JPH08311566A - Method for heating steel sheet in continuous annealing furnace - Google Patents
Method for heating steel sheet in continuous annealing furnaceInfo
- Publication number
- JPH08311566A JPH08311566A JP11874495A JP11874495A JPH08311566A JP H08311566 A JPH08311566 A JP H08311566A JP 11874495 A JP11874495 A JP 11874495A JP 11874495 A JP11874495 A JP 11874495A JP H08311566 A JPH08311566 A JP H08311566A
- Authority
- JP
- Japan
- Prior art keywords
- zone
- soaking
- heating
- steel sheet
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Heat Treatment Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、連続焼鈍炉における鋼
板への加熱方法に係り、特に、省エネルギーを目的とし
た鋼板の加熱方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating a steel sheet in a continuous annealing furnace, and more particularly to a method for heating a steel sheet for energy saving.
【0002】[0002]
【従来の技術】連続焼鈍炉において鋼板を焼鈍する場
合、鋼板に所定の機械特性を与えるための冶金学的処理
条件に基づいて、鋼板を所定の温度TS ℃以上の温度
で、所定の時間tS 秒以上維持する必要がある。2. Description of the Related Art When annealed steel sheet in a continuous annealing furnace, based on the metallurgical process conditions for applying a predetermined mechanical properties of the steel sheet, the steel sheet at a predetermined temperature T S ° C. or higher temperature for a predetermined time It is necessary to maintain t S seconds or more.
【0003】連続焼鈍炉においては、一般的に、炭素ガ
ス燃料、通常コークス炉ガス(Cガス)を燃料としてバ
ーナーにより加熱帯で直火加熱およびまたはラジアント
チューブを用いる間接加熱によって加熱し、続いて、電
気ヒーターを備えた均熱帯で加熱し、その後に冷却帯に
よって除冷および急冷する。In a continuous annealing furnace, generally, a carbon gas fuel, usually a coke oven gas (C gas) is used as a fuel for heating by a direct flame heating in a heating zone and / or an indirect heating using a radiant tube, followed by heating. , Heating in a soaking zone equipped with an electric heater, followed by cooling and quenching by a cooling zone.
【0004】従来、この熱処理に必要とされるヒートパ
ターンは、ある材料について設定したヒートパターンは
極力乱さないようにして、鋼板に対する加熱を行うのを
原則として実作業が行われてきた。Conventionally, the heat pattern required for this heat treatment has been performed in practice by heating the steel sheet so that the heat pattern set for a certain material is not disturbed as much as possible.
【0005】かかるヒートパターンの例を図13に示
す。すなわち、まず加熱帯における加熱によって温度T
S ℃付近まで鋼板の温度を上昇させ、次に均熱帯におい
て温度TS ℃を超える温度まで上昇させる。そして、冷
却帯でTS ℃を下回る温度まで下降させる。このとき、
均熱帯と冷却帯を通過している最中に所定の時間tS 秒
が経過するようにヒートパターンを決定して鋼板に所定
の機械特性を与えていた。An example of such a heat pattern is shown in FIG. That is, first, the temperature T is set by heating in the heating zone.
The temperature of the steel sheet is raised to around S ° C., and then raised to a temperature above the temperature T S ° C. in the soaking zone. Then, the temperature is lowered to a temperature below T S ° C in the cooling zone. At this time,
The heat pattern is determined so that a predetermined time t S seconds elapses while passing through the soaking zone and the cooling zone to give the steel sheet predetermined mechanical characteristics.
【0006】また、図1の一点鎖線で示すように、加熱
帯において鋼板をTS ℃以上にまで昇温させ、この温度
を均熱帯においても維持するヒートパターン(以下「等
温均熱パターン」と呼ぶ)も多く採用されている。Further, as shown by the alternate long and short dash line in FIG. 1, a heat pattern (hereinafter referred to as "isothermal soaking pattern") for raising the temperature of the steel sheet to T S ℃ or more in the heating zone and maintaining this temperature even in the soaking zone Called) is also often adopted.
【0007】この所定温度TS ℃を維持する所定の時間
tS 秒は、これを超えても鋼板の性状が良化することは
ないため、省エネルギーの観点から、極力tS 秒を超え
ないことが望ましい。The predetermined time t S second for maintaining the predetermined temperature T S ° C does not improve the properties of the steel sheet even if the predetermined time t S second is exceeded. Therefore, from the viewpoint of energy saving, it should not exceed t S second as much as possible. Is desirable.
【0008】しかるに、従来においては、鋼板のライン
速度に応じて所定温度TS ℃を維持する所定時間tS が
変化するという理由から、最高速のライン速度の際にも
鋼板が所定温度TS ℃を所定時間tS 秒維持されるよう
にヒートパターンを設定していた。したがって、鋼板断
面が大きくなった等の理由により、ライン速度を低下さ
せた場合、所定温度TS ℃以上に維持する時間が所定時
間tS 秒を大きく上回ってしまうため、その分エネルギ
ーの無駄を生じるものであった。[0008] However, conventionally, a predetermined temperature in accordance with the line speed of the steel sheet T for the reason that the predetermined time t S to maintain the S ° C. is varied, the predetermined temperature T S even steel sheet during the fastest line speeds The heat pattern was set so that the temperature was kept at a predetermined time t S seconds. Therefore, when the line speed is reduced due to a large steel plate cross section or the like, the time for maintaining the temperature at or above the predetermined temperature T S ° C greatly exceeds the predetermined time t S seconds, and energy is wasted accordingly. It happened.
【0009】この問題に対して、特開昭55−1191
35号公報においては、冶金学的処理条件を満たす範囲
内で、異なる金属ストリップ入力条件に対してそれぞれ
炉全体の入熱量が最小となるように炉各部出口のストリ
ップ温度設定値を演算し、演算結果の設定値を炉各部に
対応するストリップ温度演算装置へ与えてヒートパター
ンを制御し、炉全体として省エネルギーを図る方法が開
示されている。With respect to this problem, Japanese Patent Laid-Open No. 55-1191
In Japanese Patent Publication No. 35-35, a strip temperature set value at each outlet of the furnace is calculated and calculated so that the heat input amount of the entire furnace is minimized under different metal strip input conditions within a range satisfying the metallurgical processing conditions. A method is disclosed in which the resulting set value is given to a strip temperature calculation device corresponding to each part of the furnace to control the heat pattern to save energy in the entire furnace.
【0010】[0010]
【発明が解決しようとする課題】しかし、前記公報記載
の方法においては、ストリップ設定温度の演算装置やス
トリップ温度制御装置を必要とするため、設備経費が嵩
み、メンテナンスの必要を伴うものである。However, the method described in the above publication requires a device for calculating the set temperature of the strip and a device for controlling the strip temperature, resulting in high equipment cost and maintenance. .
【0011】そこで、本発明の課題は、新たな設備投資
を必要とせず、しかも現状の運転コストそのものを低減
できる方法を提供することにある。Therefore, an object of the present invention is to provide a method capable of reducing the current operating cost itself without requiring new capital investment.
【0012】[0012]
【課題を解決するための手段】上記課題を解決した本発
明の連続焼鈍炉における鋼板の加熱方法は、製鉄所発生
ガスにより加熱を行う加熱帯および電気ヒーターにより
均熱加熱を行う均熱帯を有する連続加熱炉により連続的
に通板される鋼板の加熱を行う方法において、前記加熱
帯出側における鋼板の目標板温を前記均熱帯出側におけ
る鋼板の目標板温よりも高く設定し、前記加熱帯におけ
る鋼板の目標板温から前記均熱帯出側における鋼板の目
標板温までの温度勾配を実質的に連続する下り勾配とし
て、前記加熱帯および前記均熱帯において鋼板に入熱を
行うことを特徴とするものである。A method of heating a steel sheet in a continuous annealing furnace according to the present invention, which has solved the above-mentioned problems, has a heating zone for heating by a gas generated from a steel mill and a soaking zone for soaking and heating by an electric heater. In a method of heating a steel sheet continuously passed by a continuous heating furnace, a target sheet temperature of the steel sheet on the heating zone exit side is set higher than a target sheet temperature of the steel sheet on the soaking zone exit side, and the heating zone The temperature gradient from the target plate temperature of the steel plate to the target plate temperature of the steel plate on the soaking zone is set as a substantially continuous downward gradient, and heat is applied to the steel plate in the heating zone and the soaking zone. To do.
【0013】[0013]
【作用】本発明者は、製鉄所発生ガス、たとえばコーク
ス炉ガスのコストと加熱帯での電気ヒーターによる加熱
に必要な電気のコストとの差に注目し、前者の方がはる
かにコスト的に低いことに着目した。しかるに、本発明
に従って、製鉄所発生ガスによって、加熱帯においてそ
の出側温度を従来より高く加熱し、その後、鋼板自体が
有する熱量をそのまま利用して、均熱帯において、従来
より低い出側温度になるように加熱すれば、あるいは場
合により加熱を省略すれば、製鉄所発生ガスの使用量は
増加するものの、電気代が少なくなるあるいは無くな
り、全体からみれば、前記のコストの差により、必要な
熱コストを低減できる。The present inventor pays attention to the difference between the cost of the gas generated in the steel mill, for example, the gas of the coke oven and the cost of electricity required for heating by the electric heater in the heating zone, and the former is far more cost effective. Focused on the low. However, according to the present invention, the steelmaking gas is used to heat the outlet side temperature in the heating zone higher than before, and then the calorific value of the steel sheet itself is used as it is, in the soaking zone, to a lower outlet side temperature. If it is heated so that it is heated, or if heating is omitted in some cases, the amount of gas generated by the steel mill will increase, but the electricity bill will be reduced or eliminated. The heat cost can be reduced.
【0014】他方で、当初、このいわば傾斜均熱方式に
よって、鋼板の機械的特性の悪化が懸念されたが、図1
に示す傾斜温度差は、鋼板の材質にも左右されるが、6
0℃以内の温度差であれば、後述の実施例で示すよう
に、従来例と実質的に同一であることが判明し、本発明
の有効性を確認できた。On the other hand, at first, it was feared that the so-called inclined soaking method would deteriorate the mechanical properties of the steel sheet.
The gradient temperature difference shown in 6 depends on the material of the steel plate.
If the temperature difference was within 0 ° C., it was found to be substantially the same as the conventional example, as shown in the examples described later, and the effectiveness of the present invention could be confirmed.
【0015】かくして、既存の設備をそのまま利用し
て、各帯での投入熱量のみの変更で目的を達成できるの
で、設備投資が不要となり、きわめて実用性に富むもの
となる。Thus, the existing equipment can be used as it is, and the object can be achieved by changing only the amount of heat input in each zone, so that the equipment investment becomes unnecessary and it becomes extremely practical.
【0016】さらに、結果として、図1に示されるよう
に、均熱帯の出側板温と過時効帯の入側温度との差が、
従来例の△T0 より△T1 として小さくなるので、過時
効帯の入側ハースロールのサマールクラウンが小さくな
り、その結果、クーリングバックルの不安定領域が少な
くなり、より安定した操業を行うことができるようにな
ったことは予想外のことであった。Further, as a result, as shown in FIG. 1, the difference between the outlet plate temperature in the soaking zone and the inlet side temperature in the overaging zone is
Since ΔT 1 is smaller than ΔT 0 of the conventional example, the samar crown of the entrance side hearth roll in the overaging zone is small, and as a result, the unstable region of the cooling buckle is reduced, and more stable operation is performed. It was unexpected to be able to do.
【0017】[0017]
【実施例】以下、本発明の実施例を詳述する。従来例と
の対比の下で図示した図1に示すように、連続焼鈍炉に
おいては、鋼板は、製鉄所発生ガスにより直火加熱、お
よびまたはラジアントチューブによる間接加熱を行う加
熱帯、電気ヒーターにより均熱を行う均熱帯を通って1
次冷却帯に導かれ、その後過時効帯を通される。EXAMPLES Examples of the present invention will be described in detail below. As shown in FIG. 1 illustrated in comparison with the conventional example, in the continuous annealing furnace, the steel plate is heated by a steel mill-generated gas in a direct flame and / or indirectly heated by a radiant tube. 1 through the soaking tropics for soaking
It is guided to the next cooling zone and then passed through the overaging zone.
【0018】本発明においては、加熱帯出側における鋼
板の目標板温を、均熱帯出側における鋼板の目標板温よ
りも高く設定し、加熱帯における鋼板の目標板温から均
熱帯出側における鋼板の目標板温までの温度勾配を実質
的に連続する下り勾配として、加熱帯および均熱帯にお
いて鋼板に入熱を行うものである(以下「傾斜均熱パタ
ーン」と呼ぶ)。したがって、均熱帯においては、下り
の温度勾配を有する傾斜均熱態様となる。In the present invention, the target plate temperature of the steel plate on the heating zone exit side is set higher than the target plate temperature of the steel sheet on the soaking zone, and the steel plate on the soaking zone is set from the target plate temperature of the steel sheet in the heating zone. With the temperature gradient up to the target plate temperature of 1 as a substantially continuous downward gradient, heat is applied to the steel plate in the heating zone and the soaking zone (hereinafter referred to as "gradient soaking pattern"). Therefore, in the soaking zone, there is a slope soaking mode having a downward temperature gradient.
【0019】本発明者は、傾斜均熱による鋼板の機械特
性について影響を、種々のラボテストを行った上、実機
により確認した。The inventor of the present invention confirmed the influence on the mechanical properties of the steel sheet due to the gradient soaking by various laboratory tests and then by an actual machine.
【0020】<実験1>Ti−Nb極低炭鋼を用いて、
図2に示す加熱帯(HF)の出側温度および均熱帯(R
A)の出側温度により、傾斜均熱パターンと等温均熱パ
ターンで焼鈍を行い、厚み0.7mmの鋼板の機械特性を
示す伸び(EL)、および降伏点(YP)を求めた。そ
れぞれの結果を、図3〜図6に示す。この結果から、本
発明による傾斜均熱方式によっても、等温均熱パターン
によって入熱した場合との対比で、YP値およびEL値
ともほぼ同等であることが判った。<Experiment 1> Using Ti-Nb ultra-low carbon steel,
The temperature at the outlet side of the heating zone (HF) shown in FIG.
The elongation (EL) and the yield point (YP) showing the mechanical properties of the steel sheet having a thickness of 0.7 mm were obtained by performing annealing in the inclined soaking pattern and the isothermal soaking pattern according to the exit side temperature of A). The respective results are shown in FIGS. From this result, it was found that the YP value and the EL value were almost the same as in the case of heat input by the isothermal soaking pattern even by the gradient soaking method according to the present invention.
【0021】<実験2>一般低炭素鋼について、従来の
加熱帯出側板温740℃および均熱帯出側板温740℃
の場合のほか、傾斜均熱を行うべく、加熱帯出側板温を
+10℃、+20℃、+30℃とする一方、均熱帯出側
板温を−40℃、−20℃、−10℃とした場合におけ
る伸びおよび降伏点の変化を、時効の有無で区別して、
調べたところ、図7〜図10に示す結果を得た。<Experiment 2> Regarding general low carbon steel, the conventional heating zone outlet side plate temperature of 740 ° C. and the soaking zone outlet side plate temperature of 740 ° C.
In addition to the above case, the heating zone outlet side plate temperature is set to + 10 ° C, + 20 ° C, + 30 ° C in order to perform the gradient soaking, while the soaking zone outlet side plate temperature is set to −40 ° C, −20 ° C, −10 ° C. Distinguishing changes in elongation and yield point with or without aging,
When examined, the results shown in FIGS. 7 to 10 were obtained.
【0022】これらの結果から、加熱帯出側板温が+1
0℃のとき、均熱帯出側板温が−40℃と設定した場合
においても、目的の機械的特性を得ることができること
が判った。From these results, the heating zone exit side plate temperature is +1.
It was found that when the temperature was 0 ° C., the desired mechanical characteristics could be obtained even when the temperature distribution side plate temperature was set to −40 ° C.
【0023】<実験3>ところで、実操業で最も省エネ
ルギーを図る方法は、専ら加熱帯で加熱するのみで、均
熱帯ではヒーターOFFして均熱処理するものであり、
これをどの条件ならば、できるかを、次記(1)式によ
りシュミレートした。<Experiment 3> By the way, the most energy-saving method in actual operation is to heat only in the heating zone, and in the soaking zone, the heater is turned off to carry out soaking.
The conditions under which this can be achieved were simulated by the following formula (1).
【0024】 (TRA−THF)×C×(T/Hr)=入熱+出熱(炉帯拡散+その他) ‥‥‥(1) TRA;均熱帯出側板温 THF;加熱帯出側板温 C;比熱 入熱;電気ヒーター 出熱;炉帯放散+その他 (1)式において、入熱は均熱帯における電気ヒーター
による入熱量であり、出熱量は、炉帯放散、その他(雰
囲気ガス、冷却帯への持出し)なので一定と仮定でき
る。(1)式において、生産量を75T/Hrとして、
右項の炉帯拡散とその他の数値を算出した結果、それぞ
れ160.4Mcal/Hr、22.4Mcal/Hr
であった。しかるに、入熱をゼロとしても、加熱帯出側
板温および均熱帯出側板温をそれぞれ740℃を基準と
して、加熱帯出側板温が+10℃のとき、均熱帯出側板
温が最大で−40℃までの範囲内において、前記(1)
が成立することが判った。これは、同様に実操業におい
ても、加熱帯出側板温を+10℃としたとき、均熱帯出
側板温が−40℃となることから、妥当性がある事項で
あることが解析できた。(T RA −T HF ) × C × (T / Hr) = heat input + heat output (furnace zone diffusion + others) (1) T RA ; temperature distribution side plate temperature T HF ; heating zone output Side plate temperature C; specific heat heat input; electric heater heat output; furnace zone heat dissipation + others In (1), the heat input is the heat input by the electric heater in the soaking zone, and the heat output is the furnace zone heat dissipation, other (atmosphere gas It can be assumed to be constant because it is brought out to the cooling zone. In the formula (1), when the production amount is 75 T / Hr,
As a result of calculating the furnace zone diffusion and other numerical values in the right section, 160.4 Mcal / Hr and 22.4 Mcal / Hr, respectively
Met. However, even if the heat input is zero, when the heating zone outlet side plate temperature and the heating zone outlet side plate temperature are 740 ° C. respectively, and the heating zone outlet side plate temperature is + 10 ° C., the soaking zone outlet side plate temperature is up to −40 ° C. Within the range, the above (1)
It was found that Similarly, even in actual operation, when the heating zone outlet side plate temperature is + 10 ° C., the soaking zone outlet side plate temperature becomes −40 ° C., so it was possible to analyze that this is a valid item.
【0025】前述のように、出熱量は一定であるので、
均熱帯出側板温は加熱帯出側板温(熱の持込み)と生産
量Ton/Hrとに依存し、次の(2)式で表すことが
できる。As mentioned above, since the heat output is constant,
The soaking zone outlet side plate temperature depends on the heating zone outlet side plate temperature (carrying in heat) and the production amount Ton / Hr, and can be expressed by the following equation (2).
【0026】 TRA=出熱/((T/Hr)×C)+THF ‥‥‥(2) (2)式に基づいて、THFを変更して、関係を示したの
が、図11である。この図11の結果から、均熱帯の電
気ヒーターをOFFとすることが可能である焼鈍量の領
域は、28T/Hr以上であることが判った。T RA = heat output / ((T / Hr) × C) + T HF (2) Based on the equation (2), T HF was changed and the relationship was shown in FIG. Is. From the results shown in FIG. 11, it was found that the range of annealing amount at which the soaking zone electric heater can be turned off is 28 T / Hr or more.
【0027】<実験4>以上の結果に基づいて、低炭素
鋼について、加熱帯出側目標板温750℃、均熱帯出側
目標板温700℃とし、均熱帯の電気ヒーターOFFと
して実機テストを行った。このときの実機における消費
エネルギーを、従来例との比較の下で、表1に示す。本
発明にかかる傾斜均熱パターンの場合は、加熱帯におけ
るコークス炉ガスの消費量が嵩むものの、ラジアントチ
ューブで必要な電力量がゼロとなり、トータルコストで
約10%の削減を図ることができた。<Experiment 4> Based on the above results, the low carbon steel was subjected to the actual machine test with the heating zone outlet side target plate temperature of 750 ° C., the soaking zone target side sheet temperature of 700 ° C., and the soaking zone electric heater turned off. It was The energy consumption of the actual machine at this time is shown in Table 1 in comparison with the conventional example. In the case of the gradient soaking pattern according to the present invention, although the consumption amount of the coke oven gas in the heating zone increases, the amount of electric power required for the radiant tube becomes zero, and the total cost can be reduced by about 10%. .
【0028】[0028]
【表1】 [Table 1]
【0029】また、同条件の下で、傾斜均熱パターンお
よび等温均熱パターンそれぞれで焼鈍した鋼板のミクロ
組織を光学写真により観察したところ、実質的な相違は
なく、さらに、その展伸度と平均粒度との関係は図12
に示すものとなり、この点からも、物性の低下は認めら
れなかった。Further, under the same conditions, the microstructures of the steel sheets annealed in the inclined uniform heating pattern and the isothermal uniform heating pattern were observed by optical photographs, and there was no substantial difference. Figure 12 shows the relationship with the average grain size.
The physical properties were not deteriorated from this point as well.
【0030】(その他)前述の実験4を含めた各種の実
機操業の結果、本発明による電力無使用の傾斜均熱パタ
ーン方式は、機械的特性を損なわない条件で、加熱帯出
側板温および均熱帯出側板温が650℃〜850℃の範
囲内において、本発明の傾斜均熱パターン方式を採用で
きることを知見した。(Others) As a result of various actual machine operations including Experiment 4 described above, the gradient soaking pattern method of the present invention, which does not use any electric power, does not impair the mechanical characteristics, and the heating zone exit side plate temperature and the soaking zone are equalized. It was found that the gradient soaking pattern method of the present invention can be adopted when the outlet plate temperature is in the range of 650 ° C to 850 ° C.
【0031】また、均熱帯の出側板温と過時効帯の入側
板温との差が小さくなるので、過時効帯の入側ハースロ
ールのサマールクラウンが小さくなり、その結果、クー
リングバックルの不安定領域が少なくなり、より安定し
た操業を行うことができる。Further, since the difference between the outgoing side plate temperature in the soaking zone and the incoming side plate temperature in the overaging zone becomes small, the Samart crown of the incoming side hearth roll in the overaging zone becomes small, and as a result, the cooling buckle becomes unstable. The area is reduced and more stable operation can be performed.
【0032】[0032]
【発明の効果】以上の説明から明らかなとおり、本発明
によれば、新たな設備投資を必要とせず、しかも現状の
運転コストそのものを低減できるなど、きわめて実用性
に富むものとなった。また、機械的特性の低下はなく、
逆に、過時効帯の入側ハースロールのサマールクラウン
が小さくなり、クーリングバックルの不安定領域が少な
くなるなどの利点がもたらされる。As is apparent from the above description, according to the present invention, no new facility investment is required and the current operating cost itself can be reduced. Also, there is no deterioration in mechanical properties,
On the contrary, the samar crown of the entrance-side hearth roll in the overaging zone is reduced, and the unstable region of the cooling buckle is reduced.
【図1】本発明に係る傾斜均熱パターンと従来例による
等温均熱パターンを示すグラフである。FIG. 1 is a graph showing an inclined soaking pattern according to the present invention and an isothermal soaking pattern according to a conventional example.
【図2】実験での本発明の等温均熱パターンおよび従来
例による傾斜均熱パターンにおける加熱帯出側板温およ
び均熱帯出側板温を示すグラフである。FIG. 2 is a graph showing the heating zone outlet side plate temperature and the tropical zone outlet side plate temperature in the isothermal soaking pattern of the present invention and the inclined soaking pattern according to the conventional example in the experiment.
【図3】傾斜均熱の場合における伸びを示すグラフであ
る。FIG. 3 is a graph showing elongation in the case of inclined soaking.
【図4】等温均熱の場合における伸びを示すグラフであ
る。FIG. 4 is a graph showing elongation in the case of isothermal soaking.
【図5】傾斜均熱の場合における降伏点を示すグラフで
ある。FIG. 5 is a graph showing a yield point in the case of inclined soaking.
【図6】等温均熱の場合における降伏点を示すグラフで
ある。FIG. 6 is a graph showing a yield point in the case of isothermal soaking.
【図7】傾斜均熱における加熱帯出側板温および均熱帯
出側板温を変えた場合(時効なし)の伸びを示すグラフ
である。FIG. 7 is a graph showing the elongation when the heating zone outlet side plate temperature and the soaking zone outlet side plate temperature in inclined soaking are changed (without aging).
【図8】傾斜均熱における加熱帯出側板温および均熱帯
出側板温を変えた場合(時効あり)の伸びを示すグラフ
である。FIG. 8 is a graph showing the elongation when the heating zone outlet side plate temperature and the soaking zone outlet side plate temperature in inclined soaking are changed (with aging).
【図9】傾斜均熱における加熱帯出側板温および均熱帯
出側板温を変えた場合(時効なし)の降伏点を示すグラ
フである。FIG. 9 is a graph showing the yield point when the heating zone outlet side plate temperature and the soaking zone outlet side plate temperature in inclined soaking are changed (without aging).
【図10】傾斜均熱における加熱帯出側板温および均熱
帯出側板温を変えた場合(時効あり)の降伏点を示すグ
ラフである。FIG. 10 is a graph showing the yield point when the heating zone outlet side plate temperature and the soaking zone outlet side plate temperature in inclined soaking are changed (with aging).
【図11】加熱帯出側板温、生産量および均熱帯出側板
温の相関の下での均熱帯での無加熱領域を示す説明用グ
ラフである。FIG. 11 is an explanatory graph showing a non-heated region in the soaking zone under the correlation of the heating zone outlet side plate temperature, the production amount, and the soaking zone outlet side plate temperature.
【図12】従来例と本発明例とにおける展伸度と平均粒
度との相関図である。FIG. 12 is a correlation diagram between the extensibility and the average grain size in the conventional example and the example of the present invention.
【図13】従来例のヒートパターン例の説明図である。FIG. 13 is an explanatory diagram of a heat pattern example of a conventional example.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年5月30日[Submission date] May 30, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0027[Name of item to be corrected] 0027
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0027】<実験4>以上の結果に基づいて、低炭素
鋼について、加熱帯出側目標板温750℃、均熱帯出側
目標板温700℃とし、均熱帯の電気ヒーターOFFと
して実機テストを行った。このときの実機における消費
エネルギーを、従来例との比較の下で、表1に示す。本
発明にかかる傾斜均熱パターンの場合は、加熱帯におけ
るコークス炉ガスの消費量が嵩むものの、均熱帯での加
熱に要していた電気ヒーターへの投入電力量がゼロとな
り、トータルコストで約10%の削減を図ることができ
た。<Experiment 4> Based on the above results, the low carbon steel was subjected to the actual machine test with the heating zone outlet side target plate temperature of 750 ° C., the soaking zone target side sheet temperature of 700 ° C., and the soaking zone electric heater turned off. It was The energy consumption of the actual machine at this time is shown in Table 1 in comparison with the conventional example. For inclined soaking pattern according to the present invention, although the consumption of coke oven gas in the heating zone is increase, pressure at the soaking zone
The electric power input to the electric heater, which was required for heat, was reduced to zero, and the total cost could be reduced by about 10%.
Claims (1)
よび電気ヒーターにより均熱加熱を行う均熱帯を有する
連続加熱炉により連続的に通板される鋼板の加熱を行う
方法において、 前記加熱帯出側における鋼板の目標板温を前記均熱帯出
側における鋼板の目標板温よりも高く設定し、前記加熱
帯における鋼板の目標板温から前記均熱帯出側における
鋼板の目標板温までの温度勾配を実質的に連続する下り
勾配として、前記加熱帯および前記均熱帯において鋼板
に入熱を行うことを特徴とする連続焼鈍炉における鋼板
の加熱方法。1. A method for heating a steel sheet continuously passed through a continuous heating furnace having a heating zone for heating by a gas generated from a steel mill and a soaking zone for soaking and heating by an electric heater, wherein the heating zone is discharged. The target plate temperature of the steel plate on the side of the soaking is set higher than the target plate temperature of the steel plate on the soaking zone, and the temperature gradient from the target plate temperature of the steel plate on the heating zone to the target plate temperature of the steel sheet on the soaking zone The method for heating a steel sheet in a continuous annealing furnace, wherein heat is applied to the steel sheet in the heating zone and the soaking zone as a substantially continuous downward gradient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11874495A JP2842297B2 (en) | 1995-05-17 | 1995-05-17 | Heating method of steel sheet in continuous annealing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11874495A JP2842297B2 (en) | 1995-05-17 | 1995-05-17 | Heating method of steel sheet in continuous annealing furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08311566A true JPH08311566A (en) | 1996-11-26 |
JP2842297B2 JP2842297B2 (en) | 1998-12-24 |
Family
ID=14743992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11874495A Expired - Lifetime JP2842297B2 (en) | 1995-05-17 | 1995-05-17 | Heating method of steel sheet in continuous annealing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2842297B2 (en) |
-
1995
- 1995-05-17 JP JP11874495A patent/JP2842297B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2842297B2 (en) | 1998-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5268650B2 (en) | Heat treatment method for steel strip in a continuous heat treatment furnace equipped with an oxy-fuel burner | |
CN110551889B (en) | Rapid shutdown control method for thin plate of vertical continuous annealing unit | |
EP0779370A1 (en) | Method of continuous annealing of cold rolled steel plate and equipment therefor | |
JPH08311566A (en) | Method for heating steel sheet in continuous annealing furnace | |
JPH02274823A (en) | Equipment and method for continuously annealing metal sheet | |
JP2867857B2 (en) | Continuous annealing furnace with steel strip temperature controller | |
JPH04329856A (en) | Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip | |
JPH08158038A (en) | Continuous plasma treating device of metallic strip | |
JPH0892712A (en) | Control of temperature of steel strip immersing into galvanizing bath | |
JP2002220620A (en) | Method for controlling pressure of heating furnace | |
WO2024070279A1 (en) | Continuous annealing facility, continuous annealing method, method for producing cold-rolled steel sheet, and method for producing plated steel sheet | |
JPS6141725A (en) | Method for controlling hearth roll temperature of continuous annealing furnace | |
JPH0381009A (en) | Method for controlling plate temperature in warm rolling of stainless steel strip | |
WO2024070278A1 (en) | Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method | |
JP2000034524A (en) | Heat treatment method for metallic strip | |
JPH0813042A (en) | Method for controlling strip temperature in continuous annealing furnace | |
JPS61159213A (en) | Method for controlling hardness of steel strip | |
JP3168753B2 (en) | Threading method in direct reduction heating equipment of continuous metal strip processing line | |
JPH0741847A (en) | Method for controlling atmosphere in furnace in continuous annealing of chromium-containing band steel | |
JPH09209032A (en) | Method for controlling optimum furnace pressure in heating furnace | |
JP2004027256A (en) | Method for controlling sheet temperature in heating zone and soaking zone in continuous annealing furnace for steel sheet | |
JP2023065905A (en) | Muffle type continuous heat treatment apparatus | |
JPS62124233A (en) | Method and apparatus for continuously annealing dead soft steel for deep drawing | |
JPS63293123A (en) | Method for controlling continuous heating of material to be heated and equipment therefor | |
JP2000034523A (en) | Continuous heat treatment method for metallic strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101023 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111023 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121023 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131023 Year of fee payment: 15 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131023 Year of fee payment: 15 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |