JP2838816B2 - Solid-state imaging device and manufacturing method thereof - Google Patents

Solid-state imaging device and manufacturing method thereof

Info

Publication number
JP2838816B2
JP2838816B2 JP3188244A JP18824491A JP2838816B2 JP 2838816 B2 JP2838816 B2 JP 2838816B2 JP 3188244 A JP3188244 A JP 3188244A JP 18824491 A JP18824491 A JP 18824491A JP 2838816 B2 JP2838816 B2 JP 2838816B2
Authority
JP
Japan
Prior art keywords
wiring
ccd
light receiving
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3188244A
Other languages
Japanese (ja)
Other versions
JPH0513747A (en
Inventor
徹 石津谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3188244A priority Critical patent/JP2838816B2/en
Publication of JPH0513747A publication Critical patent/JPH0513747A/en
Application granted granted Critical
Publication of JP2838816B2 publication Critical patent/JP2838816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の裏面(受
光部が形成されていない側の面)から光を入射させて用
いる裏面入射型の固体撮像装置及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a back-illuminated solid-state imaging device which uses light incident from the back surface of a semiconductor substrate (the surface on which a light receiving portion is not formed) and a method of manufacturing the same.

【0002】[0002]

【従来の技術】裏面入射型の固体撮像装置の一例とし
て、赤外線固体撮像装置がある。まず、図2を用いて赤
外線固体撮像装置の概略を説明する。図2において、撮
像領域111の中には、複数の受光部101がマトリッ
クス状(図では4×4)に配列されており、各列毎に受
光部101で光電変換された電荷を転送する電荷転送手
段(垂直CCD102)が形成されている。また、撮像
領域111の外部には、各垂直CCD102と連結され
た電荷転送手段(水平CCD112)が行方向に沿って
設けられており、垂直CCD102で運ばれてきた電荷
は更に水平CCD112によって転送されて出力端11
3より外部へ取り出される。
2. Description of the Related Art An infrared solid-state imaging device is an example of a back-illuminated solid-state imaging device. First, an outline of the infrared solid-state imaging device will be described with reference to FIG. In FIG. 2, a plurality of light receiving units 101 are arranged in a matrix (4 × 4 in the figure) in an imaging region 111, and charges for transferring charges photoelectrically converted by the light receiving units 101 for each column. Transfer means (vertical CCD 102) is formed. Outside the imaging area 111, a charge transfer means (horizontal CCD 112) connected to each vertical CCD 102 is provided along the row direction, and the charges carried by the vertical CCD 102 are further transferred by the horizontal CCD 112. Output terminal 11
3 to the outside.

【0003】ここで、図2の赤外線固体撮像装置の動作
は次のようになる。まず、最初のT0 →T1 の期間に各
々の受光部101で入射光が光電変換されて受光部に蓄
積される。このT0 →T1 の期間に生じた電荷は、時間
1 において同時に各受光部101から垂直CCD10
2に移される(矢印iで示す)。垂直CCD102に移
された電荷は、続くT1 →T2 の期間ですべて水平CC
D112に転送され(矢印jで示す)、出力端113か
ら読み出される。以上の動作を行なうためには、各列の
垂直CCD102は、同じタイミングで駆動されなけれ
ばならない。
Here, the operation of the infrared solid-state imaging device of FIG. 2 is as follows. First, in the first period of T 0 → T 1 , incident light is photoelectrically converted by each light receiving unit 101 and accumulated in the light receiving unit. The charges generated during the period of T 0 → T 1 are simultaneously transmitted from each light receiving unit 101 to the vertical CCD 10 at time T 1 .
2 (indicated by arrow i). The charges transferred to the vertical CCD 102 are all transferred to the horizontal CC in the subsequent period of T 1 → T 2.
D112 (shown by arrow j) and read from output terminal 113. To perform the above operation, the vertical CCDs 102 in each column must be driven at the same timing.

【0004】さて、次に、各々の垂直CCD102を同
じタイミングで駆動するため採用されてきた従来の配線
構造について図3を用いて説明する。図3(a) は、図2
の受光部101及び垂直CCD102をより詳しく拡大
して示した模式的な平面図であり、図3(b) は図3(a)
のBB’断面図である。図3において、各受光部101
の列には電荷転送手段(垂直CCD)102a,102
bが併設されているのは図2で説明した通りであるが、
各受光部101は素子分離領域107,108で囲まれ
ており、各垂直CCD102a,102bには第1電極
103a,103bと第2電極104a,104bが交
互に設けられている(図3(a) では第1電極に右上がり
の斜線を、第2電極に左上がりの斜線を付す)。同じ列
の第1電極と第2電極(103aと104a,103b
と104b)の端部は、図3(b)の断面図に示されるよ
うに、絶縁層109を介して積層されている。
Next, a conventional wiring structure employed for driving each vertical CCD 102 at the same timing will be described with reference to FIG. FIG. 3 (a)
FIG. 3B is a schematic plan view showing the light receiving unit 101 and the vertical CCD 102 in an enlarged manner in detail, and FIG.
BB 'sectional drawing of FIG. In FIG. 3, each light receiving unit 101
Columns have charge transfer means (vertical CCD) 102a, 102
b is provided as described with reference to FIG.
Each light receiving portion 101 is surrounded by element isolation regions 107 and 108, and first electrodes 103a and 103b and second electrodes 104a and 104b are provided alternately on each of the vertical CCDs 102a and 102b (FIG. 3A). In this example, the first electrode is provided with an oblique line rising to the right, and the second electrode is provided with an oblique line rising to the left. The first electrode and the second electrode (103a and 104a, 103b
And 104b) are laminated via an insulating layer 109 as shown in the cross-sectional view of FIG.

【0005】これら第1電極103a,103b及び第
2電極104a,104bに所定のクロックパルスを与
えることにより電荷が転送されるが、既に述べたよう
に、各列の垂直CCD102a,102bは同じタイミ
ングで駆動する必要があるため、第1電極同志(103
aと103b)、第2電極同志(104aと104b)
は列方向に隣接する受光部101の間に設けられた素子
分離領域108を利用して相互に接続されている(図中
配線部を点線で囲んで示す)。
Charges are transferred by applying a predetermined clock pulse to the first electrodes 103a, 103b and the second electrodes 104a, 104b. As described above, the vertical CCDs 102a, 102b in each column are at the same timing. Since it is necessary to drive the first electrodes (103
a and 103b), the second electrode (104a and 104b)
Are connected to each other using an element isolation region 108 provided between the light receiving units 101 adjacent in the column direction (the wiring unit is shown by a dotted line in the figure).

【0006】配線部分は、図3(c) 部分断面図に示され
るように、素子分離領域(選択酸化膜)108上に、第
1電極同志を接続する配線106a及び第2電極同志を
接続する配線106bが絶縁層を介して積層された構造
となっている。
As shown in the partial sectional view of FIG. 3 (c), a wiring portion connects a wiring 106a for connecting the first electrodes and a second electrode on the element isolation region (selective oxide film) 108. The wiring 106b has a structure in which the wiring 106b is stacked via an insulating layer.

【0007】次に、上述したような赤外線固体撮像装置
の従来の製造方法について図3を参照して説明する。ま
ず、半導体基板110の表面を選択酸化して素子分離領
域107,108を設ける。次いで、P(リン)などを
ドープしたポリシリコンを用いて第1電極103a,1
03bと第1電極間を接続する配線106aを形成し、
絶縁層109で覆う。その後、絶縁層109上に同じく
ポリシリコンを用いて第2電極104a,104bと第
2電極間を接続する配線106bを形成する。しかる
後、受光部101にシリサイド層を設け、更に前面を絶
縁層109で覆う。図には示されていないが、入射光の
利用効率を高めるために最上層の絶縁層109上に更に
Al等からなる反射膜を設けることもある。
Next, a conventional method for manufacturing the above-described infrared solid-state imaging device will be described with reference to FIG. First, the surface of the semiconductor substrate 110 is selectively oxidized to provide element isolation regions 107 and 108. Next, the first electrodes 103a, 103a are formed using polysilicon doped with P (phosphorus) or the like.
03b and a wiring 106a connecting the first electrode are formed,
Cover with an insulating layer 109. After that, a wiring 106b for connecting the second electrodes 104a and 104b and the second electrode is formed on the insulating layer 109 using the same polysilicon. Thereafter, a silicide layer is provided on the light receiving unit 101, and the front surface is further covered with an insulating layer 109. Although not shown in the figure, a reflective film made of Al or the like may be further provided on the uppermost insulating layer 109 in order to increase the utilization efficiency of incident light.

【0008】[0008]

【発明が解決しようとする課題】さて、上述した赤外線
固体撮像装置のような固体撮像装置においては、画素数
を増やして空間分解能を高め解像力を向上させることが
一つの課題となっているが、固体撮像装置の撮像領域を
一定に保ったまま画素数を増やすと必然的に画素サイズ
は小さくなるため、それに応じて受光部サイズも小さく
なってしまい、光検出感度が落ちてしまうという問題が
生じる。そこで、この問題を解決するために、一画素に
おいて受光部が占める面積比(以下、開口率と称する)
を上げることにより、画素数を増やした際の光検出感度
の低下を防ぐようにすることが極めて重要である。
One problem with a solid-state imaging device such as the above-described infrared solid-state imaging device is to increase the number of pixels to increase the spatial resolution and improve the resolution. Increasing the number of pixels while keeping the imaging area of the solid-state imaging device constant inevitably reduces the pixel size, and accordingly, the size of the light receiving unit also decreases, causing a problem that the photodetection sensitivity decreases. . Therefore, in order to solve this problem, the area ratio occupied by the light receiving portion in one pixel (hereinafter, referred to as an aperture ratio).
It is extremely important to prevent the decrease in the photodetection sensitivity when the number of pixels is increased by increasing the number of pixels.

【0009】ここで、再び図3に戻って、従来の技術に
おける問題点について述べる。図3において、一画素の
範囲は太線で囲まれた領域Aと考えることができるが、
図より明らかなように、一画素Aは、受光部101,垂
直CCD102a,受光部101と垂直CCD102a
との間に設けられた素子分離領域107,及び同じ列の
受光部101間に設けられ、CCDの各電極同志を接続
するための配線が形成された素子分離領域108より構
成される。このうち、素子分離領域107と108はど
ちらも可能な限り狭くすることが望ましい。素子分離領
域107と108が狭くなれば、その分受光部101を
広くすることができ、これにより開口率が上がって画素
数を増やした時の光検出感度の低下を防ぐことができ
る。
Here, returning to FIG. 3 again, problems in the prior art will be described. In FIG. 3, the range of one pixel can be considered as a region A surrounded by a thick line,
As is clear from the figure, one pixel A includes the light receiving unit 101, the vertical CCD 102a, and the light receiving unit 101 and the vertical CCD 102a.
And an element isolation region 108 provided between the light receiving units 101 in the same column and provided with wiring for connecting the respective electrodes of the CCD. Of these, it is desirable that both of the element isolation regions 107 and 108 be as narrow as possible. As the element isolation regions 107 and 108 become narrower, the light receiving portion 101 can be made wider by that amount, thereby preventing a decrease in photodetection sensitivity when the aperture ratio is increased and the number of pixels is increased.

【0010】しかし、従来の技術による固体撮像装置で
は、配線のない素子分離領域107は素子分離の電気的
特性が許す範囲内で狭くすることができるが、CCD電
極同士を互いに接続する配線が設けられる素子分離領域
108については、領域107と同レベルまでは狭くで
きないのが実情である。その理由を以下説明する。
However, in the solid-state imaging device according to the prior art, the element isolation region 107 having no wiring can be narrowed within a range permitted by the electrical characteristics of element isolation. However, a wiring for connecting the CCD electrodes to each other is provided. In fact, the element isolation region 108 cannot be narrowed to the same level as the region 107. The reason will be described below.

【0011】前述したように、CCD第1電極103
a,103b及びCCD第2電極104a,104b
は、素子分離領域107,108の形成が終わった後、
受光部101を形成する前にポリシリコンを用いて形成
され、電極同志を接続する配線106a,106bもそ
れぞれ電極と同時にポリシリコンを用いて形成される。
ここで、ポリシリコンはAlなどの金属材料に比べると
抵抗が高く、このため配線材としてポリシリコンを利用
した場合は、配線幅をある程度大きくとることによって
配線抵抗を低減させる必要がある。具体例として、領域
108において、CCD第1電極同士及びCCD第2電
極同士を互いに接続するためのポリシリコン配線(10
6a,106b)の幅は、1.5〜2.0μm程度は必
要である。一方、領域107の分離幅としては、1.0
μm程度あれば充分な電気的特性を確保できる。従っ
て、配線のない素子分離領域107は1.0μm程度の
幅まで狭くすることができるが、ポリシリコン配線が形
成される素子分離領域108は1.5μm〜2.0μm
の幅が必要となり、領域108の幅は領域107と同じ
幅にまで狭くできない。
As described above, the CCD first electrode 103
a, 103b and CCD second electrodes 104a, 104b
After the formation of the element isolation regions 107 and 108 is completed,
Before the light receiving portion 101 is formed, it is formed using polysilicon, and the wirings 106a and 106b connecting the electrodes are also formed using polysilicon simultaneously with the electrodes.
Here, polysilicon has a higher resistance than a metal material such as Al. Therefore, when polysilicon is used as the wiring material, it is necessary to reduce the wiring resistance by increasing the wiring width to some extent. As a specific example, in the region 108, a polysilicon wiring (10) for connecting the CCD first electrodes and the CCD second electrodes to each other is used.
The width of 6a, 106b) needs to be about 1.5 to 2.0 μm. On the other hand, the separation width of the region 107 is 1.0
Sufficient electrical characteristics can be ensured if it is about μm. Accordingly, the element isolation region 107 having no wiring can be narrowed to a width of about 1.0 μm, while the element isolation region 108 in which the polysilicon wiring is formed has a width of 1.5 μm to 2.0 μm.
Is required, and the width of the region 108 cannot be reduced to the same width as the region 107.

【0012】すなわち、従来の技術においては、電荷転
送手段の各電極を接続するための配線を素子分離領域上
に形成していたので、配線が設けられる領域の分離幅を
大きくとらざるを得ず、その分だけ開口率の低下をひき
おこし、光検出感度が低下してしまうという問題があっ
た。
That is, in the prior art, the wiring for connecting the electrodes of the charge transfer means is formed on the element isolation region, so that the separation width of the region where the wiring is provided must be large. However, there is a problem that the aperture ratio is reduced by that much, and the light detection sensitivity is lowered.

【0013】この発明は、かかる点に鑑みてなされたも
のであり、開口率を向上させて高い光検出感度を得るこ
とのできる固体撮像装置及びその製造方法を提供するも
のである。
The present invention has been made in view of the above, and provides a solid-state imaging device capable of improving aperture ratio and obtaining high photodetection sensitivity, and a method of manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本願発明の固体撮像装置
は、半導体基板の一方の側の面に、前記半導体基板の他
方の側の面から入射する光を光電変換する複数の受光部
と、該受光部で発生した電荷を読み出すための垂直CC
Dと、該垂直CCDを駆動するための配線とが形成され
てなり、上記の課題を解決するために、前記受光部上
に、前記垂直CCDのCCD電極ごとに接続された前記
垂直CCDを駆動するための配線を有するものである。
好ましい態様では、前記配線の材質が前記CCD電極と
は別の材質である。
According to the present invention, there is provided a solid-state imaging device comprising: a plurality of light receiving units for photoelectrically converting light incident from one surface of a semiconductor substrate on the other surface; Vertical CC for reading out the charge generated in the light receiving section
D and wiring for driving the vertical CCD are formed, and in order to solve the above-described problem, the vertical CCD connected to each of the vertical CCD electrodes is driven on the light receiving section. In order to perform wiring.
In a preferred aspect, the material of the wiring is a different material from the CCD electrode.

【0015】本願発明の固体撮像装置の製造方法は、半
導体基板の一方の側の面に前記垂直CCDと前記受光部
とを形成した後に、前記受光部上に、前記垂直CCDの
CCD電極ごとに接続された前記垂直CCDを駆動する
ための配線を前記CCD電極とは別の材質で形成するも
のである。
In the method of manufacturing a solid-state imaging device according to the present invention, the vertical CCD and the light receiving section are formed on one surface of a semiconductor substrate, and then, on the light receiving section, each CCD electrode of the vertical CCD is provided. Wiring for driving the connected vertical CCD is formed of a different material from the CCD electrode.

【0016】[0016]

【作用】本願発明の固体撮像装置では、該垂直CCDを
駆動するための配線(前記垂直CCDのCCD電極ごと
に接続された配線)が前記垂直CCDの各CCD電極と
は別の層(絶縁層を介した上層)に形成されるので、各
CCD電極を接続する配線を受光部上の領域を含む撮像
領域内に自由に引きまわすことが可能である。従って、
受光部形成面にある素子分離領域は配線に関わりなく所
定の電気特性が得られる最小限の幅とすることができ、
固体撮像素子の開口率を高めることができる。
In the solid-state imaging device according to the present invention, wiring for driving the vertical CCD (wiring connected for each CCD electrode of the vertical CCD) is provided in a layer (insulating layer) different from each CCD electrode of the vertical CCD. Since the wiring is formed in the upper layer through the light-receiving section, the wiring connecting the respective CCD electrodes can be freely routed into the imaging area including the area on the light receiving section. Therefore,
The element isolation region on the light receiving portion forming surface can be a minimum width that can obtain predetermined electric characteristics regardless of wiring,
The aperture ratio of the solid-state imaging device can be increased.

【0017】また、本発明では、垂直CCDを駆動する
ための配線の面積は固体撮像装置の開口率には何等影響
しないわけであるから、配線幅を十分にとることがで
き、配線の電気抵抗値の引き下げ、製造の容易さという
点からも有利である。
Further, according to the present invention, since the area of the wiring for driving the vertical CCD does not affect the aperture ratio of the solid-state imaging device at all, the wiring width can be made sufficiently large and the electric resistance of the wiring can be increased. It is also advantageous in terms of lowering the value and ease of manufacture.

【0018】更に、本発明では、垂直CCDの各CCD
電極を結ぶ配線(第1電極同士結ぶ配線と第2電極同士
を結ぶ配線)を短絡させずに同一面内に設けることがで
きるので、従来(図3(c))のように配線を絶縁層を
介して積層する必要がない。また、本発明では、撮像素
子(受光部や必要に応じて設けられる種々の拡散領域)
形成後に配線が形成されるから、配線形成後に高温の熱
が加わることもない。以下に説明するような利点をもた
らす。
Furthermore, in the present invention, each of the vertical CCDs
The wiring connecting the electrodes (the wiring connecting the first electrodes and the wiring connecting the second electrodes) can be provided on the same plane without causing a short circuit, so that the wiring is formed by an insulating layer as in the conventional case (FIG. 3C). There is no need to laminate through. Further, in the present invention, the image pickup device (the light receiving portion and various diffusion regions provided as necessary)
Since the wiring is formed after the formation, high-temperature heat is not applied after the wiring is formed. This provides the advantages described below.

【0019】Al等の金属材料は電気抵抗が低いという
点では優れた配線材料であるが、ポリシリコン等に比べ
て耐熱性が低い上、配線及び絶縁層の厚さをポリシリコ
ン等に比べて非常に大きくとらなければならず、積層構
造をとることは製造上非常に難しい。例えば、ポリシリ
コンを用いる場合には配線の厚さを5000Å、絶縁層
(酸化膜)の厚さを2000Å程度にすれば良いのに対
して、Alの場合には、配線の厚さとして1μm、絶縁
層としてSiO2 膜を1μm程度も設けなくてはならな
い。しかるに、従来の固体撮像装置においては、電荷転
送手段の電極間を結ぶ配線をAl等の金属を用いて行な
うということ(周辺回路の配線にAlを用いることとは
全く別である)は全く考えられていなかった。
Although a metal material such as Al is an excellent wiring material in terms of low electric resistance, it has low heat resistance as compared with polysilicon and the like, and has a thinner wiring and insulating layer compared with polysilicon and the like. It must be very large, and it is very difficult to obtain a laminated structure in manufacturing. For example, in the case of using polysilicon, the thickness of the wiring may be set to about 5000 ° and the thickness of the insulating layer (oxide film) may be set to about 2000 °, whereas in the case of Al, the thickness of the wiring is set to 1 μm. A SiO 2 film of about 1 μm must be provided as an insulating layer. However, in the conventional solid-state imaging device, it is completely considered that the wiring connecting the electrodes of the charge transfer means is performed using a metal such as Al (which is completely different from using Al for the wiring of the peripheral circuit). Had not been.

【0020】これに対して、本発明では各電極を結ぶ配
線を積層構造とする必要がなく、高温の熱処理工程が終
了してから配線が形成されるので、電極間を結ぶ配線を
Al等の金属で構成することも可能となる。電気抵抗の
低い金属材料で電極間を配線することにより、固体撮像
装置の動作特性を改善できる。
On the other hand, in the present invention, it is not necessary to form the wiring connecting the electrodes into a laminated structure, and the wiring is formed after the high-temperature heat treatment step is completed. It can be made of metal. By wiring between the electrodes with a metal material having a low electric resistance, the operation characteristics of the solid-state imaging device can be improved.

【0021】[0021]

【実施例】以下、図面を用いて本発明の実施例について
説明する。図1(a)は、本発明実施例による赤外線固体
撮像装置の撮像領域の一部を拡大して示した平面図であ
り、図1(b) は図1(a) のAA’断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is an enlarged plan view showing a part of an imaging region of an infrared solid-state imaging device according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. is there.

【0022】図1において、各受光部1の列には電荷転
送手段(垂直CCD)2a,2bが併設され、各受光部
1は素子分離領域7,8で囲まれている。本実施例にお
ける素子分離領域7,8の幅は、何れも所定の電気特性
が得られる最小限の幅(1.0μm程度)に設定されて
いる。また、各垂直CCD2a,2bには第1電極3
a,3bと第2電極4a,4bが交互に設けられており
(図1(a) では第1電極に右上がりの斜線を、第2電極
に左上がりの斜線を付す)、同じ列の第1電極と第2電
極(3aと4a,3bと4b)の端部は、絶縁層9を介
して積層(この部分の積層構造は図示せず)されてい
る。
In FIG. 1, charge transfer means (vertical CCDs) 2 a and 2 b are provided in a row of each light receiving section 1, and each light receiving section 1 is surrounded by element isolation regions 7 and 8. The width of each of the element isolation regions 7 and 8 in this embodiment is set to a minimum width (about 1.0 μm) at which a predetermined electrical characteristic can be obtained. The first CCD 3a is provided on each of the vertical CCDs 2a and 2b.
a, 3b and the second electrodes 4a, 4b are provided alternately (in FIG. 1 (a), the first electrode is diagonally sloping to the right and the second electrode is diagonally sloping to the left). The ends of the first electrode and the second electrode (3a and 4a, 3b and 4b) are laminated via an insulating layer 9 (the laminated structure of this part is not shown).

【0023】各垂直CCD2a,2bの電極を結ぶ配線
6a,6bは、受光部形成面の上層(絶縁層9を介し
て)に、同じ行の電極の略中央部上を通るように受光部
上を横切るように設けられている。図1(b) は、第2電
極部4a,4bの配線構造を示すものであり、受光部
1,素子分離領域7及び第2電極4a,4bが形成され
た層上に絶縁層9を介して配線6bが形成され、絶縁層
9に設けられたスルーホール5を介して各第2電極4
a,4bと接続されている。第1電極の配線に部につい
ても図1(b) と同様であり、絶縁層9に設けられたスル
ーホール5を介して配線6aと第1電極3a,3bとが
接続されている。
Wirings 6a and 6b connecting the electrodes of the vertical CCDs 2a and 2b are provided on the light receiving portion on the light receiving portion forming surface (via the insulating layer 9) so as to pass over substantially the center of the electrodes in the same row. It is provided so as to cross. FIG. 1B shows a wiring structure of the second electrode portions 4a and 4b, and an insulating layer 9 is interposed on a layer on which the light receiving portion 1, the element isolation region 7, and the second electrodes 4a and 4b are formed. Wirings 6b are formed, and each second electrode 4 is formed through a through hole 5 provided in the insulating layer 9.
a, 4b. The part of the wiring of the first electrode is the same as that of FIG. 1B, and the wiring 6a and the first electrodes 3a and 3b are connected via the through holes 5 provided in the insulating layer 9.

【0024】次に図1の赤外線固体撮像装置の製造方法
について説明する。先ず最初に、半導体基板10表面に
薄い酸化膜を設け、この酸化膜を選択酸化して素子分離
領域7,8を形成する。前述したように、素子分離領域
7,8の幅はいずれも所定の電気特性が確保される必要
最小限の幅とする。
Next, a method of manufacturing the infrared solid-state imaging device shown in FIG. 1 will be described. First, a thin oxide film is provided on the surface of the semiconductor substrate 10, and this oxide film is selectively oxidized to form element isolation regions 7 and 8. As described above, the width of each of the element isolation regions 7 and 8 is set to the minimum necessary width for ensuring predetermined electrical characteristics.

【0025】素子分離領域7,8形成後、必要に応じて
不純物注入・拡散工程を行なった後、CCD第1電極3
a及び3bを、続いて、CCD第2電極4a及び4bを
ポリシリコンなどの電極材料を用い形成する。本発明に
おいては、この段階ですべての電極(3a,3b,4
a,4b)は孤立した状態であり、第1電極同士及び第
2電極同士は互いに接続されていない。
After the element isolation regions 7 and 8 are formed, an impurity implantation / diffusion step is performed as necessary, and then the CCD first electrode 3
a and 3b, and then the CCD second electrodes 4a and 4b are formed using an electrode material such as polysilicon. In the present invention, at this stage, all the electrodes (3a, 3b, 4)
a, 4b) are isolated states, and the first electrodes and the second electrodes are not connected to each other.

【0026】次いで、受光部となる領域上の薄い酸化膜
を除去して白金等のシリサイド層を設け、これにより受
光部1を形成する。しかる後、受光部1,素子分離領域
7,8及び第1及び第2電極3a,3b,4a,4b上
全体に絶縁層9を設け、各電極の略中央部に相当する箇
所にスルーホール5を穿設する。
Next, the thin oxide film on the region serving as the light receiving portion is removed to provide a silicide layer of platinum or the like, thereby forming the light receiving portion 1. Thereafter, an insulating layer 9 is provided on the entire light receiving portion 1, the element isolation regions 7, 8 and the first and second electrodes 3a, 3b, 4a, 4b, and a through hole 5 is formed at a location substantially corresponding to the center of each electrode. Drilling.

【0027】最後に、絶縁層9上に、第1電極3a,3
b同志を接続する配線6a及び第2電極4a,4b同志
を接続する配線6bを設け(図1(a) では配線6a,6
bにドットを付す)、図1の赤外線固体撮像装置を得
る。
Finally, on the insulating layer 9, the first electrodes 3a, 3
1b and a wiring 6b connecting the second electrodes 4a and 4b are provided (in FIG. 1A, the wirings 6a and 6b are provided).
b), and the infrared solid-state imaging device of FIG. 1 is obtained.

【0028】本実施例では、配線6a,6bをAlを用
いて形成するものとし、絶縁層9上にAlを堆積させ
(この時スルーホール5内にもAlが充填される)フォ
トリソグラフィ技術によってパターニングする。図1
(a) では、簡単のため配線6a,6bの幅はすべて同じ
として、直線状にパターニングしているが、配線の形状
自体は特に制限されるものではない。第1電極を結ぶ配
線6aと第2電極を結ぶ配線6bが短絡しないかぎり、
例えば部分的に幅の広い箇所を設ける等しても良い。
In this embodiment, the wirings 6a and 6b are formed by using Al, and Al is deposited on the insulating layer 9 (at this time, the through holes 5 are also filled with Al) by photolithography. Perform patterning. FIG.
In (a), for simplicity, the widths of the wirings 6a and 6b are all assumed to be the same, and are linearly patterned, but the shape of the wiring itself is not particularly limited. Unless the wiring 6a connecting the first electrode and the wiring 6b connecting the second electrode are short-circuited,
For example, a wide portion may be provided partially.

【0029】図には示されていないが、Alの反射膜を
設ける場合には、配線6a,6bを形成する前に絶縁層
9上面をAl膜で覆って反射膜とし、更に絶縁層を介し
て反射膜上に配線6a,6bを形成する。
Although not shown in the figure, when an Al reflective film is provided, the upper surface of the insulating layer 9 is covered with an Al film to form a reflective film before forming the wirings 6a and 6b, and further through the insulating layer. Thus, the wirings 6a and 6b are formed on the reflection film.

【0030】以上のようにして得られた赤外線固体撮像
装置において、図1(b) の紙面下方から光が入射すると
(受光部1形成面とは反対側から光が入射するから、受
光部1上に設けた配線6a,6bは光の入射を何等妨げ
ない)、入射光は受光部1で光電変換され、電荷が受光
部1に蓄えられる。次いで、第1電極にクロックパルス
を印加すると電荷が受光部1から第1電極3a,3b下
に転送され、更に第1電極3a,3b及び第2電極4
a,4bに順次クロックパルスを印加することにより、
図2で説明したように電荷が垂直CCDから水平CCD
に転送されて読み出される。
In the infrared solid-state imaging device obtained as described above, when light enters from below the paper surface of FIG. 1B (the light enters from the side opposite to the surface on which the light receiving unit 1 is formed, The wirings 6a and 6b provided above do not hinder the incidence of light at all), the incident light is photoelectrically converted by the light receiving unit 1, and the electric charge is stored in the light receiving unit 1. Next, when a clock pulse is applied to the first electrode, charges are transferred from the light receiving section 1 to below the first electrodes 3a, 3b, and further, the first electrode 3a, 3b and the second electrode 4
By sequentially applying clock pulses to a and 4b,
As described with reference to FIG.
And read out.

【0031】本実施例では、素子分離領域7,8の幅は
ともに所定の電気特性が得られる最小の幅に設定されて
いるので、配線を通すために領域8(図3(a) の108
に対応)の幅を大きくとらざるを得なかった従来に比べ
て、開口率が向上する。
In this embodiment, since the widths of the element isolation regions 7 and 8 are both set to the minimum width at which predetermined electric characteristics can be obtained, the region 8 (108 in FIG.
The aperture ratio is improved as compared with the related art in which the width of (corresponding to) must be large.

【0032】また、本実施例では、垂直CCDの電極同
志を接続する配線6a,6bをAlで形成しているの
で、電極同志を同じポリシリコンで接続していた従来に
比べて、電極間の接続抵抗が引き下げられる。これによ
り、高い動作周波数で垂直CCDを駆動する際の、クロ
ックパルスの歪を低減することができ、優れた動作特性
が得られる。
Further, in this embodiment, the wirings 6a and 6b for connecting the electrodes of the vertical CCD are formed of Al, so that the electrodes between the electrodes are connected to each other as compared with the related art in which the electrodes are connected by the same polysilicon. Connection resistance is reduced. Thereby, when driving the vertical CCD at a high operating frequency, distortion of the clock pulse can be reduced, and excellent operating characteristics can be obtained.

【0033】なお、上述した実施例では、配線6a,6
bをAlで形成しているるが、本発明において電荷転送
手段の各電極を接続する配線は、Al以外であっても良
いことは言うまでもなく、Al合金や金属シリサイド等
を用いても良いし、ポリシリコン等の非金属材料を用い
ても良い。ポリシリコンを用いて配線6a,6bを形成
する場合には、電極間の接続抵抗を低減するために配線
の幅を大きくとることが望ましい。
In the embodiment described above, the wirings 6a, 6a
Although b is formed of Al, in the present invention, it is needless to say that the wiring connecting each electrode of the charge transfer means may be other than Al, and an Al alloy, a metal silicide, or the like may be used. Alternatively, a non-metallic material such as polysilicon may be used. When the wirings 6a and 6b are formed using polysilicon, it is desirable to increase the width of the wiring in order to reduce the connection resistance between the electrodes.

【0034】また、上記の実施例では、電荷転送手段と
してCCDを用いているが、他の電荷転送手段、例えば
CSD(Charge Sweep Device )等を用いても良い。
Although the CCD is used as the charge transfer means in the above embodiment, other charge transfer means, for example, a CSD (Charge Sweep Device) may be used.

【0035】更に、以上においては、赤外線固体撮像装
置を例にとって説明してきたが、本発明は、赤外線を対
象とするものに限らず、可視光及び紫外光,X線等に感
度を有する裏面入射型の固体撮像装置にも適用できるも
のである。
Further, in the above description, an infrared solid-state imaging device has been described as an example. However, the present invention is not limited to an infrared solid-state imaging device, and a rear incident surface having sensitivity to visible light, ultraviolet light, X-rays, and the like. The present invention can also be applied to a solid-state imaging device of the type.

【0036】[0036]

【発明の効果】以上説明してきたように、本発明におい
ては、垂直CCDを駆動するための配線が、受光部上の
領域を利用して形成されるので、従来に比べて受光部面
積を拡大して開口率を高めることができ、固体撮像装置
の感度を高めることができる。また、本発明では、CC
D電極間の配線を電気抵抗の小さい金属材料で形成する
ことも容易であるので、高速動作させた場合の駆動パル
スの波形歪が生じにくいという効果も合わせもつ。
As described above, according to the present invention, the wiring for driving the vertical CCD is formed using the area on the light receiving section, so that the area of the light receiving section is enlarged as compared with the conventional case. Thus, the aperture ratio can be increased, and the sensitivity of the solid-state imaging device can be increased. In the present invention, CC
Since it is easy to form the wiring between the D electrodes with a metal material having a small electric resistance, there is also an effect that the waveform distortion of the driving pulse hardly occurs when the operation is performed at a high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a) は本発明実施例による固体撮像装置の
部分拡大平面図、図1(b) は図1(a) のAA’断面図で
ある。
FIG. 1A is a partially enlarged plan view of a solid-state imaging device according to an embodiment of the present invention, and FIG. 1B is a sectional view taken along the line AA ′ of FIG. 1A.

【図2】固体撮像装置の概略を説明するための説明図で
ある。
FIG. 2 is an explanatory diagram for describing an outline of a solid-state imaging device.

【図3】図3(a) は従来の固体撮像装置の部分拡大平面
図、図3(b) は図3(a) のBB’断面図、図3(c) は図
3(a) の固体撮像装置の配線部の部分断面図である。
3 (a) is a partially enlarged plan view of a conventional solid-state imaging device, FIG. 3 (b) is a sectional view taken along the line BB 'of FIG. 3 (a), and FIG. 3 (c) is a view of FIG. 3 (a). FIG. 3 is a partial cross-sectional view of a wiring portion of the solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 受光部 2a,2b 垂直CCD転送部 3a,3b 第1電極 4a,4b 第2電極 5 スルーホール 6a,6b Al配線 7,8 素子分離領域 9 絶縁層 DESCRIPTION OF SYMBOLS 1 Light-receiving part 2a, 2b Vertical CCD transfer part 3a, 3b 1st electrode 4a, 4b 2nd electrode 5 Through-hole 6a, 6b Al wiring 7, 8 Element isolation area 9 Insulation layer

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板の一方の側の面に、前記半導
体基板の他方の側の面から入射する光を光電変換する複
数の受光部と、該受光部で発生した電荷を読み出すため
の垂直CCDと、該垂直CCDを駆動するための配線と
が形成された固体撮像装置において、前記受光部上に、
前記垂直CCDのCCD電極ごとに接続された前記垂直
CCDを駆動するための配線を有することを特徴とする
固体撮像装置。
1. A plurality of light receiving sections for photoelectrically converting light incident from one side of the semiconductor substrate on one side of the semiconductor substrate, and a vertical section for reading out charges generated in the light receiving section. In a solid-state imaging device in which a CCD and wiring for driving the vertical CCD are formed,
A solid-state imaging device comprising wiring for driving the vertical CCD connected to each CCD electrode of the vertical CCD.
【請求項2】 前記配線の材質は、前記CCD電極とは
別の材質であることを特徴とする請求項1に記載された
固体撮像装置。
2. The solid-state imaging device according to claim 1, wherein a material of the wiring is different from a material of the CCD electrode.
【請求項3】 半導体基板の一方の側の面に、前記半導
体基板の他方の側の面から入射する光を光電変換する複
数の受光部と、該受光部で発生した電荷を読み出すため
の垂直CCDと、該垂直CCDを駆動するための配線と
を形成する固体撮像装置の製造方法において、前記垂直
CCDと前記受光部とを形成した後に、前記受光部上
に、前記垂直CCDのCCD電極ごとに接続された前記
垂直CCDを駆動するための配線を前記CCD電極とは
別の材質で形成することを特徴とする固体撮像装置の製
造方法。
3. A plurality of light receiving units for photoelectrically converting light incident from the other surface of the semiconductor substrate on one surface of the semiconductor substrate, and a vertical surface for reading out charges generated in the light receiving unit. In the method for manufacturing a solid-state imaging device in which a CCD and a wiring for driving the vertical CCD are formed, after forming the vertical CCD and the light receiving unit, the CCD electrodes of the vertical CCD are provided on the light receiving unit. A wiring for driving the vertical CCD connected to the CCD is formed of a material different from that of the CCD electrode.
JP3188244A 1991-07-03 1991-07-03 Solid-state imaging device and manufacturing method thereof Expired - Lifetime JP2838816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3188244A JP2838816B2 (en) 1991-07-03 1991-07-03 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3188244A JP2838816B2 (en) 1991-07-03 1991-07-03 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0513747A JPH0513747A (en) 1993-01-22
JP2838816B2 true JP2838816B2 (en) 1998-12-16

Family

ID=16220309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3188244A Expired - Lifetime JP2838816B2 (en) 1991-07-03 1991-07-03 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2838816B2 (en)

Also Published As

Publication number Publication date
JPH0513747A (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US7858433B2 (en) Photoelectric converting film stack type solid-state image pickup device, and method of producing the same
US5510285A (en) Method for fabricating CCD image sensors
JP2865083B2 (en) Solid-state imaging device and driving method thereof
JP3360512B2 (en) Solid-state imaging device and readout method thereof
KR100261128B1 (en) Solid-stage image sensor
KR101103089B1 (en) Solid-state imaging device, method of manufacturing solid-state imaging device and method of driving solid-state imaging device
JP2838816B2 (en) Solid-state imaging device and manufacturing method thereof
JPH06140618A (en) Solid-state image sensing element
JPH0130306B2 (en)
JPH05145855A (en) Solid-state image pickup device
JP3028823B2 (en) Charge coupled device and solid-state imaging device using the same
JP3426935B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JPH025473A (en) Solid state image sensor and manufacture thereof
JP3394878B2 (en) Method for manufacturing solid-state imaging device
JP3158284B2 (en) Charge transfer device and solid-state imaging device
JP2725459B2 (en) Solid-state imaging device and method of manufacturing the same
JP3134332B2 (en) Solid-state imaging device
JPS6346763A (en) Solid state image sensor and manufacture thereof
JP2531435B2 (en) Solid-state imaging device and manufacturing method thereof
JPH09219506A (en) Solid-state image sensor
JP2508507B2 (en) Solid-state imaging device
JP2739601B2 (en) Imaging device
JPS5818368Y2 (en) solid-state imaging device
JPH07106545A (en) Solid-state image sensing element
JP4384350B2 (en) Solid-state image sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071016

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13