JP2841839B2 - 生体液中の金属自動分析装置 - Google Patents

生体液中の金属自動分析装置

Info

Publication number
JP2841839B2
JP2841839B2 JP2302490A JP30249090A JP2841839B2 JP 2841839 B2 JP2841839 B2 JP 2841839B2 JP 2302490 A JP2302490 A JP 2302490A JP 30249090 A JP30249090 A JP 30249090A JP 2841839 B2 JP2841839 B2 JP 2841839B2
Authority
JP
Japan
Prior art keywords
protein
sample
solution
biological fluid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2302490A
Other languages
English (en)
Other versions
JPH04177168A (ja
Inventor
豊 林部
実 竹谷
恭正 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2302490A priority Critical patent/JP2841839B2/ja
Publication of JPH04177168A publication Critical patent/JPH04177168A/ja
Application granted granted Critical
Publication of JP2841839B2 publication Critical patent/JP2841839B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、生体液中に含まれる金属元素の自動定量分
析に適する定量方法とその装置に関する。
[従来技術とその課題] 生体液中の金属元素の定量分析は臨床医学ないし臨床
検査の分野において重要性を増している。例えば、亜鉛
は、正常な人体の血液において、血清中に0.9〜1.1ppm
程度存在するが、欠乏症になると味覚異常、性機能低
下、成長遅滞などが発病するとされている。また人工透
析時には血液中の金属成分が透析除去されるため亜鉛欠
乏症などの副作用を生じ易く、血清中の亜鉛量の定量
は、これらの疾患の早期発見にも役立つ。このような定
量分析は生体液を採取した医療機関で迅速に行われるこ
とが望ましいが、従来の方法は熟練した操作を要するた
めに外部の分析専門機関に依頼することが多く、分析結
果を得るのに時間がかかるのが現状である。また生体液
中の金属を定量するには予め分析の障害となるタンパク
質を除去する必要があり、そこで、従来はトリクロロ酢
酸酸性溶液などの除タンパク剤を添加してタンパク質を
遊離させた後に遠心分離を行ってタンパク質を分離し、
分析対象元素に応じた前処理を行って定量装置に導入し
ている。
ところが上記従来の方法には次の問題がある。(1)
分析のために通常0.2〜0.5ml以上の試料を用い、分析に
必要な試料の量が多い。(2)除タンパク工程から定量
測定に至る一連の分析操作をバッチ式で行うために分析
結果を得るのに時間がかかる。(3)分析操作が開放系
で行われるので操作中に試料が汚染される虞がある。
(4)分析操作が複雑なために熟練した分析者が必要で
ある。(5)測定誤差が大きい。
一方、連続的な分析方法として、いわゆる「フローイ
ンジェクション法」が知られている。この方法は、無脈
流定量ポンプなどによって細管に試薬溶液を供給し、こ
の試薬中に試料溶液を注入して試薬と試料を細管中で混
合し反応させ、反応液を定量分析装置に導入する方法で
ある。この方法では必要な試料の量が少く、また試薬の
混合や反応および希釈を細管内で行うために試料の汚染
を招かず、短時間に高精度の自動定量分析を行うことが
できる。また系の流体条件を調節して試料の分散を制御
することができるので、条件を適宜変化させて分析結果
を解析する高度な分析手法にも適する。しかも装置の組
立てや維持も容易かつ安価である。
ところが、生体液中の金属元素の定量分析について
は、分析の障害となるタンパク質を予め除去する必要が
あり、このためフローインジェクション法による生体液
中の金属元素の直接定量分析は従来行われておらず、ま
た除タンパク工程として遠心分離操作が不可欠と考えら
れており、この操作がフローインジェクション法に適さ
ないため生体液への適用は試みられていなかった。
[発明の解決課題] 本発明は、従来の分析方法における上記問題を解決し
た生体液中の金属定量分析方法を提供するものであっ
て、微量の試料で短時間に高精度の定量分析を行える方
法と装置を提供することを目的とする。
[課題の解決に至る知見] 本発明者は、上記フローインジェクション法による生
体液中金属の定量測定を可能にするため生体液の除タン
パク方法について検討した。この結果、測定系の細管内
で、除タンパク剤とタンパク質可溶化剤を含むキャリア
ー溶液に生体液試料を添加してタンパク質を遊離・溶解
すれば、従来のような遠心分離を行わなくても、微量な
試料で高精度の定量分析を短時間に行うことができる知
見を得た。
[課題の解決手段:発明の構成] 本発明によれば以下の測定方法と測定装置が提供され
る。
(1)細管内を流れるキャリアー溶液中に分析試料と試
薬を導入し、流れに従って混合反応させ、この反応液を
分析するフローインジェクション法による分析方法にお
いて、有機系タンパク質可溶化剤および除タンパク剤を
含有するキャリアー溶液に生体液試料を導入し、該細管
中でこれらを反応させて生体液中のタンパク質を遊離し
溶解した後に、該反応溶液に分析試薬を導入し、該細管
中でこれらを反応させ、得られた試料溶液中の金属濃度
を定量測定することを特徴とする生体液中金属の定量方
法。
(2)タンパク質可溶化剤として、n−ドデシル硫酸ナ
トリウム、セチルトリメチルアンモニウムブロミド、ま
たはポリオキシエチレングリコールソルビタンモノアル
キルエステルを用い、除タンパク剤として、トリクロロ
酢酸を用いる請求項1の定量方法。
(3)(a)除タンパク剤とタンパク質可溶化剤を含む
キャリアー溶液が流れる送液管路と、(b)該送液管路
に介設された生体液試料の導入部と、(c)該生体液試
料と上記除タンパク剤および可溶化剤を含む試料溶液が
流れる管路であって該試料溶液中の除タンパク剤とタン
パク質可溶化剤および生体液試料との反応によってタン
パク質を遊離し溶解する第1反応部と、(d)タンパク
質を溶解した試料溶液に分析試薬を導入する試薬導入管
路と、(e)該試料溶液中の生体液試料と分析試薬との
反応を進める第2反応部と、(f)第2反応部から導か
れた試料溶液中の金属を定量する測定部とからなること
を特徴とする生体液中金属の定量装置。
[発明の具体的な構成] 本発明の方法では、除タンパク剤及びタンパク質の可
溶化剤を含有するキャリアー溶液に微量(通常100μl
程度)の生体液試料を導入してなる試料溶液を細管を通
じて流し、該細管中で該試料溶液中の除タンパク剤とタ
ンパク質可溶化剤とを生体液試料と反応させて試料液中
のタンパク質を遊離・溶解する。
除タンパク剤としては、トリクロロ酢酸(TCA)やテ
トラメチルアンモニウムハイドロオキサイド(TMAH)な
ど一般に使用されている除タンパク剤を用いることがで
きる。キャリアー溶液としては、除タンパク剤としてト
リクロロ酢酸を用いる場合には希塩酸または過塩素酸な
どが用いられる。またTMAHを用いる場合には希塩化ナト
リウム溶液や水などが用いられる。除タンパク剤の濃度
は、約100μlの生体液試料を用いる場合、試料溶液中
で0.1〜0.5モル/l程度であれば良い。なお、生体液中の
タンパク質はpH6.5以下の酸性下で沈殿するのでトリク
ロロ酢酸を用いる場合には溶液のpHを6.5〜6.9に調節す
る。TMAHはpH7.0以上の中性ないしアルカリ性下でタン
パク質を遊離させ溶解できるので好ましい。
タンパク質の可溶化剤としては、ドデシル硫酸ナトリ
ウム、ポリビニールアルコール、セチルトリメチルアン
モニウムブロミド(CTA−Br)、ポリオキシエチレン(1
0)オクチルフェニルエーテル(商品名:Triton−X10
0)、ポリオキシエチレングリコールソルビタンモノア
ルキルエステルなどの界面活性剤を用いることができ
る。
装置に導入された生体液は、細管内でキャリアー溶液
中の除タンパク剤と反応してタンパク質を遊離し、次い
で及び/又はこれと同時にタンパク質可溶化剤と反応し
てタンパク質が溶解する。このとき充分な反応時間が得
られるように、該試料溶液が流れる細管を蛇行させ、ま
たはコイル状に巻いた反応部を形成するのが好ましい。
因みに人血清試料0.5mlに0.5Mトリクロロ酢酸−0.1M
塩酸溶液を添加すると、タンパク質が遊離して白濁した
溶液となり、これに0.05M n−ドデシル硫酸ナトリウム
を添加すると多少の白濁が観察されるものの大部分のタ
ンパク質が溶解してほぼ透明な溶液となる。また該n−
ドデシル硫酸ナトリウムに代えてポリビニールアルコー
ル、セチルトリメチルアンモニウムブロミド(CTA−B
r)、ポリオキシエチレン(10)オクチルフェニルエー
テル(Triton−X100)、ポリオキシエチレングリコール
ソルビタンモノアルキルエステルなどを用いても同様に
透明な溶液が得られる。
なお上記細管内の反応では再現性の高い分散と滞留時
間が得られるので、生体液試料が細管内で一定の割合で
試料溶液中に拡散し、常に反応が一定の割合で進行す
る。従って、仮にタンパク質が100%可溶化されなくて
も一定時間内に溶解されるタンパクの量が変わらないの
で生体液中金属の定量測定に支障はない。
タンパク質を溶解した後に、分析対象元素を検出する
ために必要な前処理を行う。該前処理は定量測定手段に
応じて行われ、例えば、定量測定手段が誘導結合プラズ
マ発光分析法や原子吸光法などの場合には水などの希釈
液を導入して試料溶液を希釈する。定量測定手段が吸光
光度法や蛍光光度法である場合には、発色試薬を添加し
て試料溶液と反応させる。なお必要に応じて溶液のpHを
調整する。また定量方法によっては分析試薬として緩衝
剤を添加する。このような除タンパク後の処理は必要に
応じて複数の処理を行っても良い。
定量測定手段は前述のように誘導結合プラズマ発光分
析法や吸光光度法および蛍光光度法などを用いることが
できる。なお、吸光光度法は簡便に実施できる利点があ
る。吸光光度法による一般的な測定例を説明すると、タ
ンパク質を除いた試料溶液に、目的金属に対応する発色
試薬を添加して反応させ、この試料溶液を分光光度計の
セルに導き、特定波長の光を照射して吸光度を測定す
る。次に同一金属を含む標準溶液について得られた吸光
度と上記試料溶液の吸光度との比較により試料溶液中に
含まれる目的金属の濃度が算出される。上記発色試薬と
しては検出金属元素に応じて通常使用されるものを用い
ることができる。
本測定方法は自動化に適する。一例として、分光光度
計による吸光度を電気的信号に変換して電算機の演算部
に送り、ここで予め入力した標準溶液の吸光度と比較す
ることにより試料溶液中の目的金属濃度を自動的に算出
して表示させることができる。
次に、本発明の測定装置を図面に示す概念図を参照し
て説明する。本装置の基本部分は、フローインジェクシ
ョン分析法に通常用いられる材料、部品などを使用して
構成することができる。微少量の試料を用いることがで
きるように、管系には内径1mm以下の細管が用いられ
る。管路を流れる管に生体液試料が試料溶液中に分散す
るように管径を部分的に変化さても良い。測定系内に溶
液を定量的に供給するために送液ポンプが用いられる
が、系内で溶液の脈動が生じると測定精度の低下や検出
感度の変化のような不都合を生じるので、送液ポンプに
はダブルプランジャ型ポンプなどの無脈動定量ポンプを
用いるのが好ましい。管路を形成する細管相互や細管と
各部とは液漏れを生じないようにコネクターによって接
続し、該接続部分は必要に応じて着脱自在に形成するの
が好ましい。
図1に示す装置例では、細管10a〜10dに内径0.5〜1.0
mmのFTEF製チューブが用いられ、送液ポンプ11aとして
溶液の脈動を生じないようにダブルプランジャー型ポン
プが用いられている。該送液ポンプ11aにはキャリアー
溶液に除タンパク剤を添加した除タンパク剤溶液の導入
管路1と、キャリアー溶液にタンパク質の可溶化剤を添
加した可溶化剤溶液の導入管路2が接続し、これらの管
路は送液ポンプ11aを介して各々細管10a,10bに連通して
おり、送液ポンプ11aを経た後に合流され生体液試薬の
導入部5に接続している。導入部5は容量100μlのサ
ンプルループと該ループを開閉うる自動弁機構を備えて
いる。測定時にはサンプルループに生体液試料が充填さ
れた状態で設置され、自動弁によって該ループにタンパ
ク質可溶化剤を含む除タンパク剤溶液が導入される。除
タンパク剤とタンパク質の可溶化剤および生体液試料を
含む試料溶液は細管10cを通じて第1反応部6に導かれ
る。第1反応部6は、その一例として、長さ0.5m、内径
10mmのPTFE製チューブをコイル状に巻いた部分であり、
試料溶液が該第1反応部6を通過する管に細管内でタン
パク質可溶化剤と生体液試料のタンパク質とが反応して
タンパク質が溶解する。該第1反応部6を経た試料溶液
は細管10cを通じて第2反応部8に導かれるが、その管
に発色試薬を添加する試薬導入管路10dが合流部7に接
続している。該管路10dには発色試薬溶液を送液するた
めの送液ポンプ10bが設けられており、該送液ポンプ10b
には発色試薬の導入管路3が接続している。第2反応部
8は、その一例として、長さ0.5m、内径0.5mmのPTFE製
チューブをコイル状に巻いた部分であり、試料溶液が第
2反応部8を通過する間に細管内で発色試薬と生体試料
が反応する。発色試薬としては、例えば亜鉛の定量を行
う場合には、2−(5−ブロモ−2−ピリジルアゾ)−
5(N−プロピル−N−スルホプロピルアミノ)フェノ
ールナトリウム塩(5−Br−PAPS)などが用いられる。
試料溶液が第2反応部を通過する間に生体液と上記試薬
が反応して発色性のZn−5−Br−PAPS錯体が形成され
る。第2反応部8に続いて分光光度計9が接続されてい
る。分光光度計は市販のものを用いることができる。該
分光光度計9によって試料の吸光度を測定し、標準溶液
の吸光度と比較して目的金属の濃度が検出される。
好適な態様として、上記送液ポンプ11a,11b、生体液
試料の導入部5および各管路の開閉は電算機によって制
御されており、分光光度計9の測定結果は電気信号に変
換されて電算機に伝達され、自動的に演算処理される。
[実施例] 実施例 第1図の装置構成からなる測定系において、導入管路
1から5%(V/V)TMAH−0.1Mクエン酸三ナトリウム溶
液を、導入管路2から1%(V/V)ポリオキシエチレン
(10)オクチルフェニルエーテル(Triton X−100)を
各々0.75ml/minの流量で導入し、また導入部5から人血
清試料100μlを導入して人血清中のタンパク質を溶解
させた。この試料溶液に導入管路3を通じて亜鉛の発色
試薬として0.1%(W/V)サリチルアルドキシム−1%
(V/V)ポリオキシエチレン(10)オクチルフェニルエ
ーテル(Triton X−100)−0.5%(W/V)5−Br−PAPS
[2−(5−ブロモ−2−ビリジルアゾ)−5(N−プ
ロピル−N−スルホプロピルアミノ)フェノールナトリ
ウム塩]−0.5M酢酸アンモニウム−塩酸溶液を1.5ml/mi
nの流量で試料溶液に添加した。なお、試薬溶液を添加
する際に添加部部で該溶液のpHが8.5〜9.0となるように
上記試薬溶液の塩酸濃度を調節した。発色試薬添加後、
試料溶液中で形成されるZn−5−Br−PAPS錯体による波
長560nmでの吸光度を測定し、標準溶液について得られ
た亜鉛濃度と吸光度との関係式に基づいて試料溶液中の
亜鉛濃度を測定した。光度計には光路長10mmの日立製作
所社製のレシオビーム分光光度計U−1000を用いた。こ
の測定結果を従来の分析方法により測定結果と対比して
表1に示した。従来の分析方法では予め遠心分離によっ
てタンパク質を除去した後に原子吸光法によって亜鉛濃
度を定量した。なお各測定は6つの試料について各々3
回測定し、その平均値を示した。また本実施例の第1反
応部および第2反応部の管路長さは何れも0.5mである。
表示されるように、本発明の定量方法による測定結果
は従来の定量方法による結果とよく一致している。しか
も測定制度は同一試料を50回測定した場合に、その誤差
は5%(C.V.%)と高精度であった。また本方法によれ
ば1時間に20試料の測定が可能であり、短時間に多数の
試料を測定できることが確認された。
試験例1 本発明の定量方法において、除タンパク剤であるテト
ラメチルアンモニウムハイドロオキサイド(TMAH)の濃
度による影響を調べた。まず実施例1において他の試薬
濃度を一定とし、上記TMAH濃度のみを0から10%(V/
V)の間で変化させて亜鉛錯体を生成させ、波長560nmで
の吸光度を測定した。この結果を第2図に示した。図示
されるように、TMAH濃度が1.0〜7.5%(V/V)の範囲で
ほぼ一定の強度で吸光度が検出された。この結果から、
亜鉛の加水分解を避けてタンパク質を効果的に遊離する
にはTMAH濃度を1.0〜7.5%(V/V)に調整すればよいこ
とが判明した。
試験例2 送液量と第1反応部および第2反応部の反応部長さの
影響を調べた。送液量は導入管路1,2,3の液量比を一定
として増加させた。試料溶液には亜鉛濃度1.14ppmの標
準溶液100μlを用い、波長560nmの吸光度を測定した。
第1反応部については、第2反応部の管路長さを0.5mに
固定する一方、01反応部の管路長さを各々0、0.5、1m
(図中、A:0m B:0.5m C:1m)に設定したその影響を調べ
た。また第2反応部については、第1反応部の管路長さ
を0.5mに固定する一方、第2反応部の管路長さを各々
0、0.5、1m(図中、A:0m B:0.5m C:1m)に設定してそ
の影響を調べた。
第1反応部についての結果を第3図に示し、第2反応
部についての結果を第4図に示した。第3図の結果か
ら、第1反応部の長さを0.5mとし、ポンプ11の送液量を
1.7〜3.4ml/minの範囲に設定すれば、試料の希釈による
感度損失を防止しながらZn−5−Br−PAPS錯体の生成反
応が充分に進行し、最も感度よく亜鉛濃度を検出できる
ことが判明した。また第2反応部については、第4図
(A)の検出強度が高ものの試料によっては測定精度が
低下した。一方、第2反応部の長さを0.5mとし、ポンプ
11の送液量を1.1〜3.4ml/minの範囲に設定すれば最高感
度で亜鉛濃度を検出できることが判明した。
試験例3 共存元素の影響を調整するため、人血清試料に既知量
の金属元素および有機物を添加し、これを実施例1の本
分析装置に導入して亜鉛濃度の測定を行った。結果を表
2に示す。ここで亜鉛と同様に5−Br−PAPSと錯体を生
成する重金属類は、通常の人血清中の存在量であれば測
定に影響しないことが判明した。有機物についても同様
の結果が得られた。但し、鉄については、試料採取時に
溶血による試料溶液中の鉄濃度の増加が懸念されるた
め、測定に影響することが考えられる。従って試料採取
時に充分に注意する必要がある。
[発明の効果] 本発明の定量方法と装置によれば、一定量の試料と試
薬を測定系に導入するだけで目的金属の濃度を測定する
ことができるので分析操作が極めて簡便である。また試
料や試薬の導入から除タンパク反応および濃度測定に至
る一連の工程が密閉系で行われるため試料の汚染が少な
く、信頼性の高い分析結果が得られる。さらに一連の操
作を自動化できるので短時間に多数の試料を分析するこ
とが可能であり、分析結果の再現性も高い。
【図面の簡単な説明】
第1図は本発明に係る定量測定装置の概略図、第2図、
第3図および第4図は各々試験例1、2の結果を示すグ
ラフである。 図中、1、2、3……導入管路、5……試料導入部、6
……第1反応部、7……合流部、8……第2反応部、9
……分光光度計、 10a,10b,10c,10d……細管 11a、11b……送液ポンプ
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−52564(JP,A) 実開 昭62−143263(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01N 33/84 G01N 21/00 G01N 33/48

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】細管内を流れるキャリアー溶液中に分析試
    料と試薬を導入し、流れに従って混合反応させ、この反
    応液を分析するフローインジェクション法による分析方
    法において、有機系タンパク質可溶化剤および除タンパ
    ク剤を含有するキャリアー溶液に生体液試料を導入し、
    該細管中でこれらを反応させて生体液中のタンパク質を
    遊離し溶解した後に、該反応溶液に分析試薬を導入し、
    該細管中でこれらを反応させ、得られた試料溶液中の金
    属濃度を定量測定することを特徴とする生体液中金属の
    定量方法。
  2. 【請求項2】タンパク質可溶化剤として、n−ドデシル
    硫酸ナトリウム、セチルトリメチルアンモニウムブロミ
    ド、またはポリオキシエチレングリコールソルビタンモ
    ノアルキルエステルを用い、除タンパク剤として、トリ
    クロロ酢酸を用いる請求項1の定量方法。
  3. 【請求項3】(a)除タンパク剤とタンパク質可溶化剤
    を含むキャリアー溶液が流れる送液管路と、(b)該送
    液管路に介設された生体液試料の導入部と、(c)該生
    体液試料と上記除タンパク剤および可溶化剤を含む試料
    溶液が流れる管路であって該試料溶液中の除タンパク剤
    とタンパク質可溶化剤および生体液試料との反応によっ
    てタンパク質を遊離し溶解する第1反応部と、(d)タ
    ンパク質を溶解した試料溶液に分析試薬を導入する試薬
    導入管路と、(e)該試料溶液中の生体液試料と分析試
    薬との反応を進める第2反応部と、(f)第2反応部か
    ら導かれた試料溶液中の金属を定量する測定部とからな
    ることを特徴とする生体液中金属の定量装置。
JP2302490A 1990-11-09 1990-11-09 生体液中の金属自動分析装置 Expired - Lifetime JP2841839B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2302490A JP2841839B2 (ja) 1990-11-09 1990-11-09 生体液中の金属自動分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2302490A JP2841839B2 (ja) 1990-11-09 1990-11-09 生体液中の金属自動分析装置

Publications (2)

Publication Number Publication Date
JPH04177168A JPH04177168A (ja) 1992-06-24
JP2841839B2 true JP2841839B2 (ja) 1998-12-24

Family

ID=17909591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2302490A Expired - Lifetime JP2841839B2 (ja) 1990-11-09 1990-11-09 生体液中の金属自動分析装置

Country Status (1)

Country Link
JP (1) JP2841839B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201811429XA (en) * 2016-06-24 2019-01-30 Kaneka Corp Flow reactor
CN111948202A (zh) * 2020-08-15 2020-11-17 内蒙古自治区农牧业科学院 一种利用流动注射法测定食品中蛋白质的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852564A (ja) * 1981-09-24 1983-03-28 Amano Pharmaceut Co Ltd ヘモグロビンの簡易迅速微量定量法
JPS62143263U (ja) * 1986-03-04 1987-09-09

Also Published As

Publication number Publication date
JPH04177168A (ja) 1992-06-24

Similar Documents

Publication Publication Date Title
Krug et al. Flow injection spectrophotometric determination of boron in plant material with azomethine-H
Kessler et al. An automated procedure for the simultaneous determination of calcium and phosphorus
EP0047130B1 (en) Flow analysis
JPH048736B2 (ja)
US5407832A (en) Method and device for quantitatively determining the concentration of metals in body fluids
US4486097A (en) Flow analysis
CN211877738U (zh) 分光光度测定和液体处理系统
JP2009109196A (ja) 希釈倍率導出方法、定量方法、及び分析装置
Mesquita et al. Turbidimetric determination of chloride in different types of water using a single sequential injection analysis system
Capitan-Vallvey et al. Flow-injection method for the determination of tin in fruit juices using solid-phase spectrophotometry
JP2009541759A (ja) 分析物測定用生物流体加工方法および装置
US4610544A (en) Flow analysis
Choengchan et al. Tandem measurements of iron and creatinine by cross injection analysis with application to urine from thalassemic patients
Frings et al. Automated determination of glucose in serum or plasma by a direct o-toluidine procedure
JP2841839B2 (ja) 生体液中の金属自動分析装置
EP0269526B1 (en) Method of quantitative determination of antigens and antibodies
US5849592A (en) Carrierless sequential injection analysis
Lauwerys et al. Automated analysis of delta-aminolaevulinic acid in urine
CN106841182A (zh) 同步快速监测水中硅酸根和磷酸根的在线监测仪及方法
JPH08226924A (ja) 自動分析装置のための流体モジュール
US5344571A (en) Method for separating isoanalytes and measuring analytes in fluids
Rocks et al. Direct determination of calcium and magnesium in serum using flow-injection analysis and atomic absorption spectroscopy
Silva et al. Use of a mixing chamber for sample preparation and multiple collection in sequential injection analysis: determination of sulfate in wines
Steinmetz et al. Modified aca method for determination of iron chelated by deferoxamine and other chelators.
Carlsson et al. Micro-volume flow titration and screening the dissociation constants (pKa) of weak acids