JP5391448B2 - Disc rotor for brake - Google Patents

Disc rotor for brake Download PDF

Info

Publication number
JP5391448B2
JP5391448B2 JP2009118890A JP2009118890A JP5391448B2 JP 5391448 B2 JP5391448 B2 JP 5391448B2 JP 2009118890 A JP2009118890 A JP 2009118890A JP 2009118890 A JP2009118890 A JP 2009118890A JP 5391448 B2 JP5391448 B2 JP 5391448B2
Authority
JP
Japan
Prior art keywords
rotor
brake
alloy
test
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009118890A
Other languages
Japanese (ja)
Other versions
JP2010266020A (en
Inventor
貴雄 堀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2009118890A priority Critical patent/JP5391448B2/en
Publication of JP2010266020A publication Critical patent/JP2010266020A/en
Application granted granted Critical
Publication of JP5391448B2 publication Critical patent/JP5391448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Braking Arrangements (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

本発明は、自動車、二輪車、鉄道車両、産業機械などに利用される、軽量で経済性、耐摩耗性、機械加工性、耐熱性に優れるブレーキ用ディスクロータに関するものである。   TECHNICAL FIELD The present invention relates to a brake disc rotor that is used in automobiles, two-wheeled vehicles, railway vehicles, industrial machines, and the like and is excellent in lightness, economy, wear resistance, machinability, and heat resistance.

従来、自動車のブレーキ用ディスクロータには、耐熱性や耐摩耗性のほか、価格、製造プロセスの容易さ、材料特性の安定性などの点から鋳鉄製のものが使用されている。これは鋳鉄の耐摩耗性や耐熱性及び製造コストの廉価性を利用している。   Conventionally, a brake disc rotor for an automobile is made of cast iron in terms of heat resistance, wear resistance, price, ease of manufacturing process, and stability of material characteristics. This utilizes the wear resistance and heat resistance of cast iron and the low cost of manufacturing costs.

しかし、最近のCOガスによる地球温暖化、エネルギー枯渇、環境汚染などの問題の高まりから、自動車の軽量化の必要性はますます強まってきており、ブレーキ部材についても軽量化、小型化の要求は年々厳しくなっている。ブレーキの重量の多くを占めるディスクロータの軽量化は、その意味で自動車の軽量化にとって非常に重要である。現在ロータ材として主流の鋳鉄材に代わる軽量金属としては、アルミニウム、マグネシウム、チタン材などがあるが、いずれも耐熱性が鋳鉄材に比べて低いという欠点がある。そのため、耐熱粒子をこれらの軽量金属に含有させる複合合金や表面を耐熱材料でコーティングする方法が各種提案されている。例えば、アルミニウム合金にセラミック粒子を分散させた複合材(MMC)(例えば特許文献1)は、耐熱性は向上するが、均一溶製技術や切削・研削加工技術が困難で、単一材に比べコストが非常に高くなるという欠点がある。 However, the need for weight reduction of automobiles has been increasing due to the recent increase of global warming, energy depletion, and environmental pollution caused by CO 2 gas. Is getting stricter year by year. In this sense, the weight reduction of the disk rotor, which occupies much of the weight of the brake, is very important for the weight reduction of the automobile. Currently, light metals that can replace the mainstream cast iron materials as rotor materials include aluminum, magnesium, titanium materials, etc., all of which have a drawback that their heat resistance is lower than that of cast iron materials. For this reason, various proposals have been made for composite alloys containing heat-resistant particles in these lightweight metals and methods for coating the surface with a heat-resistant material. For example, a composite material (MMC) in which ceramic particles are dispersed in an aluminum alloy (for example, Patent Document 1) has improved heat resistance, but it is difficult to perform uniform melting technology and cutting / grinding technology. There is a disadvantage that the cost becomes very high.

ロータ表面に耐熱・耐摩耗層をコーティングする方法には、表面硬化、メッキ、溶射、肉盛り、CVD、PVDなどがあるが、ブレーキ用ディスクロータの面積や皮膜の生成速度、膜厚及び装置のコストなどを考慮すると溶射法が最も有望である。現在主流の溶射法である大気プラズマ法により硬質粒子の溶射層を設けたディスクロータ(特許文献2)やアーク法により鋼板製のディスクロータの表面にCuとFe−Cr−C系合金が混合した複合溶射層を形成する方法(特許文献3)、及びフレーム法により摺動面にNi−Al基合金粉末を溶射してアルミニウム合金製ディスクロータを製造する方法(特許文献4)などが提案されているが、下地層と表面層の密着性が充分でないため、熱収縮率や弾性率の違いによりロータが高温になったとき、界面の剥離や表面層の割れが生じやすくなるという重大な問題がある。このような問題は、ブレーキロータに要求される耐熱性・耐摩耗性が他の摺動部材に比べ非常に厳しいことに由来している。   There are surface hardening, plating, thermal spraying, overlaying, CVD, PVD, etc. as methods for coating the rotor surface with a heat-resistant and wear-resistant layer. Thermal spraying is the most promising in consideration of cost. Cu and Fe-Cr-C alloys were mixed on the surface of a disk rotor (Patent Document 2) provided with a hard particle sprayed layer by the atmospheric plasma method, which is currently the mainstream spraying method, or by the arc method. A method of forming a composite sprayed layer (Patent Document 3) and a method of manufacturing a disk rotor made of an aluminum alloy by spraying Ni-Al based alloy powder on a sliding surface by a frame method (Patent Document 4) are proposed. However, since the adhesion between the underlayer and the surface layer is not sufficient, when the rotor becomes hot due to the difference in thermal shrinkage and elastic modulus, there is a serious problem that the interface is liable to be peeled off or the surface layer is cracked. is there. Such a problem stems from the fact that the heat resistance and wear resistance required for the brake rotor are very severe compared to other sliding members.

本発明者等は、すでに純チタン又はチタン合金よりなるロータ本体の表面に高速フレーム溶射法により、WC−Co系サーメット又はFe−C系材料のコーティングを施してなるチタン基材表面クラッド型ディスクロータの提案(特許文献5)をしているが、これは主に比重、耐熱性、耐摩耗性及び耐食性のバランスを重視したものである。しかし、軽量化の観点からはチタン材よりアルミニウム材の方が有利であり、さらに製造コストの面からもアルミニウム材のほうが優れている。すなわち、軽量性及び経済性が特に要求される場合は、アルミニウム材の方が有望である。   The present inventors have already disclosed a titanium-based surface clad disk rotor in which a surface of a rotor body made of pure titanium or a titanium alloy is coated with a WC-Co cermet or Fe-C material by a high-speed flame spraying method. (Patent Document 5), which emphasizes the balance of specific gravity, heat resistance, wear resistance and corrosion resistance. However, from the viewpoint of weight reduction, the aluminum material is more advantageous than the titanium material, and the aluminum material is superior from the viewpoint of manufacturing cost. That is, aluminum materials are more promising when lightness and economy are particularly required.

特開平6−341472号公報JP-A-6-341472 特開昭62−99447号公報JP-A-62-99447 特許第2767988号明細書Japanese Patent No. 2767988 特開平5−263852号公報Japanese Patent Laid-Open No. 5-263852 特開2001−317573号公報JP 2001-317573 A

本発明の課題は、軽量でしかも経済性に優れ、さらに耐摩耗性や摺動面の耐熱性、熱伝導性に優れるアルミニウム合金製ブレーキ用ディスクロータを提供することである。   An object of the present invention is to provide an aluminum alloy brake disc rotor that is lightweight and excellent in economic efficiency, and further excellent in wear resistance, sliding surface heat resistance, and thermal conductivity.

本発明者等は前記の目的により、ディスクロータの基材が鋳鉄材やチタン材より軽量なアルミニウム合金で、摺動面の耐熱・耐摩耗皮膜が高温でも界面剥離や割れが生じにくく、コスト的にも溶製、コーティング、機械加工費などが安価であるブレーキロータについて種々検討した。   Due to the above-mentioned purposes, the inventors of the present invention are an aluminum alloy whose disk rotor base material is lighter than cast iron or titanium, and is resistant to interfacial peeling and cracking even when the heat-resistant and wear-resistant coating on the sliding surface is high in temperature. In addition, various investigations were made on brake rotors that are inexpensive in terms of melting, coating and machining.

この検討にあたって、本発明者らは、軽量ブレーキロータ材の耐摩耗性を小型の試験片で評価するために小型のダイナモ式慣性型摩耗試験機を用い、JASO規格で規定されている実ブレーキの運転パターン(効力試験、フェード試験など)と同じ試験パターン及び高温(〜400℃)での繰返し摩耗試験パターンを付加し、ロータ及び摩擦材の摩耗量や試験中の摩擦係数を測定した。この試験では、実ブレーキの1/10の大きさの試験片を用いるが、摺動面に付与される単位面積当たりのエネルギーと摺動速度が実ブレーキと同じになるようにし、摩擦材の押しつけ方法も実ブレーキと同様のキャリパー方式を採用している。試験片の周囲の温度及び湿度は常に一定に制御している。そして、現行材の鋳鉄ロータを使用し、実ブレーキロータの摩耗試験結果と本小型摩耗試験の結果を比較し、小型試験法の試験結果と実ロータの試験結果には高い相関関係があり、ブレーキロータの耐摩耗性、耐熱性がこの試験法で十分評価できることを確認した。   In this examination, the present inventors used a small dynamo-type inertia type wear tester to evaluate the wear resistance of the lightweight brake rotor material with a small test piece, and used an actual brake specified in the JASO standard. The same test pattern as the operation pattern (efficacy test, fade test, etc.) and a repeated wear test pattern at a high temperature (up to 400 ° C.) were added, and the wear amount of the rotor and the friction material and the friction coefficient during the test were measured. In this test, a test piece that is 1/10 the size of the actual brake is used, but the energy per unit area applied to the sliding surface and the sliding speed are made the same as the actual brake, and the friction material is pressed. The method uses the same caliper method as the actual brake. The temperature and humidity around the test piece are always controlled to be constant. Then, using the cast iron rotor of the current material, the wear test result of the actual brake rotor and the result of this small wear test are compared, and the test result of the small test method and the test result of the actual rotor are highly correlated, and the brake It was confirmed that the wear resistance and heat resistance of the rotor can be sufficiently evaluated by this test method.

そこで本発明者は、アルミニウム合金製の小型ロータ試験片(図1)に各種の表面溶射皮膜を付与し、この小型摩耗試験装置を用いてブレーキ摩耗特性を評価した。溶射法は、前記の界面剥離の問題や硬化層内の欠陥の少ない高速フレーム溶射法を選んだ。高速フレーム溶射は、高圧の燃焼ガスを用い、音速を超えるガス流速で粉末状の溶射材を吹き付けて皮膜を形成する方法で、従来のプラズマ溶射法などより素地との密着性に優れている。そして、溶射材を広範囲に変えた試験の結果から、アルミニウム合金を基材とし、その表面に高速フレーム溶射法で、Hv150以上300以下のCu合金製皮膜を形成させたディスクロータが、優れた軽量性、耐割れ・剥離性、耐摩耗性、および経済性を併せ持つことを知見して本発明に到達した。   Therefore, the present inventor applied various surface sprayed coatings to a small rotor test piece (FIG. 1) made of an aluminum alloy, and evaluated the brake wear characteristics using this small wear test apparatus. As the thermal spraying method, the high-speed flame spraying method with the above-mentioned problem of interfacial delamination and few defects in the hardened layer was selected. High-speed flame spraying is a method in which a high-pressure combustion gas is used and a coating is formed by spraying a powdered spray material at a gas flow rate exceeding the speed of sound, and has better adhesion to the substrate than conventional plasma spraying methods. Based on the results of tests in which the thermal spray material was changed over a wide range, a disk rotor in which an aluminum alloy was used as a base material and a Cu alloy film having a Hv of 150 or more and 300 or less was formed on the surface by a high-speed flame spraying method was an excellent lightweight. The present invention has been achieved by knowing that it has the properties of rust resistance, crack resistance / peelability, wear resistance, and economy.

すなわち、本発明は、下記の手段により前記の目的を達成した。
(1)アルミニウム合金よりなるディスクロータ本体の表面に、高速フレーム溶射法により、Cu合金粉末をコーティングして形成した皮膜層を有し、前記Cu合金粉末のCu合金が、Ni及びMnを添加したCu−Al系合金又はFe及びMnを添加した高力黄銅系合金であり、該皮膜層のビッカース硬度が150以上300以下であり、かつ、該皮膜層の厚さが50μm〜500μmであることを特徴とするブレーキ用ディスクロータ。
(2)アルミニウム合金よりなるディスクロータ本体の表面に、Ni及びMnを添加したCu−Al系合金又はFe及びMnを添加した高力黄銅系合金粉末を高速フレーム溶射法により吹き付けて、ビッカース硬度が150以上300以下で、かつ厚さが50μm〜500μmの皮膜層を形成することを特徴とするブレーキ用ディスクロータの製造方法。
That is, the present invention has achieved the above object by the following means.
(1) A surface of a disk rotor body made of an aluminum alloy has a coating layer formed by coating a Cu alloy powder by a high-speed flame spraying method, and the Cu alloy powder is added with Ni and Mn. A Cu-Al alloy or a high-strength brass alloy added with Fe and Mn, the coating layer has a Vickers hardness of 150 or more and 300 or less, and the coating layer has a thickness of 50 μm to 500 μm. A disc rotor for brakes.
(2) The surface of the disk rotor body made of an aluminum alloy is sprayed with Cu-Al based alloy added with Ni and Mn or high strength brass based alloy powder added with Fe and Mn by a high- speed flame spraying method. A method for manufacturing a brake disk rotor, comprising forming a coating layer having a thickness of 150 to 300 and a thickness of 50 μm to 500 μm.

本発明のブレーキ用ディスクロータは、従来の鋳鉄ロータやチタンロータより軽量で、安価なアルミニウム合金及びCu合金粉末を使用し、かつ機械加工性が優れているため、従来提案されている軽量耐熱ロータに比べ製造コストが非常に安い。
本発明で使用する高速フレーム溶射法は、PVD法、レーザーやプラズマ溶射法、爆着圧接法などに比べ、高価な設備及びランニングコストを必要としない安価で簡便な表面クラッド法であり、また表面皮膜は欠陥を介しないで完全に密着しており使用中に剥離することがない。
また、摩擦材は、従来のノンアスベスト系摩擦材が使用でき、従来材に比べ耐摩耗性及び摩擦係数の安定性においても同等の特性が得られる。
さらに、基材にアルミニウム合金、溶射皮膜にCu合金を使用しているため熱伝導性に優れ、ブレーキ摩擦熱の拡散が早く、ロータの最高到達温度が低くなり、かつ耐食性にも優れているため、錆の発生も抑制されるというメリットがある。
The brake disk rotor of the present invention is lighter than conventional cast iron rotors and titanium rotors, uses inexpensive aluminum alloy and Cu alloy powders, and is excellent in machinability. Compared with the manufacturing cost is very cheap.
The high-speed flame spraying method used in the present invention is an inexpensive and simple surface clad method that does not require expensive equipment and running cost as compared with the PVD method, laser or plasma spraying method, explosive welding method, etc. The film adheres perfectly without any defects and does not peel off during use.
The friction material can be a conventional non-asbestos friction material, and the same characteristics can be obtained in terms of wear resistance and stability of the friction coefficient as compared with the conventional material.
In addition, aluminum alloy is used for the base material and Cu alloy is used for the thermal spray coating, so it has excellent thermal conductivity, quick diffusion of brake friction heat, low maximum rotor temperature, and excellent corrosion resistance. There is a merit that generation of rust is also suppressed.

小型ブレーキ摩擦試験に用いた試験片の形状を示し、(a)は平面図、(b)はI−I断面図を示す。The shape of the test piece used for the small brake friction test is shown, (a) is a plan view, and (b) is a II cross-sectional view.

基材のアルミニウム合金は、適度の常温及び高温強度を備えたアルミニウム合金鋳物から選択使用することができるが、ロータ形状によっては展伸材用のアルミニウム合金を使用することもできる。また、焼き鈍し処理以外の熱処理は避けるのが望ましい。   The aluminum alloy of the base material can be selected from aluminum alloy castings having moderate ordinary temperature and high temperature strength, but depending on the rotor shape, an aluminum alloy for wrought material can also be used. It is desirable to avoid heat treatment other than annealing.

高速フレーム溶射は、高圧の燃焼ガスを用い、音速を超えるガス流速で粉末状の溶射材を吹き付けて皮膜を形成する方法で、皮膜中の気孔が少なく、かつ素地との界面に酸化物などの異物が少なく密着性に優れている。なお、溶射の熱源は、酸素と炭化水素ガス及び空気と酸素の混合ガスを用いる。また、前処理としてブラスト処理を実施するが、ブラスト材が表面層との界面に欠陥として残らないように注意する。
Cu合金粉は、Cu−Zn、Cu−Sn、Cu−A1、Cu−Ni、Cu−Beなどいずれの合金系でもよく、さらにFe、Mn、Be、Zr、Ag、Cr、Co、Ti、Pb、Si、Pなどのうちから1種又は2種以上の他の元素を加えてもよい。望ましくは硬度が高く耐摩耗性に優れるCu−Al系(Al青銅系)や高力黄銅系が好ましい。高力黄銅系(CAC300系)はCu−Zn合金にアルミニウム、鉄、マンガンを添加することにより、更に強靭性、硬さを増したものである。
High-speed flame spraying is a method in which a high-pressure combustion gas is used and a powdered spray material is sprayed at a gas flow rate exceeding the speed of sound to form a film. There are few foreign substances and it has excellent adhesion. As a heat source for thermal spraying, a mixed gas of oxygen and hydrocarbon gas and air and oxygen is used. In addition, blasting is performed as pretreatment, but care is taken so that the blasting material does not remain as a defect at the interface with the surface layer.
The Cu alloy powder may be any alloy system such as Cu—Zn, Cu—Sn, Cu—A1, Cu—Ni, Cu—Be, and Fe, Mn, Be, Zr, Ag, Cr, Co, Ti, Pb. , Si, P, etc., one or more other elements may be added. Desirably, Cu-Al (Al bronze) and high-strength brass are preferred because of their high hardness and excellent wear resistance. The high-strength brass system (CAC300 system) is obtained by further adding toughness and hardness by adding aluminum, iron, and manganese to a Cu-Zn alloy.

皮膜層の硬度は、Hv150以上300以下が望ましい。150以下であるとロータ摩耗が大きくなり、高温で表面皮膜の割れや剥がれの可能性が出てくる。300以上になると皮膜の靭性が低下し、皮膜の割れが出やすくなるほか、摩擦材の摩耗量が増加し、機械加工性も低下する。皮膜層の硬度を所望の数値に設定する手段としては、例えば、Cu−Al系のAl青銅合金にNiやMnを添加したり、Cu−Zn系黄銅合金にFeやMnを添加するような方法がある。
溶射材粉末の粒径は5〜60μmのものを用い、予熱処理及びアンダーコート処理を適宜実施することが望ましい。
The hardness of the coating layer is preferably Hv150 or more and 300 or less. If it is 150 or less, the wear of the rotor increases, and the surface film may crack or peel off at high temperatures. When it is 300 or more, the toughness of the film is lowered, the film is easily cracked, the wear amount of the friction material is increased, and the machinability is also lowered. As a means for setting the hardness of the coating layer to a desired numerical value, for example, a method of adding Ni or Mn to a Cu-Al-based Al bronze alloy or adding Fe or Mn to a Cu-Zn-based brass alloy There is.
It is desirable to use a thermal spray powder having a particle size of 5 to 60 μm and appropriately perform pre-heat treatment and undercoat treatment.

表面層の厚みは、50μm〜500μmが望ましく、50μm以下だと均一な溶射面が得られにくく、かつせん断応力により素地から剥がれやすくなる。500μm以上になると、皮膜内の残留応力が上昇し割れが発生し易くなり、さらに溶射コストが上昇し経済面で不利になる。   The thickness of the surface layer is desirably 50 μm to 500 μm, and if it is 50 μm or less, it is difficult to obtain a uniform sprayed surface, and it is easy to peel off from the substrate due to shear stress. If the thickness is 500 μm or more, the residual stress in the coating increases and cracking is likely to occur, and the thermal spraying cost increases, which is disadvantageous in terms of economy.

本発明を、実施例によりより具体的に説明するが、実ロータによるブレーキ性能試験の結果を用いて行う。ただし、本発明はこれらの実施例にのみに限定されるものではない。   The present invention will be described more specifically with reference to examples, but is performed using the results of a brake performance test using an actual rotor. However, the present invention is not limited to these examples.

(試験材の調製)
ロータをアルミニウム合金で作製し、摺動面に高速フレーム溶射でCu合金粉を溶射してブレーキ性能試験を行うための試験材を調製した。
実ロータは、280mmφ×23mm厚の形状を持つベンチレーテッド型の乗用車用ブレーキロータで、一般的なアルミニウム鋳造材(AC4D〉を使用して作製し、高速フレーム溶射装置でAl青銅合金粉及び高力黄銅粉を溶射して50〜400μm厚の溶射皮膜を形成させた後、仕上げ機械加工で表裏面の粗度を整えた。Cu合金粉は、平均粒径10〜45μmのアトマイズ粉を使用した。溶射前にアルミナを用いたブレージング処理及び200℃の予熱処理をそれぞれ実施した。溶射処理後ロータ表面を機械研削し、表面粗さRz<5μmにした。
(Preparation of test materials)
The rotor was made of an aluminum alloy, and a test material for performing a brake performance test by spraying Cu alloy powder on the sliding surface by high-speed flame spraying was prepared.
The actual rotor is a ventilated type brake brake for passenger cars with a shape of 280mmφ x 23mm thickness. It is made using a general aluminum casting material (AC4D), and Al bronze alloy powder and high After spraying strong brass powder to form a thermal sprayed film having a thickness of 50 to 400 μm, the roughness of the front and back surfaces was adjusted by finishing machining.The Cu alloy powder was an atomized powder having an average particle size of 10 to 45 μm. Before spraying, a brazing process using alumina and a pre-heat treatment at 200 ° C. were performed, and after the spraying process, the rotor surface was mechanically ground to a surface roughness Rz <5 μm.

(試験方法)
前記により製作したディスクロータを使用してブレーキ性能試験(ダイナモ試験)を実施した。摩擦材は、乗用車用として一般的に使用されているノンアスベスト系の摩擦材を使用した。第1表に摩擦材の主な成分を示す。また試験パターンは、実車を想定した効力試験及びフェード試験を中心に、JASO規格に準じた試験を実施した。また、特に高温での溶射皮膜の割れや剥離発生の有無を評価するため、400℃から初速度60km/h、減速度3m/sでブレーキを500回繰り返す400℃摩耗試験の2種類を実施し、高温での摩擦特性を評価した。試験後、ロータ表面の割れや剥がれの観察及び摩擦係数、摩擦材とロータ材の摩耗量を測定した。
(Test method)
A brake performance test (dynamo test) was performed using the disk rotor manufactured as described above. As the friction material, a non-asbestos friction material generally used for passenger cars was used. Table 1 shows the main components of the friction material. The test pattern was a test conforming to the JASO standard, centered on an efficacy test and a fade test assuming an actual vehicle. In addition, in order to evaluate the presence or absence of cracking or peeling of the thermal spray coating, especially at high temperatures, two types of 400 ° C wear tests were conducted, starting at 400 ° C and repeating the brake 500 times at an initial speed of 60 km / h and a deceleration of 3 m / s 2. The friction characteristics at high temperature were evaluated. After the test, the rotor surface was observed for cracking and peeling, and the friction coefficient and the wear amount of the friction material and the rotor material were measured.

Figure 0005391448
Figure 0005391448

ブレーキ性能試験に用いた試験材の組成などを試験結果とともに第2表に示す。試験番号1〜12は本発明材で、いずれもアルミニウム合金製ロータにCu合金粉を溶射したものである。なお、Cu合金粉はCu−Al青銅系とCu−Zn黄銅系の2種類を使用した。Cu−Al青銅系は、Cu−10%Al−4%Fe−2%Ni−2%Mn合金を、Cu−Zn黄銅系はCu−25%Zn−6%Al−3%Fe−3%Mnを使用した。また、試験番号13〜18は比較材で、13、15、16は皮膜の硬度が、14、17は皮膜の膜厚がそれぞれ本発明の範囲外にある。また、比較材18は従来材(鋳鉄製)である。   Table 2 shows the composition of the test material used for the brake performance test together with the test results. Test numbers 1 to 12 are the materials of the present invention, all of which are obtained by spraying Cu alloy powder onto an aluminum alloy rotor. In addition, Cu alloy powder used two types, Cu-Al bronze type and Cu-Zn brass type. Cu-Al bronze system is Cu-10% Al-4% Fe-2% Ni-2% Mn alloy, Cu-Zn brass system is Cu-25% Zn-6% Al-3% Fe-3% Mn It was used. Test numbers 13 to 18 are comparative materials, 13, 15 and 16 have a coating hardness, and 14 and 17 have a coating thickness outside the scope of the present invention. The comparative material 18 is a conventional material (made of cast iron).

Figure 0005391448
Figure 0005391448

(試験結果)
試験結果をまとめて第2表に示す。摩耗量は、ロータ、摩擦材の試験後の厚みの減少量で評価した。ビッカース硬度は荷重500gfで測定した。本発明材はいずれも皮膜の割れや剥がれが発生せず、ロータ材および摩擦材の摩耗量は従来の鋳鉄ロータ材の場合と同様であることが確認できる。
(Test results)
The test results are summarized in Table 2. The amount of wear was evaluated by the amount of decrease in thickness after testing the rotor and friction material. Vickers hardness was measured at a load of 500 gf. None of the materials of the present invention cause cracking or peeling of the film, and it can be confirmed that the wear amount of the rotor material and the friction material is the same as that of the conventional cast iron rotor material.

本発明のブレーキ用ディスクロータは、摩擦特性、耐熱性、耐食性において、従来の鋳鉄系のブレーキ用ディスクロータに比べて優れているので、自動車、二輪車、鉄道車両、産業機械などのブレーキ用に有用であり、しかも、従来の軽量耐熱ロータに比べ製造コストが非常に安いので実用化が期待される。   The brake disk rotor of the present invention is superior to conventional cast iron brake disk rotors in friction characteristics, heat resistance, and corrosion resistance, so it is useful for brakes in automobiles, motorcycles, railway vehicles, industrial machines, etc. In addition, it is expected to be put to practical use because the manufacturing cost is very low compared with the conventional lightweight heat-resistant rotor.

Claims (2)

アルミニウム合金よりなるディスクロータ本体の表面に、高速フレーム溶射法により、Cu合金粉末をコーティングして形成した皮膜層を有し、前記Cu合金粉末のCu合金が、Ni及びMnを添加したCu−Al系合金又はFe及びMnを添加した高力黄銅系合金であり、該皮膜層のビッカース硬度が150以上300以下であり、かつ、該皮膜層の厚さが50μm〜500μmであることを特徴とするブレーキ用ディスクロータ。 The surface of the disk rotor body made of an aluminum alloy has a coating layer formed by coating a Cu alloy powder by a high-speed flame spraying method, and the Cu alloy powder is a Cu-Al to which Ni and Mn are added. A high-strength brass-based alloy to which Fe-based alloy or Fe and Mn are added, wherein the Vickers hardness of the coating layer is 150 or more and 300 or less, and the thickness of the coating layer is 50 μm to 500 μm Disc rotor for brake. アルミニウム合金よりなるディスクロータ本体の表面に、Ni及びMnを添加したCu−Al系合金又はFe及びMnを添加した高力黄銅系合金粉末を高速フレーム溶射法により吹き付けて、ビッカース硬度が150以上300以下で、かつ厚さが50μm〜500μmの皮膜層を形成することを特徴とするブレーキ用ディスクロータの製造方法。 The surface of the disk rotor body made of an aluminum alloy is sprayed with a high-strength brass alloy powder added with Ni and Mn or a Cu-Al alloy added with Fe and Mn by a high- speed flame spraying method, and the Vickers hardness is 150 or more and 300 A method for manufacturing a brake disk rotor, comprising: forming a coating layer having a thickness of 50 μm to 500 μm.
JP2009118890A 2009-05-15 2009-05-15 Disc rotor for brake Expired - Fee Related JP5391448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118890A JP5391448B2 (en) 2009-05-15 2009-05-15 Disc rotor for brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118890A JP5391448B2 (en) 2009-05-15 2009-05-15 Disc rotor for brake

Publications (2)

Publication Number Publication Date
JP2010266020A JP2010266020A (en) 2010-11-25
JP5391448B2 true JP5391448B2 (en) 2014-01-15

Family

ID=43363161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118890A Expired - Fee Related JP5391448B2 (en) 2009-05-15 2009-05-15 Disc rotor for brake

Country Status (1)

Country Link
JP (1) JP5391448B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8978842B2 (en) 2011-11-24 2015-03-17 Shimano Inc. Bicycle disc brake rotor
US8813921B2 (en) * 2011-11-24 2014-08-26 Shimano Inc. Bicycle disc brake rotor
US9725131B2 (en) 2011-11-24 2017-08-08 Shimano Inc. Bicycle disc brake rotor
ES1106107Y (en) 2014-03-26 2014-07-01 Edertek S Coop Lightweight brake disc for vehicles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174388A (en) * 1986-01-28 1987-07-31 Toyota Motor Corp Disk rotor and its production
JPH0619196B2 (en) * 1987-10-29 1994-03-16 トヨタ自動車株式会社 Disk rotor
JPH01229126A (en) * 1988-03-05 1989-09-12 Toyota Motor Corp Disk rotor
JP2982500B2 (en) * 1992-07-10 1999-11-22 トヨタ自動車株式会社 Wear resistance treatment method for sliding members
JPH108231A (en) * 1996-06-19 1998-01-13 Suruzaa Meteko Japan Kk High speed flame spraying method
JP2001317573A (en) * 2000-05-10 2001-11-16 Akebono Brake Res & Dev Center Ltd Disc rotor for brake

Also Published As

Publication number Publication date
JP2010266020A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
EP3350468B1 (en) Method for manufacturing a brake disc and brake disc for disc brakes
JP6717450B2 (en) Double-layer iron coating on light metal substrate
US11635117B2 (en) Process for producing a protective coating on a brake side of a brake disk main element and process for producing a brake disk
CN107810290B (en) Method for coating a cylinder running surface of a cylinder crankcase, cylinder crankcase with a coated cylinder running surface, and engine
JP2017514992A (en) Brake disc coating comprising iron alloy composition and method for producing the same
Gao et al. Simultaneous increase of friction coefficient and wear resistance through HVOF sprayed WC-(nano WC-Co)
JP5391448B2 (en) Disc rotor for brake
US20210396291A1 (en) Coating, in particular for brake discs, brake drums and clutch discs, brake disc for a disc brake or brake drum for a drum brake or clutch disc for a clutch, disc brake or drum brake or clutch, method for producing a coating in particular for brake discs, brake drums and clutch discs, and use of a coating
JPWO2002055748A1 (en) Wear-resistant copper-based alloy
JP5853307B2 (en) Brake disc rotor and manufacturing method thereof
KR20080019202A (en) Method for coating a cylinder sleeve
JP2007162779A (en) Disk rotor for brake
JP2004300528A (en) Sliding parts and brake disc rotor
JP4570549B2 (en) Disc rotor for brake
JP2023507264A (en) Iron-based high corrosion resistance and wear resistance alloy
Lee et al. Correlation of microstructure with tribological properties in atmospheric plasma sprayed Mo-added ferrous coating
US20030217791A1 (en) Method for producing a component and/or a coating comprised of a vibration-damping alloy or intermetallic compound, and component produced using this method
JP2001317573A (en) Disc rotor for brake
JP2007533842A (en) Valve seat ring made of Co base or Co / Mo base alloy and method for manufacturing the same
WO2020026628A1 (en) Sliding member and member for internal combustion engine
JP3147289B2 (en) Thermal spray powder, thermal spray sliding surface and method of forming thermal spray sliding surface
JP3262365B2 (en) Manufacturing method of brake disc
JP2009068032A (en) Heat-resistant member and its manufacturing method
JPH07331408A (en) High damping alloy steel member having wear resistance and its production
JPH10140275A (en) Composite material for brake disk for railway car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees