JP2842297B2 - Heating method of steel sheet in continuous annealing furnace - Google Patents

Heating method of steel sheet in continuous annealing furnace

Info

Publication number
JP2842297B2
JP2842297B2 JP11874495A JP11874495A JP2842297B2 JP 2842297 B2 JP2842297 B2 JP 2842297B2 JP 11874495 A JP11874495 A JP 11874495A JP 11874495 A JP11874495 A JP 11874495A JP 2842297 B2 JP2842297 B2 JP 2842297B2
Authority
JP
Japan
Prior art keywords
temperature
zone
heating
soaking
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11874495A
Other languages
Japanese (ja)
Other versions
JPH08311566A (en
Inventor
克宗 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11874495A priority Critical patent/JP2842297B2/en
Publication of JPH08311566A publication Critical patent/JPH08311566A/en
Application granted granted Critical
Publication of JP2842297B2 publication Critical patent/JP2842297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、連続焼鈍炉における鋼
板への加熱方法に係り、特に、省エネルギーを目的とし
た鋼板の加熱方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating a steel sheet in a continuous annealing furnace, and more particularly to a method for heating a steel sheet for energy saving.

【0002】[0002]

【従来の技術】連続焼鈍炉において鋼板を焼鈍する場
合、鋼板に所定の機械特性を与えるための冶金学的処理
条件に基づいて、鋼板を所定の温度TS ℃以上の温度
で、所定の時間tS 秒以上維持する必要がある。
2. Description of the Related Art When a steel sheet is annealed in a continuous annealing furnace, the steel sheet is heated at a temperature equal to or higher than a predetermined temperature T S ° C for a predetermined time based on metallurgical processing conditions for imparting predetermined mechanical properties to the steel sheet. It is necessary to maintain at least t S seconds.

【0003】連続焼鈍炉においては、一般的に、炭素ガ
ス燃料、通常コークス炉ガス(Cガス)を燃料としてバ
ーナーにより加熱帯で直火加熱およびまたはラジアント
チューブを用いる間接加熱によって加熱し、続いて、電
気ヒーターを備えた均熱帯で加熱し、その後に冷却帯に
よって除冷および急冷する。
[0003] In a continuous annealing furnace, generally, carbon gas fuel, usually coke oven gas (C gas) is used as fuel for heating by direct heat in a heating zone by a burner and / or indirect heating using a radiant tube. Heat in soaking zone with electric heater, then cool and quench by cooling zone.

【0004】従来、この熱処理に必要とされるヒートパ
ターンは、ある材料について設定したヒートパターンは
極力乱さないようにして、鋼板に対する加熱を行うのを
原則として実作業が行われてきた。
Conventionally, the heat pattern required for this heat treatment has been practiced on the principle that the steel sheet is heated in such a manner that the heat pattern set for a certain material is not disturbed as much as possible.

【0005】かかるヒートパターンの例を図13に示
す。すなわち、まず加熱帯における加熱によって温度T
S ℃付近まで鋼板の温度を上昇させ、次に均熱帯におい
て温度TS ℃を超える温度まで上昇させる。そして、冷
却帯でTS ℃を下回る温度まで下降させる。このとき、
均熱帯と冷却帯を通過している最中に所定の時間tS
が経過するようにヒートパターンを決定して鋼板に所定
の機械特性を与えていた。
FIG. 13 shows an example of such a heat pattern. That is, first, by heating in the heating zone, the temperature T
The temperature of the steel sheet is raised to around S ° C. and then to a temperature above the temperature T S ° C in the solitary tropics. Then, lowering to a temperature below T S ° C. in a cooling zone. At this time,
The heat pattern is determined so that a predetermined time t S seconds elapses while passing through the solitary zone and the cooling zone, thereby giving the steel sheet predetermined mechanical properties.

【0006】また、図1の一点鎖線で示すように、加熱
帯において鋼板をTS ℃以上にまで昇温させ、この温度
を均熱帯においても維持するヒートパターン(以下「等
温均熱パターン」と呼ぶ)も多く採用されている。
In addition, as shown by a dashed line in FIG. 1, a steel sheet is heated to T s ° C. or more in a heating zone, and this temperature is maintained in a soaking zone (hereinafter referred to as “isothermal soaking pattern”). Call) has also been widely adopted.

【0007】この所定温度TS ℃を維持する所定の時間
S 秒は、これを超えても鋼板の性状が良化することは
ないため、省エネルギーの観点から、極力tS 秒を超え
ないことが望ましい。
[0007] If the predetermined time t S second for maintaining the predetermined temperature T S ° C exceeds this, the properties of the steel sheet will not be improved. Therefore, from the viewpoint of energy saving, the predetermined time t S second should not exceed t S second as much as possible. Is desirable.

【0008】しかるに、従来においては、鋼板のライン
速度に応じて所定温度TS ℃を維持する所定時間tS
変化するという理由から、最高速のライン速度の際にも
鋼板が所定温度TS ℃を所定時間tS 秒維持されるよう
にヒートパターンを設定していた。したがって、鋼板断
面が大きくなった等の理由により、ライン速度を低下さ
せた場合、所定温度TS ℃以上に維持する時間が所定時
間tS 秒を大きく上回ってしまうため、その分エネルギ
ーの無駄を生じるものであった。
However, conventionally, since the predetermined time t S for maintaining the predetermined temperature T S ° C changes according to the line speed of the steel sheet, the steel sheet is kept at the predetermined temperature T S even at the highest line speed. The heat pattern was set so that the temperature was maintained for a predetermined time t S seconds. Therefore, when the line speed is decreased due to an increase in the cross section of the steel sheet or the like, the time for maintaining the temperature equal to or higher than the predetermined temperature T s ° C greatly exceeds the predetermined time t s seconds, so that energy is wasted correspondingly. What happened.

【0009】この問題に対して、特開昭55−1191
35号公報においては、冶金学的処理条件を満たす範囲
内で、異なる金属ストリップ入力条件に対してそれぞれ
炉全体の入熱量が最小となるように炉各部出口のストリ
ップ温度設定値を演算し、演算結果の設定値を炉各部に
対応するストリップ温度演算装置へ与えてヒートパター
ンを制御し、炉全体として省エネルギーを図る方法が開
示されている。
To solve this problem, Japanese Patent Application Laid-Open No. 55-1191
In Japanese Patent Publication No. 35, the strip temperature set value at the outlet of each furnace is calculated so that the heat input of the entire furnace is minimized under different metal strip input conditions within a range satisfying the metallurgical processing conditions. A method is disclosed in which a set value of a result is given to a strip temperature calculating device corresponding to each part of the furnace to control a heat pattern, thereby saving energy in the entire furnace.

【0010】[0010]

【発明が解決しようとする課題】しかし、前記公報記載
の方法においては、ストリップ設定温度の演算装置やス
トリップ温度制御装置を必要とするため、設備経費が嵩
み、メンテナンスの必要を伴うものである。
However, the method described in the above-mentioned publication requires a device for calculating the strip set temperature and a device for controlling the strip temperature, which increases the equipment cost and necessitates maintenance. .

【0011】そこで、本発明の課題は、新たな設備投資
を必要とせず、しかも現状の運転コストそのものを低減
できる方法を提供することにある。
It is an object of the present invention to provide a method that does not require new capital investment and that can reduce the current operating cost itself.

【0012】[0012]

【課題を解決するための手段】上記課題を解決した本発
明の連続焼鈍炉における鋼板の加熱方法は、製鉄所発生
ガスにより加熱を行う加熱帯および電気ヒーターにより
均熱加熱を行う均熱帯を有する連続加熱炉により連続的
に通板される鋼板の加熱を行う方法において、前記加熱
帯出側における鋼板の目標板温を前記均熱帯出側におけ
る鋼板の目標板温よりも高く設定し、前記加熱帯におけ
る鋼板の目標板温から前記均熱帯出側における鋼板の目
標板温までの温度勾配を実質的に連続する下り勾配とし
て、前記加熱帯および前記均熱帯において鋼板に入熱を
行うことを特徴とするものである。
A method for heating a steel sheet in a continuous annealing furnace according to the present invention which has solved the above-mentioned problems has a heating zone in which heating is performed by a gas generated by a steel mill and a soaking zone in which heating is performed by an electric heater. In the method for heating a steel sheet continuously passed by a continuous heating furnace, a target sheet temperature of the steel sheet on the heating strip exit side is set higher than a target sheet temperature of the steel sheet on the soaking zone exit side; A temperature gradient from the target sheet temperature of the steel sheet in the soaking zone to the target sheet temperature of the steel sheet on the outlet side as a substantially continuous downward slope, performing heat input to the steel sheet in the heating zone and the soaking zone. Is what you do.

【0013】[0013]

【作用】本発明者は、製鉄所発生ガス、たとえばコーク
ス炉ガスのコストと加熱帯での電気ヒーターによる加熱
に必要な電気のコストとの差に注目し、前者の方がはる
かにコスト的に低いことに着目した。しかるに、本発明
に従って、製鉄所発生ガスによって、加熱帯においてそ
の出側温度を従来より高く加熱し、その後、鋼板自体が
有する熱量をそのまま利用して、均熱帯において、従来
より低い出側温度になるように加熱すれば、あるいは場
合により加熱を省略すれば、製鉄所発生ガスの使用量は
増加するものの、電気代が少なくなるあるいは無くな
り、全体からみれば、前記のコストの差により、必要な
熱コストを低減できる。
The present inventor pays attention to the difference between the cost of gas generated at a steelworks, for example, coke oven gas, and the cost of electricity required for heating by an electric heater in a heating zone, and the former is much more cost-effective. We paid attention to low. However, in accordance with the present invention, the outlet temperature of the heating zone is increased by the steel mill generated gas in the heating zone, and then the calorific value of the steel sheet itself is used as it is, and in the solitary zone, the outlet temperature is lower than in the past. If heating is carried out, or if the heating is omitted in some cases, the amount of gas generated by the steelworks increases, but the electricity bill is reduced or eliminated. Heat costs can be reduced.

【0014】他方で、当初、このいわば傾斜均熱方式に
よって、鋼板の機械的特性の悪化が懸念されたが、図1
に示す傾斜温度差は、鋼板の材質にも左右されるが、6
0℃以内の温度差であれば、後述の実施例で示すよう
に、従来例と実質的に同一であることが判明し、本発明
の有効性を確認できた。
On the other hand, at first, there was a concern that the mechanical properties of the steel sheet might be deteriorated by the so-called inclined soaking method.
The slope temperature difference shown in the figure also depends on the material of the steel sheet.
If the temperature difference was within 0 ° C., it was found that the temperature difference was substantially the same as the conventional example, as shown in the examples described later, and the effectiveness of the present invention was confirmed.

【0015】かくして、既存の設備をそのまま利用し
て、各帯での投入熱量のみの変更で目的を達成できるの
で、設備投資が不要となり、きわめて実用性に富むもの
となる。
Thus, the objective can be achieved by using only the existing equipment as it is and changing only the amount of heat input in each zone, so that no equipment investment is required and the apparatus is extremely practical.

【0016】さらに、結果として、図1に示されるよう
に、均熱帯の出側板温と過時効帯の入側温度との差が、
従来例の△T0 より△T1 として小さくなるので、過時
効帯の入側ハースロールのサマールクラウンが小さくな
り、その結果、クーリングバックルの不安定領域が少な
くなり、より安定した操業を行うことができるようにな
ったことは予想外のことであった。
Further, as a result, as shown in FIG. 1, the difference between the outlet plate temperature in the solitary zone and the inlet temperature in the overaged zone is:
Since ΔT 1 is smaller than ΔT 0 of the conventional example, the Samar's crown of the entrance side hearth roll in the overage zone is reduced, and as a result, the unstable region of the cooling buckle is reduced, and more stable operation is performed. Being able to do it was unexpected.

【0017】[0017]

【実施例】以下、本発明の実施例を詳述する。従来例と
の対比の下で図示した図1に示すように、連続焼鈍炉に
おいては、鋼板は、製鉄所発生ガスにより直火加熱、お
よびまたはラジアントチューブによる間接加熱を行う加
熱帯、電気ヒーターにより均熱を行う均熱帯を通って1
次冷却帯に導かれ、その後過時効帯を通される。
Embodiments of the present invention will be described below in detail. As shown in FIG. 1 illustrated in comparison with the conventional example, in a continuous annealing furnace, a steel sheet is heated by direct heating using gas generated from a steel mill, and / or a heating zone that performs indirect heating using a radiant tube. 1 through the tropics to soak
It is led to the next cooling zone and then through the overaging zone.

【0018】本発明においては、加熱帯出側における鋼
板の目標板温を、均熱帯出側における鋼板の目標板温よ
りも高く設定し、加熱帯における鋼板の目標板温から均
熱帯出側における鋼板の目標板温までの温度勾配を実質
的に連続する下り勾配として、加熱帯および均熱帯にお
いて鋼板に入熱を行うものである(以下「傾斜均熱パタ
ーン」と呼ぶ)。したがって、均熱帯においては、下り
の温度勾配を有する傾斜均熱態様となる。
In the present invention, the target sheet temperature of the steel sheet on the exit side of the heating zone is set higher than the target sheet temperature of the steel sheet on the exit side of the soaking zone. The heat input to the steel sheet is performed in the heating zone and the soaking zone by setting the temperature gradient up to the target sheet temperature as a substantially continuous downward slope (hereinafter, referred to as “gradient soaking pattern”). Therefore, in the soaking tropics, a slope soaking mode having a downward temperature gradient is provided.

【0019】本発明者は、傾斜均熱による鋼板の機械特
性について影響を、種々のラボテストを行った上、実機
により確認した。
The inventor of the present invention has conducted various laboratory tests on the effect of the inclined soaking on the mechanical properties of the steel sheet, and has confirmed the effect on the actual machine.

【0020】<実験1>Ti−Nb極低炭鋼を用いて、
図2に示す加熱帯(HF)の出側温度および均熱帯(R
A)の出側温度により、傾斜均熱パターンと等温均熱パ
ターンで焼鈍を行い、厚み0.7mmの鋼板の機械特性を
示す伸び(EL)、および降伏点(YP)を求めた。そ
れぞれの結果を、図3〜図6に示す。この結果から、本
発明による傾斜均熱方式によっても、等温均熱パターン
によって入熱した場合との対比で、YP値およびEL値
ともほぼ同等であることが判った。
<Experiment 1> Using Ti-Nb ultra-low carbon steel,
The outlet temperature of the heating zone (HF) shown in FIG.
According to the outlet side temperature of A), annealing was performed in the inclined soaking pattern and the isothermal soaking pattern, and the elongation (EL) and the yield point (YP) showing the mechanical properties of the 0.7 mm thick steel sheet were obtained. The respective results are shown in FIGS. From these results, it was found that the YP value and the EL value were also substantially the same even with the inclined soaking method according to the present invention, as compared with the case where heat was input according to the isothermal soaking pattern.

【0021】<実験2>一般低炭素鋼について、従来の
加熱帯出側板温740℃および均熱帯出側板温740℃
の場合のほか、傾斜均熱を行うべく、加熱帯出側板温を
+10℃、+20℃、+30℃とする一方、均熱帯出側
板温を−40℃、−20℃、−10℃とした場合におけ
る伸びおよび降伏点の変化を、時効の有無で区別して、
調べたところ、図7〜図10に示す結果を得た。
<Experiment 2> With respect to general low-carbon steel, the conventional heating strip side sheet temperature of 740 ° C. and the soaking zone exit side sheet temperature of 740 ° C.
In addition to the above case, in order to perform inclined soaking, the heating strip temperature is set to + 10 ° C, + 20 ° C, and + 30 ° C, while the soaking layer temperature is set to -40 ° C, -20 ° C, and -10 ° C. Elongation and yield point changes are distinguished by the presence or absence of aging,
Upon examination, the results shown in FIGS. 7 to 10 were obtained.

【0022】これらの結果から、加熱帯出側板温が+1
0℃のとき、均熱帯出側板温が−40℃と設定した場合
においても、目的の機械的特性を得ることができること
が判った。
From these results, it is found that the heating outlet side sheet temperature is +1.
At 0 ° C., it was found that the desired mechanical properties could be obtained even when the soaking outboard temperature was set to −40 ° C.

【0023】<実験3>ところで、実操業で最も省エネ
ルギーを図る方法は、専ら加熱帯で加熱するのみで、均
熱帯ではヒーターOFFして均熱処理するものであり、
これをどの条件ならば、できるかを、次記(1)式によ
りシュミレートした。
<Experiment 3> By the way, the most energy-saving method in actual operation involves heating only in the heating zone, and turning off the heater in the soaking zone to perform soaking.
Under what conditions this can be achieved was simulated by the following equation (1).

【0024】 (TRA−THF)×C×(T/Hr)=入熱+出熱(炉帯拡散+その他) ‥‥‥(1) TRA;均熱帯出側板温 THF;加熱帯出側板温 C;比熱 入熱;電気ヒーター 出熱;炉帯放散+その他 (1)式において、入熱は均熱帯における電気ヒーター
による入熱量であり、出熱量は、炉帯放散、その他(雰
囲気ガス、冷却帯への持出し)なので一定と仮定でき
る。(1)式において、生産量を75T/Hrとして、
右項の炉帯拡散とその他の数値を算出した結果、それぞ
れ160.4Mcal/Hr、22.4Mcal/Hr
であった。しかるに、入熱をゼロとしても、加熱帯出側
板温および均熱帯出側板温をそれぞれ740℃を基準と
して、加熱帯出側板温が+10℃のとき、均熱帯出側板
温が最大で−40℃までの範囲内において、前記(1)
が成立することが判った。これは、同様に実操業におい
ても、加熱帯出側板温を+10℃としたとき、均熱帯出
側板温が−40℃となることから、妥当性がある事項で
あることが解析できた。
[0024] (T RA -T HF) × C × (T / Hr) = heat input + heat output (furnace zone diffusion + other) ‥‥‥ (1) T RA; soaking delivery side temperature T HF; heating home use Side plate temperature C; specific heat input; electric heater output; furnace zone dissipation + other In equation (1), heat input is the amount of heat input by the electric heater in the solitary zone, and the heat output is furnace zone dissipation and other (atmosphere gas , Taking out to the cooling zone). In the equation (1), assuming that the production amount is 75 T / Hr,
As a result of calculating the furnace zone diffusion on the right and other numerical values, 160.4 Mcal / Hr and 22.4 Mcal / Hr, respectively, were obtained.
Met. However, even if the heat input is set to zero, the heating outlet side sheet temperature and the soaking zone exit side sheet temperature are each set to 740 ° C. Within the range, the above (1)
Was found to hold. Similarly, in the actual operation, when the heating outlet sheet temperature was set to + 10 ° C., the solitary tropical exit side sheet temperature became −40 ° C., so it could be analyzed that this was a valid matter.

【0025】前述のように、出熱量は一定であるので、
均熱帯出側板温は加熱帯出側板温(熱の持込み)と生産
量Ton/Hrとに依存し、次の(2)式で表すことが
できる。
As described above, since the heat output is constant,
The solitary tropical exit side sheet temperature depends on the heating zone exit side sheet temperature (heat import) and the production amount Ton / Hr, and can be expressed by the following equation (2).

【0026】 TRA=出熱/((T/Hr)×C)+THF ‥‥‥(2) (2)式に基づいて、THFを変更して、関係を示したの
が、図11である。この図11の結果から、均熱帯の電
気ヒーターをOFFとすることが可能である焼鈍量の領
域は、28T/Hr以上であることが判った。
T RA = heat output / ((T / Hr) × C) + T HF ‥‥‥ (2) FIG. 11 shows the relationship by changing T HF based on equation (2). It is. From the result of FIG. 11, it was found that the region of the amount of annealing in which the electric heater in the solitary zone could be turned off was 28 T / Hr or more.

【0027】<実験4> 以上の結果に基づいて、低炭素鋼について、加熱帯出側
目標板温750℃、均熱帯出側目標板温700℃とし、
均熱帯の電気ヒーターOFFとして実機テストを行っ
た。このときの実機における消費エネルギーを、従来例
との比較の下で、表1に示す。本発明にかかる傾斜均熱
パターンの場合は、加熱帯におけるコークス炉ガスの消
費量が嵩むものの、均熱帯での加熱に要していた電気ヒ
ーターへの投入電力量がゼロとなり、トータルコストで
約10%の削減を図ることができた。
<Experiment 4> Based on the above results, for the low-carbon steel, the target sheet temperature on the heating outlet side was set at 750 ° C., and the target sheet temperature on the soaking zone was set at 700 ° C.
The actual machine test was performed with the electric heater in the solitary zone turned off. Table 1 shows the energy consumption of the actual machine at this time in comparison with the conventional example. In the case of the inclined soaking pattern according to the present invention, although the coke oven gas consumption in the heating zone increases, the electric heat required for heating in the soaking tropics is increased.
The power input to the motor became zero and the total cost was reduced by about 10%.

【0028】[0028]

【表1】 [Table 1]

【0029】また、同条件の下で、傾斜均熱パターンお
よび等温均熱パターンそれぞれで焼鈍した鋼板のミクロ
組織を光学写真により観察したところ、実質的な相違は
なく、さらに、その展伸度と平均粒度との関係は図12
に示すものとなり、この点からも、物性の低下は認めら
れなかった。
Under the same conditions, the microstructure of the steel sheet annealed in each of the inclined soaking pattern and the isothermal soaking pattern was observed by an optical photograph, and there was no substantial difference. The relationship with the average particle size is shown in FIG.
And no decrease in physical properties was observed from this point.

【0030】(その他)前述の実験4を含めた各種の実
機操業の結果、本発明による電力無使用の傾斜均熱パタ
ーン方式は、機械的特性を損なわない条件で、加熱帯出
側板温および均熱帯出側板温が650℃〜850℃の範
囲内において、本発明の傾斜均熱パターン方式を採用で
きることを知見した。
(Others) As a result of various actual machine operations including Experiment 4 described above, the power-free inclined soaking pattern method according to the present invention can be used under the condition that the mechanical properties are not impaired, and the sheet temperature of the heating strip and the soaking zone are controlled. It has been found that when the exit side sheet temperature is in the range of 650 ° C. to 850 ° C., the inclined soaking pattern system of the present invention can be adopted.

【0031】また、均熱帯の出側板温と過時効帯の入側
板温との差が小さくなるので、過時効帯の入側ハースロ
ールのサマールクラウンが小さくなり、その結果、クー
リングバックルの不安定領域が少なくなり、より安定し
た操業を行うことができる。
Further, since the difference between the outlet plate temperature in the solitary zone and the inlet plate temperature in the overaged zone becomes smaller, the Samar crown of the inlet hearth roll in the overaged zone becomes smaller, and as a result, the cooling buckle becomes unstable. The area is reduced, and more stable operation can be performed.

【0032】[0032]

【発明の効果】以上の説明から明らかなとおり、本発明
によれば、新たな設備投資を必要とせず、しかも現状の
運転コストそのものを低減できるなど、きわめて実用性
に富むものとなった。また、機械的特性の低下はなく、
逆に、過時効帯の入側ハースロールのサマールクラウン
が小さくなり、クーリングバックルの不安定領域が少な
くなるなどの利点がもたらされる。
As is apparent from the above description, according to the present invention, there is no need for new capital investment, and the present operating cost can be reduced, and the present invention is extremely practical. Also, there is no decrease in mechanical properties,
Conversely, there are advantages such as a reduction in the Samar's crown of the entrance hearth roll in the overaging zone and a reduction in the unstable region of the cooling buckle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る傾斜均熱パターンと従来例による
等温均熱パターンを示すグラフである。
FIG. 1 is a graph showing a gradient soaking pattern according to the present invention and an isothermal soaking pattern according to a conventional example.

【図2】実験での本発明の等温均熱パターンおよび従来
例による傾斜均熱パターンにおける加熱帯出側板温およ
び均熱帯出側板温を示すグラフである。
FIG. 2 is a graph showing the temperature at the exit side of the heated strip and the temperature at the exit side of the tropical zone in the isothermal soaking pattern of the present invention in an experiment and the inclined soaking pattern according to the conventional example.

【図3】傾斜均熱の場合における伸びを示すグラフであ
る。
FIG. 3 is a graph showing elongation in the case of inclined soaking.

【図4】等温均熱の場合における伸びを示すグラフであ
る。
FIG. 4 is a graph showing elongation in the case of isothermal soaking;

【図5】傾斜均熱の場合における降伏点を示すグラフで
ある。
FIG. 5 is a graph showing a yield point in the case of inclined soaking.

【図6】等温均熱の場合における降伏点を示すグラフで
ある。
FIG. 6 is a graph showing a yield point in the case of isothermal soaking.

【図7】傾斜均熱における加熱帯出側板温および均熱帯
出側板温を変えた場合(時効なし)の伸びを示すグラフ
である。
FIG. 7 is a graph showing the elongation in the case of changing the heating outlet side sheet temperature and the soaking layer exit side sheet temperature in the inclined soaking (without aging).

【図8】傾斜均熱における加熱帯出側板温および均熱帯
出側板温を変えた場合(時効あり)の伸びを示すグラフ
である。
FIG. 8 is a graph showing the elongation when the heating strip side temperature and the soaking zone exit side sheet temperature are changed (with aging) in inclined soaking.

【図9】傾斜均熱における加熱帯出側板温および均熱帯
出側板温を変えた場合(時効なし)の降伏点を示すグラ
フである。
FIG. 9 is a graph showing a yield point in the case where the heating strip side sheet temperature and the soaking zone exit side sheet temperature in the inclined soaking are changed (without aging).

【図10】傾斜均熱における加熱帯出側板温および均熱
帯出側板温を変えた場合(時効あり)の降伏点を示すグ
ラフである。
FIG. 10 is a graph showing the yield point in the case of changing the heating outlet side sheet temperature and the soaking zone exit side sheet temperature in the inclined soaking (with aging).

【図11】加熱帯出側板温、生産量および均熱帯出側板
温の相関の下での均熱帯での無加熱領域を示す説明用グ
ラフである。
FIG. 11 is an explanatory graph showing a non-heated region in a solitary zone under the correlation of a heating outlet side plate temperature, a production amount, and a solitary outlet side plate temperature.

【図12】従来例と本発明例とにおける展伸度と平均粒
度との相関図である。
FIG. 12 is a correlation diagram between elongation and average particle size in a conventional example and an example of the present invention.

【図13】従来例のヒートパターン例の説明図である。FIG. 13 is an explanatory diagram of an example of a conventional heat pattern.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21D 1/26,1/34,9/46 C21D 9/48,9/52,9/56 C21D 11/00──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C21D 1 / 26,1 / 34,9 / 46 C21D 9 / 48,9 / 52,9 / 56 C21D 11 / 00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】製鉄所発生ガスにより加熱を行う加熱帯お
よび電気ヒーターにより均熱加熱を行う均熱帯を有する
連続加熱炉により連続的に通板される鋼板の加熱を行う
方法において、 前記加熱帯出側における鋼板の目標板温を前記均熱帯出
側における鋼板の目標板温よりも高く設定し、前記加熱
帯における鋼板の目標板温から前記均熱帯出側における
鋼板の目標板温までの温度勾配を実質的に連続する下り
勾配として、前記加熱帯および前記均熱帯において鋼板
に入熱を行うことを特徴とする連続焼鈍炉における鋼板
の加熱方法。
1. A method for heating a steel sheet which is continuously passed through a continuous heating furnace having a heating zone for heating by gas generated from a steel mill and a soaking zone for uniform heating by an electric heater. The target sheet temperature of the steel sheet at the side of the soaking zone is set higher than the target sheet temperature of the steel sheet at the soaking zone, and the temperature gradient from the target sheet temperature of the steel plate in the heating zone to the target sheet temperature of the steel plate at the soaking zone. A heat input to the steel sheet in the heating zone and the soaking zone, as a substantially continuous downward slope, wherein the steel sheet is heated in a continuous annealing furnace.
JP11874495A 1995-05-17 1995-05-17 Heating method of steel sheet in continuous annealing furnace Expired - Lifetime JP2842297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11874495A JP2842297B2 (en) 1995-05-17 1995-05-17 Heating method of steel sheet in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11874495A JP2842297B2 (en) 1995-05-17 1995-05-17 Heating method of steel sheet in continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPH08311566A JPH08311566A (en) 1996-11-26
JP2842297B2 true JP2842297B2 (en) 1998-12-24

Family

ID=14743992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11874495A Expired - Lifetime JP2842297B2 (en) 1995-05-17 1995-05-17 Heating method of steel sheet in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP2842297B2 (en)

Also Published As

Publication number Publication date
JPH08311566A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
EP0779370A1 (en) Method of continuous annealing of cold rolled steel plate and equipment therefor
US6099665A (en) Method for producing Cr-Ni type stainless steel thin sheet having excellent surface quality
JP2842297B2 (en) Heating method of steel sheet in continuous annealing furnace
CN107245564B (en) A kind of control method of non-orientation silicon steel internal oxidation layer
RU2585913C2 (en) Method of producing sheet of normalised silicon steel
JP7334861B2 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
JP2003342645A (en) In-line annealing furnace for continuous hot-dip galvanizing
JPH10298668A (en) Heat treatment apparatus
JPH02274823A (en) Equipment and method for continuously annealing metal sheet
JPH091209A (en) Equipment for continuously casting and hot-rolling stainless steel strip and manufacture of stainless steel strip excellent in surface quality
JP3014603B2 (en) Continuous plasma processing equipment for metal strip
EP0803583B2 (en) Primary cooling method in continuously annealing steel strips
JPS6048570B2 (en) Continuous over-aging treatment method for continuous molten aluminized steel sheets
US3841922A (en) Process for the annealing of precipitation hardening alloys
JP2000034524A (en) Heat treatment method for metallic strip
JP2901633B2 (en) Continuous annealing apparatus and continuous annealing method
JPS61257430A (en) Method and installation for continuous heating of steel strip
Waggott et al. Transverse flux induction heating of aluminiumalloy strip
JP3168753B2 (en) Threading method in direct reduction heating equipment of continuous metal strip processing line
JPS6111295B2 (en)
JPH06128650A (en) Method for continuously annealing cold-rolled steel sheet
JPH0381009A (en) Method for controlling plate temperature in warm rolling of stainless steel strip
JP2000034523A (en) Continuous heat treatment method for metallic strip
JPH06279843A (en) Heat treatment of stainless steel sheet
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term