ
インセラミック粒子が分散している為、相手材との初期
なじみ性は向上するが、相手材であるセミメタリックパ
ッドの表面を削る。ファインセラミック粒子により削ら
れる作用は、使用初期ばかりか、使用期間が長くなって
も継続し、そのため摺動性はむしろ悪くなるという問題
があった。
In the above-mentioned brake rotor disclosed in Japanese Patent Application Laid-Open No. 61-218841, the fine ceramic particles are dispersed, so that the initial compatibility with the mating material is improved. Shave the surface of a semi-metallic pad. The effect of scraping by the fine ceramic particles continues not only at the beginning of use but also over a long period of use, so that there is a problem that the slidability is rather deteriorated.

【0005】ところでブレーキロータでは、一般的に、
車両走行距離が所定距離を越えると、パッドの摩耗(あ
らさ低減)とともに当たりがついて本来の摩擦係数とな
り、摩擦係数は安定する。しかし、初期(ロータの新品
時)においては、つまり車両走行距離が所定距離例えば
約1000kmを越えない場合においては、相手材であ
るブレーキパッドの初期における表面あらさが100μ
RZ〜500μRZと粗く、そのため、パッドとロータ
との接触面積が小さく、従ってブレーキパッドとディス
クロータとが摺動する初期における摩擦係数は、両者間
の本来の摩擦係数に比べ0.1ぐらい小さい不具合があ
る。
[0005] By the way, in a brake rotor, generally,
When the vehicle travel distance exceeds a predetermined distance, the friction (reduction in roughness) of the pad is a hit and the friction coefficient becomes the original friction coefficient, and the friction coefficient is stabilized. However, in the initial stage (when the rotor is new), that is, when the vehicle travel distance does not exceed a predetermined distance, for example, about 1000 km, the initial surface roughness of the mating brake pad is 100 μm.
Since the contact area between the pad and the rotor is small, the friction coefficient at the initial stage when the brake pad and the disk rotor slide is about 0.1 smaller than the original friction coefficient between the two. There is.

【0006】本発明は上記した実情に鑑みなされたもの
であり、その目的は、所要の摩擦係数を初期から得るこ
とができる摺動部材を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sliding member capable of obtaining a required coefficient of friction from an early stage.

【0007】[0007]

【課題を解決するための手段】本発明者は摺動部材につ
いて鋭意研究を重ね、摺動部材の母材の表面に所要の摩
擦特性をもつ下地摺動層を積層するとともに、硬質粒子
を分散しかつせん断密着強度を0.3〜8kgf/cm
2 とし下地摺動層に対して脱離可能な溶射層を下地摺動
層に積層すれば、初期において硬質粒子が相手材を削る
ことにより、摩擦係数を早期に増加させて所要の摩擦係
数を初期から得ることができ、しかもその後、溶射層が
下地摺動層から脱離することにより、所要の摩擦特性を
もつ下地摺動層と相手材とが摺動する様にすれば、初期
から安定した摩擦係数が得られることを知見した。本発
明はこの知見に基づきなされたものである。なお、特開
昭61ー218841号公報にかかるメッキ層は母材へ
の密着強度が大きく、仲々母材から脱離するものではな
い。
Means for Solving the Problems The inventor of the present invention has conducted intensive studies on the sliding member, laminated a base sliding layer having a required friction characteristic on the surface of the base material of the sliding member, and dispersed the hard particles. And a shear adhesion strength of 0.3 to 8 kgf / cm
If stacked eliminable sprayed layer to the underlying sliding layer to two and to base the sliding layer, by the hard particles cut the mating member in the initial, the required friction coefficient early increases the coefficient of friction It can be obtained from the beginning, and after that, if the sprayed layer separates from the underlying sliding layer, so that the underlying sliding layer with the required frictional properties slides with the mating material, stable from the beginning. It was found that the obtained friction coefficient was obtained. The present invention has been made based on this finding. The plating layer disclosed in Japanese Patent Application Laid-Open No. 61-218841 has a high adhesion strength to the base material and does not separate from the base material.

【0008】本発明の摺動部材は、母材と、母材表面に
積層された所要の摩擦特性をもつ下地摺動層と、下地摺
動層に溶射処理で積層された溶射材と溶射材に分散され
た硬質粒子とをもち且つせん断密着強度が0.3〜8k
gf/cm 2 に規定され下地摺動層から脱離可能な溶射
層とで構成されていることを特徴とするものである。摺
動部材の母材は適宜選択でき、鉄系、鋼系、ステンレス
鋼系、マグネシウム合金系、チタン合金系、アルミ合金
系等を採用できる。アルミ合金系は例えばアルミ−シリ
コン系を採用できる。下地摺動層は母材表面に積層され
た所要の摩擦特性をもつものである。下地摺動層の厚み
は摺動部材の種類によっても異なるが、例えば100〜
500μmとすることができる。下地摺動層を構成する
材質は、例えば、鉄−クロム−炭素系、鉄−クロム−炭
素−銅系、タングステン系、モリブデン系、ニッケル
系、ニッケル−クロム系、ニッケル−クロム−アルミ系
等を採用できる。下地摺動層は溶射層、メッキ層、浸透
メッキ層等で形成できる。溶射に際しては、母材表面に
脱脂処理、ブラスチング処理等の前処理を行うことが望
ましく、また砥石研削、ホーニング加工等の後処理を行
うこともできる。
The sliding member of the present invention comprises a base material, a base sliding layer having required friction characteristics laminated on the base material surface, a sprayed material laminated on the base sliding layer by thermal spraying, and a sprayed material. With hard particles dispersed in the material and having a shear adhesion strength of 0.3 to 8 k
gf / cm 2 and a sprayed layer that can be detached from the underlying sliding layer. The base material of the sliding member can be appropriately selected, and iron, steel, stainless steel, magnesium alloy, titanium alloy, aluminum alloy, and the like can be used. As the aluminum alloy system, for example, an aluminum-silicon system can be adopted. The base sliding layer has a required frictional property laminated on the surface of the base material. The thickness of the base sliding layer varies depending on the type of the sliding member.
It can be 500 μm. The material constituting the base sliding layer is, for example, iron-chromium-carbon, iron-chromium-carbon-copper, tungsten, molybdenum, nickel, nickel-chromium, nickel-chromium-aluminum, or the like. Can be adopted. The base sliding layer can be formed by a thermal spray layer, a plating layer, a permeation plating layer, or the like. At the time of thermal spraying, it is desirable to perform a pretreatment such as a degreasing treatment and a blasting treatment on the surface of the base material, and it is also possible to perform a post treatment such as a grinding wheel grinding and a honing process.

【0009】下地摺動層に溶射処理で積層された溶射層
は、初期において相手材と摺動するものである。溶射層
の厚みは摺動部材の種類にもよるが、例えば2〜10μ
mとすることができる。溶射層は、マトリックスを構成
する溶射材と、溶射材に分散された硬質粒子とで形成さ
れている。溶射層は、硬質粒子を分散させた溶射用粉末
を溶射ガンで溶射することにより形成できる。この場
合、溶射熱により硬質粒子自体が部分的にまたは全体的
に溶けるか軟化する場合には、溶射の際に粒子が下地摺
動層に衝突するなどのため、衝突時の衝撃により硬質粒
子の形状が変形する作用もある。溶射材は、例えば、鉄
−クロム−炭素系、鉄−クロム−炭素−銅系、タングス
テン系、モリブデン系、ニッケル系、ニッケル−クロム
系、ニッケル−クロム−アルミ系等を採用できる。摺動
部材の種類にもよるが、下地摺動層に溶射処理された溶
射層の気孔率は例えば10〜30%程度とすることがで
きる。硬質粒子はジルコニア粒子(ZrO2 )、アルミ
ナ粒子、マグネシア粒子、初晶シリコン粒子、Fe2
3 粒子等を採用できる。硬質粒子の平均粒径は摺動部材
の種類、溶射層の厚み、必要とするアブレージブ作用等
にもよるが、例えば3〜40μm特に5〜30μmとす
ることができる。
The thermal sprayed layer laminated on the base sliding layer by the thermal spraying process slides with the mating material at the initial stage. The thickness of the sprayed layer depends on the type of the sliding member.
m. The thermal spray layer is formed of a thermal spray material constituting a matrix and hard particles dispersed in the thermal spray material. The thermal spray layer can be formed by thermal spraying a thermal spray powder in which hard particles are dispersed with a thermal spray gun. In this case, when the hard particles themselves are partially or wholly melted or softened by the thermal spraying heat, the particles may collide with the underlying sliding layer during thermal spraying. It also has the effect of deforming the shape. As the thermal spray material, for example, an iron-chromium-carbon system, an iron-chromium-carbon-copper system, a tungsten system, a molybdenum system, a nickel system, a nickel-chromium system, and a nickel-chromium-aluminum system can be adopted. Although depending on the type of the sliding member, the porosity of the thermal sprayed layer obtained by spraying the base sliding layer can be, for example, about 10 to 30%. Hard particles are zirconia particles (ZrO 2 ), alumina particles, magnesia particles, primary silicon particles, Fe 2 O
Three particles can be adopted. The average particle size of the hard particles depends on the type of the sliding member, the thickness of the sprayed layer, the required abrasive action, and the like, but can be, for example, 3 to 40 μm, particularly 5 to 30 μm.

【0010】溶射層は、相手材とある程度摺動したら下
地摺動層から脱離する。溶射層と下地摺動層とのせん断
密着強度は摺動部材の種類によっても異なるが、0.3
〜8kgf/mm2 の範囲であり、特に0.5〜2kg
f/mm2 とすることができる。せん断密着強度の調整
は、電流値、電圧値、ガス流量、溶射距離などの溶射条
件の変更、溶射粉末の種類の変更、溶射層の厚みの変
更、溶射層の気孔率の変更、硬質粒子の形状の変更、あ
るいは、溶射層と下地摺動層と間に脱離促進層を介在さ
せることにより、行い得る。なお脱離促進層は固体潤滑
材等で形成できる。
When the thermal spray layer slides to some extent with the mating material, it separates from the underlying sliding layer. Shear adhesion strength between the sprayed layer and the underlying sliding layer varies depending on the kind of the sliding members but, 0. 3
88 kgf / mm 2 , especially 0.5 to 2 kgf / mm 2
f / mm 2 . Adjustment of shear adhesion strength includes changing spraying conditions such as current value, voltage value, gas flow rate, spraying distance, changing the type of sprayed powder, changing the thickness of the sprayed layer, changing the porosity of the sprayed layer, This can be performed by changing the shape or by interposing a desorption promoting layer between the sprayed layer and the underlying sliding layer. The desorption promoting layer can be formed of a solid lubricant or the like.

【0011】本発明の摺動部材では、母材と下地摺動層
との間の密着強度を確保するために、母材と下地摺動層
との間に中間層を介在させることもできる。中間層は例
えばニッケル系合金、なかでも重量%でニッケル−クロ
ム合金94%、アルミニウム6%の溶射粉末を溶射して
形成できる。あるいは、ニッケル95.5%、アルミニ
ウム4.5%の溶射粉末を溶射して形成できる。なお中
間層の厚みは例えば50〜100μm程度にできる。
In the sliding member of the present invention, an intermediate layer may be interposed between the base material and the base sliding layer in order to secure the adhesion strength between the base material and the base sliding layer. The intermediate layer can be formed, for example, by spraying a thermal spray powder of a nickel-based alloy, in particular, a nickel-chromium alloy 94% by weight and aluminum 6% by weight. Alternatively, it can be formed by spraying a thermal spray powder of 95.5% nickel and 4.5% aluminum. The thickness of the intermediate layer can be, for example, about 50 to 100 μm.

【0012】相手材としては、例えば有機系摩擦材料の
ものを採用できる。有機系摩擦材料は、フェノール樹脂
などの結合剤、金属、アラミド、無機繊維などの基材、
カシュダスト、ゴム、炭酸カルシウムなどの摩擦調整剤
を含む構成とすることができる。
As the mating material, for example, an organic friction material can be used. Organic friction materials include binders such as phenolic resins, metals, aramids, base materials such as inorganic fibers,
A configuration including a friction modifier such as cache dust, rubber, and calcium carbonate can be employed.

【0013】[0013]

【作用】本発明の摺動部材では、初期においては溶射層
が相手材と摺動する。このとき硬質粒子が相手材を削る
ので、所要の摩擦係数が確保される。そして、ある程度
摺動したら、つまり初期以降においては、溶射層は特に
溶射層の硬質粒子は脱離する。本発明の摺動部材では、
溶射層のせん断密着強度の下限及び上限を規定している
ため、硬質粒子を含む溶射層は下地摺動層に過剰に密着
されず、そのため摩擦摺動の進行に伴い適切に脱離され
る。よって下地摺動層と相手材とが摺動する。
In the sliding member of the present invention, the sprayed layer initially slides with the counterpart material. At this time, since the hard particles cut the mating material, a required coefficient of friction is secured. Then, after sliding to some extent, that is, after the initial stage, particularly the hard particles of the sprayed layer are detached from the sprayed layer. In the sliding member of the present invention,
Defines the lower and upper limits of the shear adhesion strength of the sprayed layer
As a result, the sprayed layer containing hard particles adheres excessively to the underlying sliding layer.
Not be removed properly as frictional sliding progresses
You. Therefore, the base sliding layer slides on the mating material.

【0014】[0014]

【実施例】まず、実施例1を説明する。即ち、Al−1
2%Si合金を成形型のキャビティに鋳造し、図2に示
すリング状の摺動面2をもつディスクロータ1を作製し
た。ディスクロータ1は直径300mm、ディスク厚2
0mmである。そして、重量%でFe−Cr−C合金粉
末50%とCu粉末50%とを混合した第1混合粉末を
用い、溶射ガンをディスクロータ1の摺動面2に対面さ
せ、プラズマ溶射法によりディスクロータ1の摺動面2
に下地摺動層3を形成した。この場合、Fe−Cr−C
合金粉末は、その組成がCr55〜65wt%、C3〜
4wt%、残部実質的にFeであり、粒度が10〜74
μmのものを用いた。またCu粉末は純度95%、粒度
10〜74μmのものを用いた。この場合、溶射装置は
METCO7MB型を用い、電流450A、電圧65
V、ガス量はArガス40リットル/min、H2 ガス
7.5リットル/min、溶射距離130mmの条件
で、厚さ300μmになるまで積層した。
Embodiment 1 First, Embodiment 1 will be described. That is, Al-1
A 2% Si alloy was cast in a cavity of a molding die to produce a disk rotor 1 having a ring-shaped sliding surface 2 shown in FIG. The disk rotor 1 has a diameter of 300 mm and a disk thickness of 2
0 mm. Then, using a first mixed powder obtained by mixing 50% by weight of Fe-Cr-C alloy powder and 50% by weight of Cu powder, the spraying gun is opposed to the sliding surface 2 of the disk rotor 1, and the disk is formed by plasma spraying. Sliding surface 2 of rotor 1
A base sliding layer 3 was formed on the substrate. In this case, Fe-Cr-C
The alloy powder has a composition of Cr 55-65 wt%, C 3-
4 wt%, the balance being substantially Fe, with a particle size of 10 to 74
μm was used. The Cu powder used had a purity of 95% and a particle size of 10 to 74 μm. In this case, a METCO 7 MB type spraying apparatus was used, and the current was 450 A and the voltage was 65
V, the amount of gas Ar gas 40 l / min, H 2 gas 7.5 l / min, under conditions of spraying distance 130 mm, was laminated to a thickness 300 [mu] m.

【0015】その後、重量%でZrO2 粉末50%と前
述の第1混合粉末50%とを混合した第2混合粉末を用
い、同じ溶射装置を用い、電流380A、電圧60V、
ガス量Arガス40リットル/min、H2 ガス5リッ
トル/min、溶射距離130mmの条件で、厚さ20
μmになるまで溶射層としてのアブレージブ層4を積層
し、これにより摺動層5を形成した。図1に摺動層5の
断面を模式的に示す。図3に示す様に、下地摺動層3の
上には、ZrO2 粒子4cと気孔4dとが混在するアブ
レージブ層4が積層されている。ZrO2 粉末は粒度1
5〜25μm程度のものを用いた。また、アブレージブ
層4を溶射する際の溶射条件を低電流、低H2 ガス量側
に設定したのは、アブレージブ層4をよりポーラス質に
するとともに、ZrO2 粒子4cの未溶融部分を確保す
るためである。なお、溶射したアブレージブ層4の厚み
は膜厚計により測定した。
Then, using a second mixed powder obtained by mixing 50% by weight of the ZrO 2 powder and 50% of the first mixed powder by weight, using the same thermal spraying apparatus, a current of 380 A, a voltage of 60 V,
Under the conditions of a gas amount of Ar gas 40 L / min, H 2 gas 5 L / min, and a spraying distance of 130 mm, a thickness of 20 L
An abrasive layer 4 as a thermal spray layer was laminated to a thickness of μm, thereby forming a sliding layer 5. FIG. 1 schematically shows a cross section of the sliding layer 5. As shown in FIG. 3, an abrasive layer 4 in which ZrO 2 particles 4c and pores 4d are mixed is laminated on the base sliding layer 3. ZrO 2 powder has a particle size of 1
Those having a size of about 5 to 25 μm were used. The reason why the spraying conditions for spraying the abrasive layer 4 are set to the low current and low H 2 gas amount side is that the abrasive layer 4 is made more porous and the unmelted portion of the ZrO 2 particles 4c is secured. That's why. The thickness of the sprayed abrasive layer 4 was measured by a film thickness gauge.

【0016】その後、砥石(ダイヤモンド)を用い、ア
ブレージブ層4の表面を砥石研削により削り、これによ
り下地摺動層3とアブレージブ層4との合計厚みが30
5μmになるようにした。この時のアブレージブ層4の
厚さは約5μmである。更に比較例1のロータも形成し
た。即ち、実施例1と同種のAl−Si系のロータと、
実施例1と同様なFe−Cr−C合金粉末とCu粉末と
を混合した第1混合粉末とを用い、第1混合粉末を実施
例1と同様な条件でロータに溶射し、厚さ320μmの
摺動層を形成し、その後、摺動層の表面を研削により削
り、厚みを305μmにした。比較例1にはZrO2
子を分散したアブレージブ層4は形成されていない。
Thereafter, the surface of the abrasive layer 4 is ground by a grinding wheel using a grinding wheel (diamond), whereby the total thickness of the base sliding layer 3 and the abrasive layer 4 is reduced to 30.
The thickness was set to 5 μm. At this time, the thickness of the abrasive layer 4 is about 5 μm. Further, the rotor of Comparative Example 1 was also formed. That is, the same type of Al-Si rotor as in Example 1
Using a first mixed powder in which the same Fe-Cr-C alloy powder and Cu powder as in Example 1 were mixed, the first mixed powder was sprayed on a rotor under the same conditions as in Example 1 to form a 320 μm-thick powder. A sliding layer was formed, and then the surface of the sliding layer was ground by grinding to a thickness of 305 μm. In Comparative Example 1, the abrasive layer 4 in which ZrO 2 particles were dispersed was not formed.

【0017】実施例1のロータと比較例1のロータとを
用い、同車種の車両のフロント両サイドに組みつけた。
摺動の相手材であるパッドはスチールを含まないもので
あり、その材料組成は(体積比で、アラミド繊維10
%、ガラス繊維5%、ケイ酸カルシウム10%、フェノ
ール樹脂15%、カシューダスト20%、黒鉛5%、硫
酸バリウム20%、その他充填材15%)である。また
パッド面の初期の面粗さは300μmRZである。そし
て、テストコースで車両速度50kmの一定速度で車両
を走行し、200km毎に制動(0.3Gの制動減速
度)をかけて車両を停止させ、これを繰り返して走行距
離1600kmまで走った。この試験では、走行距離2
00km毎にロータとパッドを取り外し、JASO C
406ー82(乗用車ブレーキ装置ダイナモメータ試
験方法)にしたがい、初期すり合わせチェック時(制動
初速度50km/hr、制動減速度0.3G、制動間隔
120秒、制動回数10回)の平均摩擦係数を測定し
た。この結果を図4の特性線に示す。図4に示す試験結
果により、比較例1では1000km以上走行しない
と、摩擦係数μが本来の値(μ=0.4程度)に回復し
ない。一方、実施例1では走行距離200kmに至るま
で摩擦係数が急激に増加し、走行距離400kmにおい
て摩擦係数μが0.4付近となり回復する。またこの試
験では、走行距離200km毎にパッド面の状態を観察
した。その結果、比較例1では、初期の面粗さが300
μmRZであったパッド面は、走行距離1000km以
上で、やっと5μmRZ〜10μmRZになるのに対
し、実施例1では走行距離200km、400kmでそ
の程度の面粗さになる。これは、ZrO2 粒子4cを分
散したアブレージブ層4がロータ1の表面に存在するた
め、ZrO2 粒子4cによりパッド面が平滑化した効果
であると推察される。
The rotor of Example 1 and the rotor of Comparative Example 1 were used and mounted on both front sides of a vehicle of the same type.
The pad which is a sliding partner material does not contain steel, and its material composition is (by volume ratio, aramid fiber 10).
%, Glass fiber 5%, calcium silicate 10%, phenol resin 15%, cashew dust 20%, graphite 5%, barium sulfate 20%, and other fillers 15%). The initial surface roughness of the pad surface is 300 μm RZ. Then, the vehicle was driven at a constant speed of 50 km on the test course, the vehicle was stopped by applying a brake (a braking deceleration of 0.3 G) every 200 km, and the vehicle was repeatedly driven up to a running distance of 1600 km. In this test, mileage 2
Remove the rotor and pad every 00km, JASO C
According to 406-82 (passenger car brake device dynamometer test method), the average friction coefficient at the time of initial contact check (initial braking speed 50 km / hr, braking deceleration 0.3 G, braking interval 120 seconds, number of braking 10 times) is measured. did. This result is shown by the characteristic line in FIG. According to the test results shown in FIG. 4, in Comparative Example 1, the friction coefficient μ does not recover to the original value (μ = approximately 0.4) unless the vehicle travels over 1000 km. On the other hand, in the first embodiment, the friction coefficient sharply increases up to the traveling distance of 200 km, and at a traveling distance of 400 km, the friction coefficient μ approaches 0.4 and recovers. In this test, the state of the pad surface was observed every 200 km of travel distance. As a result, in Comparative Example 1, the initial surface roughness was 300
The pad surface having a μmRZ becomes 5 μmRZ to 10 μmRZ at a running distance of 1000 km or more, whereas the surface roughness becomes as large at a running distance of 200 km and 400 km in the first embodiment. This is presumed to be an effect that the pad surface is smoothed by the ZrO 2 particles 4c because the abrasive layer 4 in which the ZrO 2 particles 4c are dispersed is present on the surface of the rotor 1.

【0018】実施例2において、ZrO2 粒子に代え
て、アルミナ粒子(Al2 3 )、マグネシア粒子(M
gO)、Fe2 3 粒子を分散したアブレージブ層4を
下地摺動層3に積層したロータを形成した。そして、実
施例1の場合と同様に、同車種の車両のフロント両サイ
ドに組みつけ、テストコースで車両速度50kmの一定
速度で車両を走行し、200km毎に制動をかけて車両
を停止させ、ロータとパッドを取り外し、JASO C
406ー82にしたがい平均摩擦係数を測定した。実
施例2においても、実施例1の場合と同様に摩擦係数μ
を早期に回復させる効果が発現された。
In Example 2, instead of ZrO 2 particles, alumina particles (Al 2 O 3 ) and magnesia particles (M
gO) and a rotor in which the abrasive layer 4 in which Fe 2 O 3 particles are dispersed was laminated on the underlying sliding layer 3. Then, as in the case of the first embodiment, the vehicle is mounted on both front sides of a vehicle of the same model, the vehicle travels at a constant speed of 50 km on a test course, and the vehicle is stopped by applying a brake every 200 km. Remove the rotor and pad, JASO C
The average coefficient of friction was measured according to 406-82. Also in the second embodiment, the friction coefficient μ is the same as in the first embodiment.
At an early stage.

【0019】実施例3において、実施例1以外の組成を
もつFe−Cr−C−Cu系合金の粉末とZrO2 粉末
とを用い、ZrO2 粒子をもつアブレージブ層4を下地
摺動層3に積層したロータを形成した。そして、実施例
1の場合と同様に車両に組み込み試験したところ、実施
例1の場合と同様に摩擦係数μを早期に回復させる効果
が発現された。さらに、Cu粉末とZrO2 粉末とを混
合した混合粉末を用い、アブレージブ層4を下地摺動層
3に積層したロータを形成した。そして、実施例1の場
合と同様に試験したところ、実施例1の場合と同様に摩
擦係数μを早期に回復させる効果が発現された。
In Example 3, an abradable layer 4 having ZrO 2 particles was used as the underlying sliding layer 3 by using an Fe—Cr—C—Cu alloy powder and a ZrO 2 powder having compositions other than those of Example 1. A laminated rotor was formed. Then, as in the case of the first embodiment, a built-in test was performed on a vehicle, and as in the case of the first embodiment, the effect of quickly recovering the friction coefficient μ was exhibited. Further, a rotor in which the abrasive layer 4 was laminated on the underlying sliding layer 3 was formed using a mixed powder obtained by mixing Cu powder and ZrO 2 powder. Then, a test was conducted in the same manner as in Example 1, and as a result, the effect of recovering the friction coefficient μ at an early stage was exhibited, as in Example 1.

【0020】<試験例1>ZrO2 粉末の割合を表1に
示す様にさせた以外は実施例1の場合と同様な方法でロ
ータA〜Iを形成した。そして、実施例1の場合と同様
に車両のフロント両サイドに組みつけ、テストコースで
車両を走行させ、200km毎にJASOC 406ー
82にしたがい、平均摩擦係数を測定した。この結果、
ZrO2 粒子の少ないロータA、Bでは摩擦係数μが回
復する効果は、走行距離1000km付近でも全く得ら
れなかった。これに対し、ZrO2 粒子が多く分散した
ロータC〜Hでは実施例1と同様な特性線が得られ、早
期に摩擦係数μが回復する効果が得られた。なおロータ
Iはアブレージブ層4の密着性が悪く、評価に値しない
ため中止した。この結果よりアブレージブ層4において
ZrO2 粉末の混合割合30〜80vol%が最適であ
ることがわかった。
Test Example 1 The rotors A to I were formed in the same manner as in Example 1 except that the ratio of the ZrO 2 powder was changed as shown in Table 1. Then, as in the case of Example 1, the vehicle was mounted on both front sides of the vehicle, the vehicle was run on a test course, and the average friction coefficient was measured every 200 km according to JASOC 406-82. As a result,
In the rotors A and B containing a small amount of ZrO 2 particles, the effect of restoring the friction coefficient μ was not obtained at all even at a running distance of about 1000 km. On the other hand, in rotors C to H in which a large amount of ZrO 2 particles were dispersed, characteristic lines similar to those in Example 1 were obtained, and the effect of quickly recovering the friction coefficient μ was obtained. The rotor I was stopped because the adhesiveness of the abrasive layer 4 was poor and was not worthy of evaluation. From this result, it was found that the mixing ratio of the ZrO 2 powder in the abrasive layer 4 was optimal at 30 to 80 vol%.

【0021】[0021]

【表1】 <試験例2>実施例1においてZrO2 粉末の粒度分布
の中心値(正規分布の中央値が50%以上占める値)を
表2のように変化させた以外は、実施例1の場合と同様
な方法でロータJ〜Oを形成した。そして、同様な試験
を行った。
[Table 1] <Test Example 2> The same as Example 1 except that the center value of the particle size distribution of ZrO 2 powder (the value occupied by 50% or more of the median of the normal distribution) in Example 1 was changed as shown in Table 2. The rotors J to O were formed by a suitable method. Then, a similar test was performed.

【0022】この結果、粒度中心値3μmのロータJで
は、ZrO2 粒子が小さくてアブレージブ作用がほとん
どないため、摩擦係数μが回復する効果は走行距離10
00km付近においてもほとんど得られなかった。また
粒度中心値40μmのロータOでは初期つまり走行距離
200km程度において摩擦係数μが0.35近くまで
増加した。しかし、その後0.3付近まで低下した。こ
れはパッド面の観察の結果、200kmではパッド面の
面粗さが減って平滑化し、一時的に接触面積が増すが、
その後、粒径が大きいZrO2 粒子によりパッドおよび
ロータの摺動傷が増し、かえってパッドとロータとの接
触面積が低下したものと考えられる。これに対し粒度中
心値5〜30μmのロータK〜Nでは、実施例1の場合
と同様に、初期における良好な摩擦係数回復効果が発現
された。この結果、ZrO2 粉末の粒度分布の中心値は
5〜30μmが良いことがわかった。
As a result, in the rotor J having a central particle size of 3 μm, since the ZrO 2 particles are small and there is almost no abrasive action, the effect of recovering the friction coefficient μ is 10 km.
It was hardly obtained at around 00 km. In the case of the rotor O having a grain size center value of 40 μm, the friction coefficient μ increased to near 0.35 in the initial stage, that is, at a running distance of about 200 km. However, it subsequently decreased to around 0.3. As a result of observation of the pad surface, at 200 km, the surface roughness of the pad surface is reduced and smoothed, and the contact area temporarily increases,
Then, it is considered that the ZrO 2 particles having a large particle diameter increased the sliding scratches of the pad and the rotor, and rather reduced the contact area between the pad and the rotor. On the other hand, in the rotors K to N having the median particle size of 5 to 30 μm, as in the case of Example 1, a good initial friction coefficient recovery effect was exhibited. As a result, it was found that the center value of the particle size distribution of the ZrO 2 powder is preferably 5 to 30 μm.

【0023】[0023]

【表2】 <試験例3>実施例1においてZrO2 粒子を分散させ
たアブレージブ層4の厚さのみを砥石研削で表3のよう
に変化させた以外は、実施例1の場合と同様な方法でロ
ータP〜Uを形成した。そして、同様な試験を行った。
この結果、厚みが1μmのロータPでは、図4の特性線
で示す様に、200kmでの摩擦係数が回復する効果は
あるが、アブレージブ層4が薄いため、アブレージブ層
4が早期に消失し、その後の摩擦係数回復効果は緩やか
であった。これは、アブレージブ層4が薄いためアブレ
ージブ機能が不十分なためであると推察される。
[Table 2] <Test Example 3> The rotor P was manufactured in the same manner as in Example 1 except that only the thickness of the abrasive layer 4 in which ZrO 2 particles were dispersed was changed as shown in Table 3 by grinding. ~ U was formed. Then, a similar test was performed.
As a result, in the rotor P having a thickness of 1 μm, as shown by the characteristic line in FIG. 4, the friction coefficient at 200 km has an effect of being recovered, but since the abrasive layer 4 is thin, the abrasive layer 4 disappears early. Thereafter, the effect of recovering the coefficient of friction was moderate. It is presumed that this is because the abrasive layer 4 is thin and the abrasive function is insufficient.

【0024】一方、厚みが15μmのロータUでは、1
000kmまでは実施例1と同様な効果を示すが、その
後摩擦係数μがやや低下していく傾向がみられた。この
場合、面観察及び面粗さ測定の結果、1000kmでは
パッド粗さは一時的に5〜10μmRZになるが、それ
以上走行距離が増すとパッド粗さが20μmRZ以上に
増すため、摩擦係数μが若干低下する。これはアブレー
ジブ層4により良好な摩擦係数回復を示すが、その後、
残存アブレージブ層4とパッドとの更なる摩耗により、
パッドの面粗さが増加するであると推察される。一方、
厚みが2〜10μmロータQ〜Tでは、実施例1の場合
の様な良好な摩擦係数回復効果が得られた。しかも摩擦
係数μが回復した1000km付近でほぼアブレージブ
層4は脱離し消失していることがわかった。これより、
アブレージブ層4は厚すぎても逆効果になり、アブレー
ジブ層の厚みは2〜10μm程度が良いことがわかっ
た。
On the other hand, in the rotor U having a thickness of 15 μm, 1
Up to 000 km, the same effect as in Example 1 is exhibited, but thereafter, the friction coefficient μ tends to slightly decrease. In this case, as a result of surface observation and surface roughness measurement, at 1000 km, the pad roughness temporarily becomes 5 to 10 μm RZ, but when the traveling distance increases further, the pad roughness increases to 20 μm RZ or more. Slightly lower. This shows a better coefficient of friction recovery with the abrasive layer 4, but then
Due to the further abrasion of the remaining abrasive layer 4 and the pad,
It is assumed that the surface roughness of the pad increases. on the other hand,
With the rotors Q to T having a thickness of 2 to 10 μm, a good friction coefficient recovery effect as in Example 1 was obtained. In addition, it was found that the abrasive layer 4 was almost detached and disappeared around 1000 km where the friction coefficient μ was recovered. Than this,
The opposite effect is obtained even if the abrasive layer 4 is too thick, and it is found that the thickness of the abrasive layer is preferably about 2 to 10 μm.

【0025】[0025]

【表3】 <試験例4>実施例1の場合と同様な方法で下地摺動層
3を積層した後、表4に示す様に溶射条件を変更して溶
射を行ない、アブレージブ層4と下地摺動層3とのせん
断密着強度を変化をさせたロータV〜Z、ロータ&を形
成した。そして、実施例1の場合と同様な試験を行っ
た。この結果を図5の特性線に示す。ここで、せん断密
着強度が0.5〜2.0kgf/mm2 のロータW〜Z
においては、図5に示す様に、実施例1と全く同様な摩
擦係数の傾向を示し、初期における摩擦係数回復効果が
得られた。これに対し、せん断密着強度が小さいロータ
Vでは、初期のうちにアブレージブ層4が脱離し、摩擦
係数回復効果がなく、図4に示す比較例1とほぼ同様な
傾向を示した。
[Table 3] <Test Example 4> After the base sliding layer 3 was laminated in the same manner as in Example 1, spraying was performed by changing the spraying conditions as shown in Table 4, and the abrasive layer 4 and the base sliding layer 3 were sprayed. The rotors V to Z and the rotor & were formed in which the shear adhesion strength was changed. Then, the same test as in the case of Example 1 was performed. This result is shown by the characteristic line in FIG. Here, rotors W to Z having a shear adhesion strength of 0.5 to 2.0 kgf / mm 2
In FIG. 5, as shown in FIG. 5, the tendency of the friction coefficient was exactly the same as in Example 1, and the effect of recovering the friction coefficient in the initial stage was obtained. On the other hand, in the rotor V having a small shear adhesion strength, the abrasive layer 4 was detached in the initial stage, and there was no friction coefficient recovery effect, and the tendency was almost the same as that of Comparative Example 1 shown in FIG.

【0026】また、せん断密着強度が2.5kgf/m
2 のロータ&では、走行距離100kmまでの初期で
は、摩擦係数μは一時的に増すものの、その後、走行距
離が増しても摩擦係数の回復効果がなく、むしろ比較例
1よりも低い摩擦係数を示した。これは、面観察の結
果、アブレージブ層4の密着強さが大きすぎ、アブレー
ジブ層4が脱落せず、そのため、むしろ相手材であるパ
ッド側を削って表面粗さを大きくしたり、パッド材の摩
耗粉をとり入れたりして、摩擦係数μが上がらないもの
と推察される。以上のことよりZrO2 粒子4cを分散
したアブレージブ層4では、アブレージブ層4のせん断
密着強度は0.5〜2.0kgf/mm2 が良いことが
わかる。
The shear adhesion strength is 2.5 kgf / m
With the rotor & of m 2 , the friction coefficient μ temporarily increases in the initial period up to the travel distance of 100 km, but there is no effect of restoring the friction coefficient even if the travel distance increases, and the friction coefficient is lower than that of Comparative Example 1. showed that. This is because, as a result of surface observation, the adhesive strength of the abradable layer 4 is too large, and the abradable layer 4 does not fall off. It is assumed that the friction coefficient μ did not increase due to the introduction of wear powder. From the above, it can be seen that in the abrasive layer 4 in which the ZrO 2 particles 4c are dispersed, the shear adhesion strength of the abrasive layer 4 is preferably 0.5 to 2.0 kgf / mm 2 .

【0027】[0027]

【表4】 [Table 4]

【発明の効果】以上説明した様に本発明の摺動部材によ
れば、初期においては、アブレージブ作用をもつ硬質粒
子が分散された溶射層が相手材と摺動するので、硬質粒
子が相手材を削り、そのため摩擦係数が増して回復す
る。また本発明の摺動部材によれば、ある程度摺動した
ら、溶射層は特に溶射層の硬質粒子は脱離し、所要の摩
擦特性をもつ下地摺動層と相手材とが摺動するので、本
来の所要の摩擦係数を得ることができる。
As described above, according to the sliding member of the present invention, initially, the sprayed layer in which the hard particles having the abrasive action are dispersed slides with the mating material, so that the hard particles are hardened by the mating material. , Which increases the coefficient of friction and recovers. Further, according to the sliding member of the present invention, after sliding to some extent, the thermal spray layer, in particular, the hard particles of the thermal spray layer are detached, and the underlying sliding layer having required friction characteristics slides with the mating material. Required friction coefficient can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】模式的に示した要部の断面図である。FIG. 1 is a schematic cross-sectional view of a main part.

【図2】ブレーキロータの正面図である。FIG. 2 is a front view of a brake rotor.

【図3】ブレーキロータの断面図である。FIG. 3 is a sectional view of a brake rotor.

【図4】摩擦係数と走行距離との関係を示すグラフであ
る。
FIG. 4 is a graph showing a relationship between a friction coefficient and a traveling distance.

【図5】摩擦係数と走行距離との関係を示すグラフであ
る。
FIG. 5 is a graph showing a relationship between a friction coefficient and a traveling distance.

【符号の説明】[Explanation of symbols]

図中、1はロータ、2は摺動面、3は下地摺動層、4は
アブレージブ層、4cはZrO2 粒子、4dは気孔を示
す。
In the figure, 1 is a rotor, 2 is a sliding surface, 3 is a base sliding layer, 4 is an abrasive layer, 4c is ZrO 2 particles, and 4d is a pore.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】母材と、該母材表面に積層された所要の摩
擦特性をもつ下地摺動層と、該下地摺動層に溶射処理で
積層された溶射材と該溶射材に分散された硬質粒子とを
もち且つせん断密着強度が0.3〜8kgf/cm 2
規定され該下地摺動層から脱離可能な溶射層とで構成さ
れていることを特徴とする摺動部材。
1. A base material, a base sliding layer having required frictional properties laminated on the base material surface, a sprayed material laminated on the base sliding layer by thermal spraying, and dispersed in the sprayed material. and the hard particles have and shear adhesion strength in 0.3~8kgf / cm 2
A sliding member comprising a sprayed layer defined and detachable from the underlying sliding layer.
JP17405391A 1991-07-15 1991-07-15 Sliding member Expired - Lifetime JP2844970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17405391A JP2844970B2 (en) 1991-07-15 1991-07-15 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17405391A JP2844970B2 (en) 1991-07-15 1991-07-15 Sliding member

Publications (2)

Publication Number Publication Date
JPH0525605A JPH0525605A (en) 1993-02-02
JP2844970B2 true JP2844970B2 (en) 1999-01-13

Family

ID=15971797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17405391A Expired - Lifetime JP2844970B2 (en) 1991-07-15 1991-07-15 Sliding member

Country Status (1)

Country Link
JP (1) JP2844970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127164A (en) * 2010-12-17 2012-07-05 Takenaka Komuten Co Ltd Structure for joining steel material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395634B (en) * 2010-05-13 2013-05-11 Nat Univ Chin Yi Technology Sliding machine and pad surface finishing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127164A (en) * 2010-12-17 2012-07-05 Takenaka Komuten Co Ltd Structure for joining steel material

Also Published As

Publication number Publication date
JPH0525605A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
EP3350468B1 (en) Method for manufacturing a brake disc and brake disc for disc brakes
JP6347790B2 (en) Brake disc manufacturing method, disc brake brake disc, and disc brake
CN111263864B (en) Method for producing a brake disc and brake disc for a disc brake
AU693716B2 (en) Brake rotors/drums and brake pads
JPH07269614A (en) Composite material disc for high-energy braking
JP2911040B2 (en) Acoustic and / or vibration damping coating
JPS63106101A (en) Rim for two wheeler
JP2844970B2 (en) Sliding member
JP5853307B2 (en) Brake disc rotor and manufacturing method thereof
JP5391448B2 (en) Disc rotor for brake
JP4570549B2 (en) Disc rotor for brake
JP2001246455A (en) Composite cast iron brake shoe for railway brake and its manufacturing method
JP2001317573A (en) Disc rotor for brake
JP3357949B2 (en) Brake disc material for high-speed railway vehicles
JP2002188663A (en) Brake part
JPH09112612A (en) Embedded block for brake shoe
JP3262365B2 (en) Manufacturing method of brake disc
JP2000355685A (en) Friction material
JPS61157839A (en) Friction brake plate and manufacture thereof
JP2005298852A (en) Rotating body for brake
JPH0723735B2 (en) Disc brake rotor made of metal matrix composite material
WO2000047911A1 (en) Surface of a brake component with controlled friction coefficient
JPS63305004A (en) Rim for motor cycle
JPH09143668A (en) Disk rotor on which coating layer of non-oxidized material is formed
JPH06271973A (en) Si-al alloy material with heat resistance and wear resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091030

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111030

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111030