JP2840029B2 - Silicon semiconductor wafer and method of manufacturing the same - Google Patents

Silicon semiconductor wafer and method of manufacturing the same

Info

Publication number
JP2840029B2
JP2840029B2 JP18822694A JP18822694A JP2840029B2 JP 2840029 B2 JP2840029 B2 JP 2840029B2 JP 18822694 A JP18822694 A JP 18822694A JP 18822694 A JP18822694 A JP 18822694A JP 2840029 B2 JP2840029 B2 JP 2840029B2
Authority
JP
Japan
Prior art keywords
silicon wafer
silicon
wafer
serving
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18822694A
Other languages
Japanese (ja)
Other versions
JPH0855767A (en
Inventor
俊一郎 石神
英之 近藤
久 降屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP18822694A priority Critical patent/JP2840029B2/en
Publication of JPH0855767A publication Critical patent/JPH0855767A/en
Application granted granted Critical
Publication of JP2840029B2 publication Critical patent/JP2840029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、2枚のシリコンウェー
ハを実質的に自然酸化膜を介在させることなく貼り合わ
せた直接接合したシリコン半導体ウェーハに関する。更
に詳しくはイントリンシックゲッタリング(intrinsic
gettering)源を有し、DRAM等のLSI作製に適す
るシリコン半導体ウェーハ及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a directly bonded silicon semiconductor wafer in which two silicon wafers are bonded without substantially interposing a natural oxide film. For more information on intrinsic gettering
The present invention relates to a silicon semiconductor wafer having a gettering source and suitable for manufacturing an LSI such as a DRAM and a method for manufacturing the same.

【0002】[0002]

【従来の技術】イントリンシックゲッタリングはシリコ
ンウェーハの内部に予め欠陥を形成するか、或いはドー
パント不純物を故意に高濃度に添加しておき、その後の
プロセス途上で発生する汚染や欠陥を予め形成した欠陥
や高濃度ドーパント領域自体、或いはそれらの周辺の歪
み場に吸収し、素子を作るウェーハ表面の近傍領域に欠
陥や汚染が発生するのを防ぐ技術である。従来のこのゲ
ッタリング処理は、例えば図4に示すようにシリコンウ
ェーハを1150℃で4時間程度アニール処理した後、
700℃で16時間程度熱処理し、更に950℃で4時
間程度熱処理する。この3段熱処理はいずれも窒素雰囲
気中で行われ、ウェーハ中の余剰酸素を析出させる。第
1段階の熱処理でウェーハ表面から数μmの深さまでの
領域内にある酸素をウェーハ外に拡散して消滅させ、第
2段階の熱処理でウェーハ内部にあった酸素析出物の核
形成を行った後、第3段階の熱処理でこれらの核を更に
成長させる。この酸素析出物、及び酸素析出物を核とし
て形成した積層欠陥から構成される欠陥層(イントリン
シックゲッタリング源)がその後のプロセスで発生する
汚染金属や欠陥をゲッタリングし、ウェーハ表面に無欠
陥領域(denuded zone)を形成するようになる。
2. Description of the Related Art Intrinsic gettering involves forming defects in advance in a silicon wafer or intentionally adding a dopant impurity at a high concentration to form contamination or defects generated during the subsequent process. This technology absorbs the defect or the high-concentration dopant region itself or a strain field around the region to prevent the generation of a defect or contamination in the vicinity of the wafer surface where the device is formed. In this conventional gettering process, for example, as shown in FIG. 4, after a silicon wafer is annealed at 1150 ° C. for about 4 hours,
Heat treatment is performed at 700 ° C. for about 16 hours, and further heat treatment is performed at 950 ° C. for about 4 hours. Each of the three-stage heat treatments is performed in a nitrogen atmosphere to precipitate excess oxygen in the wafer. In the first stage heat treatment, oxygen in the region from the wafer surface to a depth of several μm was diffused out of the wafer and disappeared, and in the second stage heat treatment, nucleation of oxygen precipitates inside the wafer was performed. Thereafter, these nuclei are further grown by a third stage heat treatment. The oxygen precipitate and a defect layer (intrinsic gettering source) composed of stacking faults formed by using the oxygen precipitate as a nucleus getter the contaminant metals and defects generated in the subsequent process, and leave no defect on the wafer surface. It forms a zone (denuded zone).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来のイ
ントリンシックゲッタリング処理は、熱処理回数が多
く、複雑で処理コストが高価になる欠点があった。また
この処理方法により、第1段階の熱処理時間を短くし
て、無欠陥領域の厚さを小さくすれば、素子を作る領域
に近接した領域にイントリンシックゲッタリング源を形
成できるけれども、この場合には表面近くの酸素の外方
拡散が十分に行われず、ウェーハ表面近傍に欠陥が取り
残される恐れがあり、ウェーハ表面領域が素子形成領域
として適さない問題点があった。
However, the conventional intrinsic gettering process described above has a drawback that the number of heat treatments is large, the process is complicated, and the process cost is high. Also, by using this processing method, the intrinsic gettering source can be formed in a region close to the region where the device is to be formed by shortening the time of the first heat treatment and reducing the thickness of the defect-free region. However, there is a problem that oxygen is not sufficiently diffused in the vicinity of the surface and defects may be left behind in the vicinity of the wafer surface, and the wafer surface region is not suitable as an element formation region.

【0004】本発明の目的は、単一かつ短時間の熱処理
で簡便にかつ低コストにイントリンシックゲッタリング
源を形成し得るシリコン半導体ウェーハ及びその製造方
法を提供することにある。本発明の別の目的は、素子領
域に極めて近接した領域にイントリンシックゲッタリン
グ源を形成して極薄の無欠陥領域を形成し得るシリコン
半導体ウェーハ及びその製造方法を提供することにあ
る。
An object of the present invention is to provide a silicon semiconductor wafer capable of forming an intrinsic gettering source simply and inexpensively with a single and short-time heat treatment, and a method of manufacturing the same. Another object of the present invention is to provide a silicon semiconductor wafer capable of forming an extremely thin defect-free region by forming an intrinsic gettering source in a region very close to an element region, and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】図1(d)に示すよう
に、本発明のシリコン半導体ウェーハ10は支持基板と
なる第1シリコンウェーハ11と活性層となる第2シリ
コンウェーハ12とを実質的に自然酸化膜を介在させる
ことなく貼り合わせた後、第2シリコンウェーハ12が
所定の厚さに研削研磨されたものであって、図2及び図
3に示すように、第1シリコンウェーハ11の第2シリ
コンウェーハ12との接合界面13にイントリンシック
ゲッタリング源となる積層欠陥14が形成されたことを
特徴とする。また、本発明のシリコン半導体ウェーハの
製造方法は、図1(a)〜図1(d)に示すように支持
基板となる第1シリコンウェーハ11と活性層となる第
2シリコンウェーハ12とをそれぞれ希フッ酸溶液15
に浸漬して各ウェーハ表面の自然酸化膜を除去した後、
第1シリコンウェーハ11及び第2シリコンウェーハ1
2を貼り合わせ、熱処理して接合界面13にイントリン
シックゲッタリング源となる積層欠陥14を形成し、第
2シリコンウェーハ12を所定の厚さに研削研磨する方
法である。
As shown in FIG. 1 (d), a silicon semiconductor wafer 10 of the present invention comprises a first silicon wafer 11 serving as a support substrate and a second silicon wafer 12 serving as an active layer. After being bonded without interposing a natural oxide film, the second silicon wafer 12 is ground and polished to a predetermined thickness, and as shown in FIG. 2 and FIG. A stacking fault 14 serving as an intrinsic gettering source is formed at a bonding interface 13 with the second silicon wafer 12. Further, in the method for manufacturing a silicon semiconductor wafer of the present invention, as shown in FIGS. 1A to 1D, a first silicon wafer 11 serving as a support substrate and a second silicon wafer 12 serving as an active layer are respectively formed. Dilute hydrofluoric acid solution 15
After removing the natural oxide film on each wafer surface by immersion in
First silicon wafer 11 and second silicon wafer 1
2 is bonded and heat-treated to form a stacking fault 14 serving as an intrinsic gettering source at the bonding interface 13, and the second silicon wafer 12 is ground and polished to a predetermined thickness.

【0006】本発明の支持基板となる第1シリコンウェ
ーハ及び活性層となる第2シリコンウェーハはいずれも
チョクラルスキー法、フローティングゾーン法、その他
の方法で作られる。第1シリコンウェーハと第2シリコ
ンウェーハが同一の製法で作られたものでもよいし、そ
れぞれ異なる製法で作られたものでもよい。いずれの方
法で作られたものであっても、シリコン単結晶棒から切
断された後、鏡面研磨を施したものが好ましい。図1
(a)に示すように、これらのシリコンウェーハ11,
12は希フッ酸溶液15に浸漬される。希フッ酸溶液は
濃度5〜10%程度のフッ酸の水溶液である。常温の希
フッ酸溶液にシリコンウェーハを1〜2分程度浸漬する
ことにより、ウェーハ表面に形成されていた自然酸化膜
を完全に溶解除去する。希フッ酸溶液の濃度が高い程、
又は希フッ酸溶液への浸漬時間が長い程、ウェーハ表面
からは自然酸化膜等が除かれ易くなる。希フッ酸溶液か
ら2枚のシリコンウェーハを取出した後、図1(b),
(c)に示すように洗浄水で洗浄することなく直ちに2
枚のシリコンウェーハを重ね合せて接合し、窒素
(N2)雰囲気又は酸素(dryO2)雰囲気中で1000
〜1100℃の温度で1〜3時間、好ましくは2時間程
度熱処理して貼り合わせる。図1(d)に示すように貼
り合わせ後、シリコン基板となる第2シリコンウェーハ
12を砥石で研削し、その後研磨布で研磨して、約5〜
10μmの厚さに加工する。これにより厚さ約5〜10
μmのデバイス形成用の活性層12aが接合界面13上
に得られる。この研削量を調整することにより、貼り合
わせたウェーハの表面に所望の厚さの無欠陥領域を作る
ことができる。
The first silicon wafer serving as the support substrate and the second silicon wafer serving as the active layer according to the present invention are both manufactured by the Czochralski method, the floating zone method, and other methods. The first silicon wafer and the second silicon wafer may be manufactured by the same manufacturing method, or may be manufactured by different manufacturing methods. Whichever method is used, it is preferable to cut the silicon single crystal rod and then perform mirror polishing. FIG.
As shown in (a), these silicon wafers 11,
12 is immersed in a diluted hydrofluoric acid solution 15. The diluted hydrofluoric acid solution is an aqueous solution of hydrofluoric acid having a concentration of about 5 to 10%. By immersing the silicon wafer in a dilute hydrofluoric acid solution at room temperature for about 1 to 2 minutes, the natural oxide film formed on the wafer surface is completely dissolved and removed. The higher the concentration of the diluted hydrofluoric acid solution,
Alternatively, the longer the immersion time in the diluted hydrofluoric acid solution, the more easily the natural oxide film and the like are removed from the wafer surface. After taking out two silicon wafers from the diluted hydrofluoric acid solution, FIG.
Immediately without washing with washing water as shown in FIG.
Joined by superposed silicon wafers, 1000 in a nitrogen (N 2) atmosphere or an oxygen (dryO 2) atmosphere
Heat treatment is performed at a temperature of 11100 ° C. for 1 to 3 hours, preferably for about 2 hours. After bonding as shown in FIG. 1 (d), the second silicon wafer 12 serving as a silicon substrate is ground with a grindstone, and then polished with a polishing cloth to obtain about 5-
Work to a thickness of 10 μm. This makes the thickness about 5-10
An active layer 12 a for device formation of μm is obtained on the junction interface 13. By adjusting the amount of grinding, a defect-free region having a desired thickness can be formed on the surface of the bonded wafers.

【0007】[0007]

【作用】上記条件で第1シリコンウェーハと第2シリコ
ンウェーハを貼り合わせると、図2及び図3に示すよう
にその接合界面には積層欠陥14が形成される。この積
層欠陥14が作られるメカニズムは現段階では十分に解
明されていないが、次のように推論される。即ち、ウェ
ーハ表面の自然酸化膜を残したまま、或いは表面洗浄液
で洗浄した状態で2枚のシリコンウェーハを貼り合わせ
た場合にはウェーハ表面に自然酸化膜、及びこれに吸着
したOH基,H20分子が存在するため、これらが緩衝
層となって、接合界面には積層欠陥ができない。一方、
希フッ酸溶液で自然酸化膜を除去した直後のウェーハ表
面において、格子位置のシリコン原子は原子レベルでは
単一の平面上になく、階段状のステップや原子レベルで
の凹凸をなしているため、表面がこの状態の2枚のシリ
コンウェーハを貼り合わせると、接合界面で互いに向い
合う格子位置のシリコン原子は完全に整合できず、原子
レベルで格子位置のシリコン原子がずれたり、つぶれた
りする不整合が生じ、これに起因して積層欠陥が形成さ
れる。この積層欠陥は、周知の通りイントリンシックゲ
ッタリング源として機能する。
When the first silicon wafer and the second silicon wafer are bonded under the above conditions, a stacking fault 14 is formed at the joint interface as shown in FIGS. The mechanism by which the stacking faults 14 are formed has not been fully elucidated at this stage, but is inferred as follows. That is, when two silicon wafers are bonded together while leaving the natural oxide film on the wafer surface or after cleaning with a surface cleaning solution, the natural oxide film and the OH groups and H 2 adsorbed on the natural oxide film are adhered to the wafer surface. Since zero molecules are present, these serve as buffer layers, and no stacking faults occur at the bonding interface. on the other hand,
On the wafer surface immediately after removing the natural oxide film with the diluted hydrofluoric acid solution, silicon atoms at lattice positions are not on a single plane at the atomic level, but have step-like steps and irregularities at the atomic level. When two silicon wafers with surfaces in this state are bonded together, the silicon atoms at lattice positions facing each other at the bonding interface cannot be perfectly matched, and the silicon atoms at lattice positions are displaced or collapsed at the atomic level. And stacking faults are formed due to this. This stacking fault functions as an intrinsic gettering source as is well known.

【0008】[0008]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。図1(a)に示すように、それぞれCZ法
で引上げられたシリコン単結晶棒から切断された後、鏡
面研磨したばかりの直径5インチで厚さ625μmの2
枚のシリコンウェーハ11,12を用意し、これらのシ
リコンウェーハ11,12を常温の濃度5%の希フッ酸
溶液15に1分間浸漬した。希フッ酸溶液から2枚のシ
リコンウェーハを取出した後、図1(b)に示すように
洗浄水で洗浄することなく直ちに2枚のシリコンウェー
ハを重ね合せて接合した。次いで図1(c)に示すよう
に室温から800℃に設定された熱処理炉中に10〜1
5cm/分の速度で挿入し、窒素雰囲気中で800℃か
ら10℃/分の速度で昇温し、1100℃に達したとこ
ろで2時間維持し、次いで4℃/分の速度で降温し、8
00℃まで冷却した後、10〜15cm/分の速度で炉
から室温中に取り出した。更に図1(d)に示すよう
に、シリコンウェーハ12の表面を砥石で研削し、続い
て柔らかい研磨布で研磨し、接合界面13上に厚さ5〜
10μmの低酸素濃度層である活性層12aを形成し
た。上記実施例で得られたシリコン半導体ウェーハから
任意の大きさの方形サンプルを切り出し、ダミー材で挟
んで接着した後、切断面に垂直な方向から円形のドリル
で打ち抜いた。この円筒状のサンプルを所定の研磨機を
用いて両側中央部が最も薄くなるようにディンプル研磨
を行い、最後にイオンシンイングによって中央部の微小
領域を厚さ2000〜5000オングストロームまで薄
膜化し、透過型電子顕微鏡観察用のサンプルとした。サ
ンプルの接合界面近傍を透過型電子顕微鏡で2,00
0,000倍に拡大して観察した。図2及び図3に示す
ように、略六角形の大きさ100〜200オングストロ
ーム(図では2〜4cm)程度の2つの非晶質SiOx
塊16,17の間に積層欠陥14が見られた。これらの
非晶質SiOx塊は、希フッ酸溶液から取出した後、貼
り合わせるまでの僅かな間にウェーハ表面に局部的に形
成された自然酸化膜に起因して形成されたものと考えら
れる。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1 (a), after cutting from a silicon single crystal rod pulled up by the CZ method, a mirror-polished 2 inch of 5 inch diameter and 625 μm thick was obtained.
Two silicon wafers 11 and 12 were prepared, and these silicon wafers 11 and 12 were immersed in a dilute hydrofluoric acid solution 15 having a concentration of 5% at room temperature for one minute. After taking out two silicon wafers from the diluted hydrofluoric acid solution, as shown in FIG. 1B, the two silicon wafers were immediately overlapped and joined without being washed with washing water. Next, as shown in FIG. 1 (c), 10 to 1 was placed in a heat treatment furnace set at room temperature to 800 ° C.
Insert at a rate of 5 cm / min, raise the temperature at a rate of 10 ° C./min from 800 ° C. in a nitrogen atmosphere, maintain for 2 hours when reaching 1100 ° C., and then lower the temperature at a rate of 4 ° C./min.
After cooling to 00 ° C., it was removed from the furnace at room temperature at a rate of 10 to 15 cm / min. Further, as shown in FIG. 1 (d), the surface of the silicon wafer 12 is ground with a grindstone, and then polished with a soft polishing cloth, so that a thickness of 5 to 5
An active layer 12a as a low oxygen concentration layer of 10 μm was formed. A rectangular sample of an arbitrary size was cut out from the silicon semiconductor wafer obtained in the above example, sandwiched between dummy materials and bonded, and then punched out with a circular drill from a direction perpendicular to the cut surface. This cylindrical sample is subjected to dimple polishing using a predetermined polishing machine so that the central portions on both sides are the thinnest. The sample was used for observation with a scanning electron microscope. The vicinity of the bonding interface of the sample was observed at 2,000
It was observed at a magnification of 0000 times. As shown in FIG. 2 and FIG. 3, two amorphous SiOx having a substantially hexagonal size of about 100 to 200 angstroms (2 to 4 cm in the figures).
Stacking faults 14 were observed between the lumps 16 and 17. It is considered that these amorphous SiOx lump were formed due to the natural oxide film locally formed on the wafer surface in a short time after being taken out from the diluted hydrofluoric acid solution and before bonding.

【0009】[0009]

【発明の効果】以上述べたように、従来のイントリンシ
ックゲッタリング源の形成が3回の高温、或いは長時間
にわたる熱処理を要し、複雑で処理コストが高価であっ
たものが、本発明によれば単一かつ短時間の熱処理で簡
便にかつ低コストで積層欠陥を形成してイントリンシッ
クゲッタリング源を形成することができる。特に、本発
明の方法によれば、活性層となる第2シリコンウェーハ
の研削量を多くすれば、素子領域に極めて近接した領域
にイントリンシックゲッタリング源を形成して極薄の無
欠陥領域を作り出すこともできる。
As described above, the formation of the conventional intrinsic gettering source required three heat treatments for a long time or a long time, and was complicated and expensive. According to this, it is possible to form a stacking fault easily and at low cost with a single and short-time heat treatment, thereby forming an intrinsic gettering source. In particular, according to the method of the present invention, if the amount of grinding of the second silicon wafer serving as the active layer is increased, an intrinsic gettering source is formed in a region very close to the element region to form an extremely thin defect-free region. Can also be created.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例のシリコン半導体ウェーハの製造
方法を示す部分断面図。
FIG. 1 is a partial sectional view illustrating a method for manufacturing a silicon semiconductor wafer according to an embodiment of the present invention.

【図2】本発明実施例のシリコン半導体ウェーハの接合
界面における結晶構造の電子顕微鏡写真図。
FIG. 2 is an electron micrograph of a crystal structure at a bonding interface of a silicon semiconductor wafer according to an example of the present invention.

【図3】図2の電子顕微鏡写真図を模式的に示す図。FIG. 3 is a diagram schematically showing an electron micrograph of FIG. 2;

【図4】従来のイントリンシックゲッタリング用熱処理
の温度と時間の関係を示す図。
FIG. 4 is a diagram showing a relationship between temperature and time of a conventional heat treatment for intrinsic gettering.

【符号の説明】[Explanation of symbols]

10 シリコン半導体ウェーハ 11 第1シリコンウェーハ 12 第2シリコンウェーハ 12a 活性層 13 接合界面 14 積層欠陥 15 希フッ酸溶液 DESCRIPTION OF SYMBOLS 10 Silicon semiconductor wafer 11 1st silicon wafer 12 2nd silicon wafer 12a Active layer 13 Bonding interface 14 Stacking fault 15 Dilute hydrofluoric acid solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 降屋 久 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社中央研究所内 (56)参考文献 特開 平6−69087(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/02 H01L 21/322──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hisashi Furuya 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsui Materials Co., Ltd. Central Research Laboratory (56) References JP-A-6-69087 (JP, A) ( 58) Surveyed fields (Int.Cl. 6 , DB name) H01L 21/02 H01L 21/322

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 支持基板となる第1シリコンウェーハ(1
1)と活性層となる第2シリコンウェーハ(12)とが実質的
に自然酸化膜を介在させることなく貼り合わされ、前記
第2シリコンウェーハ(12)が所定の厚さに研削研磨され
たシリコン半導体ウェーハであって、 前記第1シリコンウェーハ(11)の前記第2シリコンウェ
ーハ(12)との接合界面(13)にイントリンシックゲッタリ
ング源となる積層欠陥(14)が形成されたことを特徴とす
るシリコン半導体ウェーハ。
A first silicon wafer serving as a supporting substrate;
1) and a second silicon wafer (12) serving as an active layer are bonded together without substantially interposing a natural oxide film, and the second silicon wafer (12) is ground and polished to a predetermined thickness. A stacking fault (14) serving as an intrinsic gettering source is formed at a bonding interface (13) of the first silicon wafer (11) with the second silicon wafer (12). Silicon semiconductor wafer.
【請求項2】 支持基板となる第1シリコンウェーハ(1
1)と活性層となる第2シリコンウェーハ(12)とをそれぞ
れ希フッ酸溶液(15)に浸漬して各ウェーハ表面の自然酸
化膜を除去した後、前記第1シリコンウェーハ(11)及び
第2シリコンウェーハ(12)を貼り合わせ、熱処理して接
合界面(13)にイントリンシックゲッタリング源となる積
層欠陥(14)を形成し、前記第2シリコンウェーハ(12)を
所定の厚さに研削研磨するシリコン半導体ウェーハの製
造方法。
2. A first silicon wafer (1) serving as a support substrate.
1) and a second silicon wafer (12) to be an active layer are each immersed in a dilute hydrofluoric acid solution (15) to remove a natural oxide film on each wafer surface, and then the first silicon wafer (11) and the second silicon wafer (12) are removed. 2 Bonding and heat treatment of the silicon wafer (12) to form a stacking fault (14) serving as an intrinsic gettering source at the bonding interface (13), and grinding the second silicon wafer (12) to a predetermined thickness. A method for manufacturing a silicon semiconductor wafer to be polished.
JP18822694A 1994-08-10 1994-08-10 Silicon semiconductor wafer and method of manufacturing the same Expired - Fee Related JP2840029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18822694A JP2840029B2 (en) 1994-08-10 1994-08-10 Silicon semiconductor wafer and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18822694A JP2840029B2 (en) 1994-08-10 1994-08-10 Silicon semiconductor wafer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0855767A JPH0855767A (en) 1996-02-27
JP2840029B2 true JP2840029B2 (en) 1998-12-24

Family

ID=16219991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18822694A Expired - Fee Related JP2840029B2 (en) 1994-08-10 1994-08-10 Silicon semiconductor wafer and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2840029B2 (en)

Also Published As

Publication number Publication date
JPH0855767A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
JP2726583B2 (en) Semiconductor substrate
JPS583375B2 (en) Manufacturing method of silicon single crystal wafer
KR101071509B1 (en) Method for producing a bonded wafer
JP2002184960A (en) Manufacturing method of soi wafer and soi wafer
JP3085184B2 (en) SOI substrate and manufacturing method thereof
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
JPH0922993A (en) Soi wafer and manufacture thereof
JP2840029B2 (en) Silicon semiconductor wafer and method of manufacturing the same
JP3080501B2 (en) Silicon wafer manufacturing method
JPH09326396A (en) Semiconductor integrated circuit device and its manufacture
JPS60247935A (en) Manufacture of semiconductor wafer
JPH11354761A (en) Soi substrate and its production
TW561527B (en) SOI substrate
JPS60136218A (en) Semiconductor device and manufacture thereof
JPH08293589A (en) Semiconductor substrate and semiconductor device
JP2010129839A (en) Method of manufacturing laminated wafer
JP4529036B2 (en) Manufacturing method of thin film wafer for semiconductor
JPH0878298A (en) Silicon semiconductor wafer and its production
JPS58102528A (en) Treatment of semiconductor wafer
JP2010040638A (en) Method of manufacturing soi substrate
JP3076137B2 (en) Manufacturing method of semiconductor wafer
JP2652346B2 (en) Manufacturing method of silicon wafer
JP2652344B2 (en) Silicon wafer
JPH08264398A (en) Manufacture of silicon semiconductor wafer
JPH05129309A (en) Pasted substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981006

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees