JP2837993B2 - Plasma processing method and apparatus - Google Patents
Plasma processing method and apparatusInfo
- Publication number
- JP2837993B2 JP2837993B2 JP16091592A JP16091592A JP2837993B2 JP 2837993 B2 JP2837993 B2 JP 2837993B2 JP 16091592 A JP16091592 A JP 16091592A JP 16091592 A JP16091592 A JP 16091592A JP 2837993 B2 JP2837993 B2 JP 2837993B2
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- gas
- plasma processing
- porous body
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】この発明は、プラズマ処理方法、
および、この方法の実施に用いるプラズマ処理装置に関
する。The present invention relates to a plasma processing method,
Further, the present invention relates to a plasma processing apparatus used for performing the method.
【0002】[0002]
【従来の技術】プラズマを利用する被処理物の処理方法
が従来より様々な分野で応用されている。特に、プラズ
マが反応用ガスの導入を伴う反応性プラズマである場
合、薄膜形成や表面改質など効果的な利用が可能になる
ため、非常に有用である。ただ、従来のプラズマ処理方
法は、0.1〜10Torrの低圧下でのグロー放電プラズ
マによる処理であるために、低圧雰囲気の形成・制御が
行える装備が必要であり、、大面積処理も難しく、結果
的に製造コストも高い。2. Description of the Related Art A method of processing an object to be processed using plasma has been applied in various fields. In particular, when the plasma is a reactive plasma accompanied by introduction of a reaction gas, it is very useful because it can be effectively used for forming a thin film or modifying a surface. However, since the conventional plasma processing method is a process using glow discharge plasma under a low pressure of 0.1 to 10 Torr, equipment that can form and control a low-pressure atmosphere is required, and large-area processing is difficult. As a result, manufacturing costs are high.
【0003】そこで、低圧下ではなく大気圧付近の圧力
下で生起したグロー放電プラズマを用いて処理を行う方
法が提案されている(特開平1−306569号公報、
特開平2−15171号公報)。これらの方法は、低圧
雰囲気の形成・制御用の装備が不要であるため、大面積
処理の実現や製造コストの低減が期待できるのである
が、下記の問題がある。In view of this, a method has been proposed in which processing is performed using glow discharge plasma generated under a pressure near the atmospheric pressure instead of under a low pressure (Japanese Patent Laid-Open No. 1-306569,
JP-A-2-15171). Since these methods do not require equipment for forming and controlling a low-pressure atmosphere, realization of large-area processing and reduction of manufacturing cost can be expected, but have the following problems.
【0004】プラズマ自体が不均一であり、均一な処理
が出来ないという問題があるのである。例えば、被処理
物の置く位置によって処理の程度が異なったり、大面積
処理の場合、全面に均一な処理が出来なかったりするの
である。つまり、従来の大気圧付近でのグロー放電プラ
ズマを用いる場合、図6,7にみるように、ガスが、誘
電体119が前にある上電極111と下電極112の間
に設置された環状管113の長手方向に沿って順に開け
られた孔114から吹き出されるのであるが、孔114
とガス供給管115からの距離が各孔114ごとで違っ
ており、ガスの吹き出し圧力が一定せず、導入するガス
の圧力が位置によって違って不均一となるため均一なプ
ラズマにならないのである。プラズマが揺らぎ、グロー
放電に筋が出た不均一な状態になり、被処理物116の
置く位置によって処理程度が違うなどの不都合が起こる
のである。There is a problem that the plasma itself is non-uniform, so that uniform processing cannot be performed. For example, the degree of processing varies depending on the position of the object to be processed, or in the case of large-area processing, uniform processing cannot be performed over the entire surface. That is, in the case of using the conventional glow discharge plasma near the atmospheric pressure, as shown in FIGS. 6 and 7, the gas is supplied to the annular tube provided between the upper electrode 111 and the lower electrode 112 in front of the dielectric 119. It is blown out from a hole 114 which is sequentially opened along the longitudinal direction of the hole 113.
And the distance from the gas supply pipe 115 differs for each hole 114, the gas blowing pressure is not constant, and the pressure of the gas to be introduced varies depending on the position, so that uniform plasma is not obtained. The plasma fluctuates, causing a glow discharge to have a streak-like and non-uniform state, and inconveniences such as a different degree of processing depending on a position where the object 116 is placed are caused.
【0005】この導入されるガスの圧力の不均一を改善
するために、図8にみるように、上電極111に多数の
通気孔120を設け、この通気孔120よりガスを導入
するようにすることが提案されている(特開昭56−1
69116号公報、特開平2−50969号公報)。し
かし、この改善策でも未だ十分ではない。被処理物では
通気孔の真下となる位置とそれ以外の位置とでは処理の
程度に顕著な差が出る。その結果、例えば、図9に示す
上電極111の通気孔120のバターンと同じパターン
の斑点117が、図10にみるように、被処理物116
の表面に生じてしまうことになる。これは、通気孔の真
下に出来るガスの噴出経路とそれ以外の所ではプラズマ
密度(イオンやラジカルの濃度)が異なることと、通気
孔より噴出したガスが被処理物の表面に直に当たること
に起因している。ガスの噴出経路とそれ以外の所ではプ
ラズマ密度に差があって、図11にみるようにグロー放
電の縦縞119となってあらわれる。In order to improve the unevenness of the pressure of the gas to be introduced, as shown in FIG. 8, a large number of air holes 120 are provided in the upper electrode 111, and the gas is introduced from the air holes 120. (Japanese Patent Application Laid-Open No. S56-1)
6 9116 and JP Laid-Open No. 2-50969). But this remedy is still not enough. There is a remarkable difference in the degree of processing between the position just below the air hole and the other position in the processing object. As a result, for example, spots 117 having the same pattern as the pattern of the vent hole 120 of the upper electrode 111 shown in FIG.
Will occur on the surface. This is due to the difference in plasma density (concentration of ions and radicals) between the gas ejection path formed just below the vent and the rest, and the fact that the gas ejected from the vent directly hits the surface of the workpiece. Is due. There is a difference in plasma density between the gas ejection path and other places, and as shown in FIG. 11, vertical stripes 119 of glow discharge appear.
【0006】[0006]
【発明が解決しようとする課題】この発明は、上記事情
に鑑み、低圧雰囲気の形成・制御用の装備が不要であ
り、処理の不均一が解消でき、適切な大面積処理と製造
コストの低減が実現できるプラズマ処理方法とこれを実
施する装置を提供することを課題とする。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention does not require equipment for forming and controlling a low-pressure atmosphere, can eliminate non-uniform processing, and can appropriately process large areas and reduce manufacturing costs. It is an object of the present invention to provide a plasma processing method capable of realizing the above and an apparatus for performing the same.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するた
め、この発明にかかるプラズマ処理方法は、対向して設
置された一対の電極の間に大気圧付近の圧力下で生起さ
せられたプラズマであって、前記電極の少なくとも一方
の電極の他方の電極に臨む面に開口した通気孔からのガ
ス導入を伴うプラズマにより、被処理物の表面を処理す
るプラズマ処理方法において、前記通気孔が開口する面
の上に多孔質体を設けておき、通気孔からのガスが前記
多孔質体を通ってプラズマに入るようにしており、ま
た、この方法を実施する装置は、所定の距離を隔てて対
向配置された一対の電極を備えており、前記電極の少な
くとも一方の電極の他方の電極に臨む面には多数の通気
孔が開口していて、両電極の間に大気圧付近の圧力下で
生起させられ前記通気孔からのガス導入を伴うプラズマ
で被処理物を処理するようになっているプラズマ処理装
置において、前記通気孔が開口する面の上に多孔質体が
設けられていて、前記通気孔からのガスが多孔質体を通
ってプラズマに入る構成にしている。In order to solve the above-mentioned problems, a plasma processing method according to the present invention uses plasma generated between a pair of electrodes installed opposite to each other under a pressure near atmospheric pressure. In a plasma processing method for processing a surface of an object to be processed by plasma accompanying gas introduction from a ventilation hole opened on a surface of at least one of the electrodes facing the other electrode, the ventilation hole is opened. A porous body is provided on the surface so that gas from the vent enters the plasma through the porous body, and an apparatus for performing this method is opposed to the apparatus at a predetermined distance. It has a pair of electrodes arranged, and a large number of air holes are opened on a surface of at least one of the electrodes facing the other electrode. Let the ventilation In a plasma processing apparatus configured to process an object to be processed with plasma accompanied by introduction of gas from a porous body is provided on a surface on which the vent hole is opened, and gas from the vent hole is provided. It is configured to enter the plasma through the porous body.
【0008】以下、この発明を具体的に説明する。この
発明におけるプラズマの種類としては、大気圧付近の圧
力下、プラズマ生起用ガス中でのグロー放電の発生に伴
って生起するグロー放電プラズマが挙げられる。大気圧
付近の圧力としては、普通は、200〜1500mmHg
の範囲の圧力であり、好ましくは500〜1000mmH
g、より好ましくは700〜850mmHgの範囲の圧力
である。200mmHgを下回ったり、1500mmHgを
越えると、大気との圧力差が増すため、大気圧付近の圧
力であることに起因する利点が薄れてくる。具体的に
は、200mmHg未満だと反応槽を気密なものにしない
と空気が流入し処理できないという不都合が生じるし、
1500mmHgを越えるとプラズマが不安定になり易い
という不都合が生じる。Hereinafter, the present invention will be described specifically. Examples of the type of plasma in the present invention include glow discharge plasma that is generated in association with generation of a glow discharge in a plasma generating gas under a pressure near atmospheric pressure. As the pressure near the atmospheric pressure, usually, 200 to 1500 mmHg
, Preferably 500-1000 mmH
g, more preferably a pressure in the range of 700 to 850 mmHg. If the pressure is lower than 200 mmHg or exceeds 1500 mmHg, the pressure difference from the atmosphere increases, and the advantage due to the pressure near the atmospheric pressure is reduced. More specifically, if the pressure is less than 200 mmHg, the inflow of air cannot be performed unless the reaction tank is airtight, and the inconvenience of processing cannot be achieved.
If it exceeds 1500 mmHg, there is a disadvantage that the plasma tends to be unstable.
【0009】プラズマに導入されるガスは、プラズマ生
起の容易なヘリウムガスが挙げられる。プラズマが反応
性プラズマである場合には、プラズマに反応用ガスが導
入されるのであるが、反応用ガスとしては、酸素ガス、
4フッ化炭素(CF4 )ガス、水素ガス、アルゴンガス
(Ar)、窒素ガス(N2 )、反応性モノマーなどのガ
スが挙げられ、普通は、前記ヘリウムガスに混合された
形で導入される。ヘリウムガスがキャリアガスの働きを
するのである。この場合は、ヘリウムガスのペニング効
果で混合するガスのプラズマ化が促され、ヘリウムガス
の準安定状態のエネルギーが他のガスに比べて非常に高
く(約20ev)てライフタイムが非常に長いため、大
気圧下でもプラズマが安定し、処理を円滑に進められ
る。The gas introduced into the plasma includes helium gas, which easily generates plasma. When the plasma is a reactive plasma, a reaction gas is introduced into the plasma. As the reaction gas, oxygen gas,
Examples of such gases include carbon tetrafluoride (CF 4 ) gas, hydrogen gas, argon gas (Ar), nitrogen gas (N 2 ), and reactive monomers, and are usually introduced in a form mixed with the helium gas. You. Helium gas acts as a carrier gas. In this case, the gas to be mixed is turned into plasma by the Penning effect of the helium gas, and the energy of the metastable state of the helium gas is very high (about 20 ev) as compared with other gases, so that the lifetime is very long. The plasma is stable even under the atmospheric pressure, and the processing can be smoothly performed.
【0010】反応用ガスである混合ガスでのヘリウムガ
スと他のガスの混合割合は、普通、体積比で99.8:
0.2〜75:25程度の範囲とするが、この範囲に限
らない。この発明における多孔質体としては、多孔質ガ
ラス、多孔質セラミックス、フィルター用に使われるガ
ラス繊維集合体、高分子繊維集合体などの誘電体材から
なる多孔質体(多孔質誘電体)が挙げられる。多孔質体
が誘電体材の場合は生起するグロー放電を広げる作用が
あるために好ましいが、多孔質体は金属材からなる多孔
質金属体であってもよい。多孔質体の厚みは、普通、
0.5〜15mm程度である。The mixing ratio of the helium gas and the other gas in the mixed gas that is the reaction gas is usually 99.8:
The range is about 0.2 to 75:25, but is not limited to this range. Examples of the porous body in the present invention include porous bodies (porous dielectrics) made of dielectric materials such as porous glass, porous ceramics, glass fiber aggregates used for filters, and polymer fiber aggregates. Can be When the porous body is a dielectric material, it is preferable because it has a function of expanding the generated glow discharge. However, the porous body may be a porous metal body made of a metal material. The thickness of the porous body is usually
It is about 0.5 to 15 mm.
【0011】これらの多孔質体では極めて多数の微細孔
があってガス透過性が備わっており、誘電体表面では各
微細孔がランダムな方向に向いて開口した状態となって
いる。そのため、透過したガスは表面全体から特定の方
向に余り偏らずに吹き出すことになる。この多孔質体に
おける微細孔の平均孔径は500μm以下が好ましい。
500μmを超すと導入するガスの流れが全体に分散し
均一化させる作用が弱くなり、均一なプラズマ形成が困
難になる傾向が出てくるからである。ただ、平均孔径が
余り小さいと過大な圧力損失で多孔質体が破損したり、
適当なガス流量が確保するのが難しくなったりするた
め、平均孔径は0.2μm未満にはならないことが望ま
れる。[0011] These porous bodies have an extremely large number of micropores and have gas permeability, and the micropores are opened in random directions on the dielectric surface. Therefore, the permeated gas is blown out from the entire surface in a specific direction with little deviation. The average pore diameter of the fine pores in this porous body is preferably 500 μm or less.
If it exceeds 500 μm, the flow of the gas to be introduced is dispersed throughout and the effect of making the gas uniform is weakened, and it tends to be difficult to form a uniform plasma. However, if the average pore size is too small, the porous body may be damaged by excessive pressure loss,
Since it becomes difficult to secure an appropriate gas flow rate, it is desired that the average pore diameter does not become less than 0.2 μm.
【0012】続いて、この発明のプラズマ処理方法を実
施する装置を図面を参照しながら説明する。図1に示す
プラズマ処理装置は、反応槽1を備え、この槽壁にはガ
ス導入口11およびガス排出口12が設けられており、
槽内には上部電極2と下部電極3の二つの平板状電極が
所定距離を隔てて対面するようにして平行に設置されて
いる。下部電極3の表面には固体誘電体6が置かれてい
る。上部電極2は交流電源5の出力に接続され、下部電
極3は接地されている。Next, an apparatus for performing the plasma processing method of the present invention will be described with reference to the drawings. The plasma processing apparatus shown in FIG. 1 includes a reaction tank 1, and a gas inlet 11 and a gas outlet 12 are provided in the tank wall.
Two flat electrodes, an upper electrode 2 and a lower electrode 3, are installed in the tank in parallel so as to face each other at a predetermined distance. A solid dielectric 6 is placed on the surface of the lower electrode 3. The upper electrode 2 is connected to the output of an AC power supply 5, and the lower electrode 3 is grounded.
【0013】上部電極2の内部には流路15が設けられ
ているとともに上部電極2の下部電極3に臨む面には多
数の通気孔16が開口している。そして、この上部電極
2の通気孔16が開口する面の上には多孔質体としての
多孔質誘電体20が配置されている。その結果、ガス流
入口11から入ったガスは通気孔16から多孔質誘電体
20を透過してプラズマに導入されることになる。な
お、下部電極3の内部にはヒータ19が設けられてお
り、被処理物4の温度を自由に調節できるようになって
いる。この装置の場合、上部電極2が多数の通気孔を設
けた前面板2aとガス流路15用の裏面板2bとからな
る。A flow path 15 is provided inside the upper electrode 2 and a number of ventilation holes 16 are opened on a surface of the upper electrode 2 facing the lower electrode 3. A porous dielectric 20 as a porous body is disposed on a surface of the upper electrode 2 where the ventilation holes 16 are opened. As a result, the gas entering from the gas inlet 11 passes through the porous dielectric 20 through the vent 16 and is introduced into the plasma. Note that a heater 19 is provided inside the lower electrode 3 so that the temperature of the workpiece 4 can be freely adjusted. In the case of this device, the upper electrode 2 comprises a front plate 2a provided with a large number of ventilation holes and a back plate 2b for the gas flow path 15.
【0014】処理の際には、まず、プラズマ生起ガスと
キャリアガスを兼ねるヘリウムガスをガス流入口11か
ら導入するとともに交流電源5を稼働して交流電力の供
給を開始する。そうすると、電極2,3の間にグロー放
電が発生してプラズマが生起するので、その後、反応に
あずかる適当な種類の反応用ガスをヘリウムガスに混入
する。そうすると、反応用ガスはヘリウムガスと共に通
気孔16から多孔質誘電体20を透過してプラズマに導
入されるため、プラズマは反応性プラズマとなる。この
反応性プラズマで被処理物4の表面処理等を行うように
する。At the time of processing, first, a helium gas which also serves as a plasma generating gas and a carrier gas is introduced from the gas inlet 11 and the AC power supply 5 is operated to start supplying AC power. Then, a glow discharge is generated between the electrodes 2 and 3 to generate plasma. Thereafter, an appropriate type of reaction gas participating in the reaction is mixed into the helium gas. Then, the reaction gas is introduced into the plasma together with the helium gas through the porous dielectric 20 through the ventilation hole 16, so that the plasma becomes a reactive plasma. This reactive plasma is used to perform a surface treatment or the like of the workpiece 4.
【0015】また、図2は、この発明にかかる他のプラ
ズマ処理装置をあらわす。この装置は連続処理に適して
いる。なお、図2において、図1と同じ番号を付けたも
のは図1の装置と同じものであるため、説明は省略す
る。図2のプラズマ処理装置は、反応槽1内を通るベル
トコンベア50を備えており、被処理物4はコンベア5
0に乗せられて上部電極2と下部電極3の間に搬入さ
れ、処理の後、やはり、コンベア50に乗せられて搬出
されると同時に次の被処理物4が上部電極2と下部電極
3の間に搬入されるようになっている。ボンベ51,5
2のヘリウムガスや反応用ガスが必要に応じて混合器5
3で混合され配管54で送り込まれる。FIG. 2 shows another plasma processing apparatus according to the present invention. This device is suitable for continuous processing. In FIG. 2, the components denoted by the same reference numerals as those in FIG. 1 are the same as those in FIG. The plasma processing apparatus of FIG. 2 includes a belt conveyor 50 that passes through the inside of the reaction tank 1, and the workpiece 4 is
0, is carried between the upper electrode 2 and the lower electrode 3, and after the treatment, is again carried on the conveyor 50, and at the same time, the next object to be processed 4 is placed on the upper electrode 2 and the lower electrode 3. It is to be carried in between. Cylinder 51,5
2 helium gas or reaction gas as needed.
The mixture is mixed at 3 and sent through a pipe 54.
【0016】なお、使用される交流電源5の周波数は、
特に限定されるものではないが、通常、100Hz〜20
MHz程度である。周波数が高いほど処理時間が短くてす
むが、被処理物4の加熱作用が強まるため、冷却の必要
性が出てきたりもする。The frequency of the AC power supply 5 used is
Although not particularly limited, usually, 100 Hz to 20 Hz
It is on the order of MHz. The higher the frequency, the shorter the processing time, but the stronger the heating action of the workpiece 4, the greater the need for cooling.
【0017】[0017]
【作用】この発明の場合、処理用プラズマが大気圧付近
の圧力下で生起させられたプラズマ(大気圧プラズマ)
であるため、低圧雰囲気の形成・制御用の装備が不要で
あり、大面積処理の実現および製造コストの低減が図り
易い。プラズマが存在する処理空間が大気圧付近の圧力
である場合、処理空間を広く採り易くて、一度に広い面
積を処理するのに適するだけでなく、被処理物の処理空
間への搬入および処理空間からの搬出が簡単かつ迅速に
行えるようになり、連続処理も容易となる。また、被処
理物として、揮発成分を含んだものや低融点物を扱うこ
とも可能となる。According to the present invention, the processing plasma is generated under a pressure near the atmospheric pressure (atmospheric pressure plasma).
Therefore, equipment for forming and controlling the low-pressure atmosphere is not required, and large-area processing can be realized and manufacturing costs can be easily reduced. When the processing space in which the plasma exists is at a pressure near the atmospheric pressure, the processing space can be easily widened, which is suitable not only for processing a large area at one time, but also for loading the processing object into the processing space and processing space. Can be easily and quickly carried out, and continuous processing is also facilitated. In addition, it is also possible to handle a substance containing a volatile component or a low-melting substance as a treatment object.
【0018】そして、この発明では、従来とは異なり、
プラズマの均一性が高いため、被処理物に均一な処理が
施せるようになり、大面積処理でも全面に同じ程度で処
理が施せるようになる。適切な大面積処理が実現できる
のである。低圧系プラズマと違い大気圧プラズマは、全
体の圧力が均一でないとプラズマ自身が均一にならな
い。大気圧プラズマの場合、ガスの拡散が少なくて平均
自由行程が短いため、圧力の影響を受け易く、圧力を厳
密に均一にしないと均一性の高いプラズマにならない。
圧力の高い箇所はガス密度が高く、プラズマ密度(イオ
ンやラジカルの濃度)も必然的に高くなり、結果的に不
均一になるのである。In the present invention, unlike the prior art,
Since the uniformity of the plasma is high, uniform processing can be performed on the object to be processed, and processing can be performed to the same extent even in a large-area processing. Appropriate large-area processing can be realized. Unlike low-pressure plasma, atmospheric pressure plasma does not become uniform unless the overall pressure is uniform. In the case of the atmospheric pressure plasma, since gas diffusion is small and the mean free path is short, the plasma is easily affected by the pressure, and unless the pressure is strictly made uniform, the plasma does not become highly uniform.
High pressure areas have a high gas density and a high plasma density (ion and radical concentrations), which results in non-uniformity.
【0019】一方、従来、電極の通気孔の真下方向はガ
ス吹き出し方向であるため周りよりも反応用ガスの流れ
が強いのであるが、反応用ガスの流れが早い箇所は遅い
箇所より圧力が高くなるので、ガス流れの不均一で圧力
の不均一が起こる。反応用ガスの流れが均一でないと電
極間全体の圧力が均一にならないのである。この発明の
場合は、多孔質体では極めて多数の微細孔がランダムな
方向に向いて開口しており、反応用ガスは広く全面から
万遍なく方向の偏りも少ない状態で裏面から入ったガス
が裏面から吹き出すため圧力が均一となり、プラズマ自
体が均一なものになる。その結果、処理が均一になるの
である。薄膜形成の場合には、厚みが均一な膜が形成出
来るし、表面改質の場合には、全面にわたって強弱のな
い同じ程度の改質が行えるようになる。On the other hand, in the past, the flow of the reaction gas is stronger than that of the surroundings because the gas blowout direction is just below the vent of the electrode. Therefore, uneven gas flow and uneven pressure occur. If the flow of the reaction gas is not uniform, the entire pressure between the electrodes will not be uniform. In the case of the present invention, a very large number of micropores are opened in a random direction in the porous body, and the gas for reaction is such that gas entering from the rear surface is widely distributed from all over the surface with little deviation in direction. Since the gas is blown out from the back surface, the pressure becomes uniform, and the plasma itself becomes uniform. As a result, the processing becomes uniform. In the case of thin film formation, a film having a uniform thickness can be formed, and in the case of surface reforming, the same level of reforming can be performed over the entire surface without any strength.
【0020】それに、ガスは多孔質体を通る際に圧力損
失を受け、ガスが被処理物に直に衝突し難くなることも
均一な処理に寄与していると推察される。ガスが被処理
物に直に衝突すると、被処理物に、ラジカルが強制的に
吸着される形となり、これが処理の不均一を生む一因と
考えられるからである。また、多孔質体が前面にある電
極は汚れ難いし、大気圧下、電極の前面に設置されてい
る多孔質体は交換も容易である。Further, it is presumed that the gas receives a pressure loss when passing through the porous body, and the gas hardly collides directly with the object to be processed, which also contributes to uniform processing. This is because, when the gas directly collides with the object to be processed, radicals are forcibly adsorbed to the object to be processed, and this is considered to be a cause of non-uniform processing. Further, the electrode having the porous body on the front surface is not easily stained, and the porous body provided on the front surface of the electrode under the atmospheric pressure can be easily replaced.
【0021】[0021]
【実施例】以下、この発明の実施例を説明する。この発
明は、下記の実施例に限らない。 −実施例1− 実施例1では、図1に示す構成のプラズマ処理装置を用
い、スライドガラス(被処理物)の表面に酸化ケイ素薄
膜を形成した。スライドガラス(ソーダライムガラス
製)は、直径210mm、厚み1.5mmのものであ
り、温度は100℃である。Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments. Example 1 In Example 1, a silicon oxide thin film was formed on the surface of a slide glass (object to be processed) using the plasma processing apparatus having the configuration shown in FIG. The slide glass (made of soda lime glass) has a diameter of 210 mm and a thickness of 1.5 mm, and has a temperature of 100 ° C.
【0022】プラズマ処理装置での電極間隔は20mm
とし,多孔質体には多孔質誘電体であるフィルター用ガ
ラス繊維集合体(厚み0.5mm,平均孔径500μ
m)を使った。プラズマに導入するガスは、He(15
00ccm)と反応用ガスであるテトラエトキシシラン
(1.95×10−2ccm)の混合ガスであり、大気
圧下、グロー放電プラズマを生起させて、約300Å/
分の成膜速度で薄膜形成を行った。交流電源の周波数は
15kHz、供給電力は50Wである。The electrode spacing in the plasma processing apparatus is 20 mm
The porous body is made of a glass fiber aggregate for a filter which is a porous dielectric (thickness 0.5 mm, average pore diameter 500 μm).
m). The gas introduced into the plasma is He (15
00 ccm) and a reaction gas of tetraethoxysilane (1.95 × 10 −2 ccm), and a glow discharge plasma is generated under atmospheric pressure to produce a gas of about 300 ° C./cm 2.
It was thin film formation at a minute deposition rate. The frequency of the AC power supply is 15 kHz, and the supply power is 50 W.
【0023】プラズマは図3に示すような均一な状態と
なり、図4にみるように、スライドガラス24に厚みの
均一な薄膜25が形成できた。薄膜25は均一な干渉色
を示していた。膜厚分布の測定結果を図5に実線で示
す。厚みのバラツキは±0.01μmの範囲におさまっ
ていた。厚みバラツキ範囲は、最大膜厚値および最小膜
厚値と平均膜厚値の差で求めた。The plasma was in a uniform state as shown in FIG. 3, and a thin film 25 having a uniform thickness was formed on the slide glass 24 as shown in FIG. The thin film 25 showed a uniform interference color. The measurement result of the film thickness distribution is shown by a solid line in FIG. The variation in thickness was within the range of ± 0.01 μm. The thickness variation range was determined from the difference between the maximum and minimum film thickness values and the average film thickness value.
【0024】−実施例2− 実施例1において、多孔質体として、フィルター用ガラ
ス繊維集合体(厚み1.0mm,平均孔径10μm)を
使った他は、同様にして薄膜形成を行った。プラズマの
状態は実施例1の場合よりも若干であるが色が薄かっ
た。プラズマは筋のない均一なものであり、膜厚みも均
一であった。成膜速度は約150Å/分であった。Example 2 A thin film was formed in the same manner as in Example 1, except that a glass fiber assembly for a filter (thickness: 1.0 mm, average pore diameter: 10 μm) was used as the porous body. The state of the plasma was slightly different from that of Example 1, but the color was faint. The plasma was uniform without streaks, and the film thickness was also uniform. The film formation rate was about 150Å / min.
【0025】−実施例3− 実施例1において、多孔質体に多孔質誘電体である濾過
板用多孔質ガラス(厚み7mm,平均孔径40〜100
μm)を使った他は、同様にして薄膜形成を行った。プ
ラズマの状態は実施例1と同じ程度であり、筋のない均
一なものであって、膜厚みも、バラツキが±0.02μ
mの範囲におさまっており、均一であった。なお、成膜
速度は約200Å/分であった。Example 3 In Example 1, the porous body was made of porous glass for a filter plate (thickness: 7 mm, average pore diameter: 40 to 100), which was a porous dielectric.
μm), except that a thin film was formed. The state of the plasma was about the same as in Example 1, was uniform without streaks, and the film thickness had a variation of ± 0.02 μm.
m and was uniform. Incidentally, the film formation rate was about 200 Å / min.
【0026】−実施例4− 実施例4では、図1に示す構成のプラズマ処理装置を用
い、テフロンシート(被処理物)の表面改質を行った。
テフロンシートは、タキロン製で縦横60mm、厚み
1.0mmであり、温度は常温とした。プラズマ処理装
置での電極間隔は10mmとし,多孔質体には多孔質誘
電体であるフィルター用ガラス繊維集合体(厚み0.5
mm、平均孔径500μm)を使った。プラズマに導入
するガスは、He(5000ccm)と反応用ガスであ
る酸素ガス(100ccm)の混合ガスであり、大気圧
下、グロー放電プラズマを生起させて、処理を行った。
交流電源の周波数は15kHz、供給電力は100Wであ
る。Example 4 In Example 4, the surface of a Teflon sheet (object to be processed) was modified using a plasma processing apparatus having the structure shown in FIG.
The Teflon sheet was made of Takilon and had a length and width of 60 mm and a thickness of 1.0 mm, and the temperature was room temperature. The electrode spacing in the plasma processing apparatus was 10 mm, and the porous body was a glass fiber assembly for a filter (thickness 0.5
mm, average pore diameter 500 μm). The gas introduced into the plasma was a mixed gas of He (5000 ccm) and oxygen gas (100 ccm), which was a reaction gas, and glow discharge plasma was generated under atmospheric pressure to perform the treatment.
The frequency of the AC power supply is 15 kHz, and the supply power is 100 W.
【0027】プラズマの状態は実施例1と同じ程度であ
り、筋のない均一なものであった。この後、エポキシ樹
脂含浸ガラス布プリプレグ(厚み0.1mm 松下電工
製R1661)を、上記テフロンシートと銅箔(厚み3
5μm)の間に挟み、熱プレス成形により、170℃、
40kgf/cm2 の条件下で120分間、加熱加圧成
形し積層接着させた。成形品を1cm幅に切断し、ピー
ル強度を測定した。測定結果は0.3kgf/cm2 で
あった。The state of the plasma was almost the same as in Example 1, and was uniform without streaks. Thereafter, an epoxy resin-impregnated glass cloth prepreg (R1661 manufactured by Matsushita Electric Works) having a thickness of 0.1 mm was applied to the Teflon sheet and a copper foil (thickness: 3).
5 μm), and 170 ° C.
It was heated and pressed under the conditions of 40 kgf / cm 2 for 120 minutes and laminated and bonded. The molded article was cut into a width of 1 cm, and the peel strength was measured. The measurement result was 0.3 kgf / cm 2 .
【0028】−比較例1− 実施例1において、多孔体を用いなかった他は、同様に
して薄膜形成を行った。プラズマの状態は実施例1の場
合と異なり、縦筋があらわれ均一なものではなかった。
ガラス表面には不均一な干渉縞が斑点状に認められた。Comparative Example 1 A thin film was formed in the same manner as in Example 1 except that the porous body was not used. The state of the plasma was different from that of Example 1 and a vertical streak appeared and was not uniform.
Non-uniform interference fringes were spotted on the glass surface.
【0029】膜厚分布の測定結果を図5に一点鎖線で示
す。厚みのバラツキは±0.1μmもあり、凹凸が大き
く均一でなかった。 −比較例2− 実施例1において、多孔質体を用いず、ガス導入を図6
に示す環状管113を用いた他は、同様にして薄膜形成
を行った。The measurement result of the film thickness distribution is shown by a dashed line in FIG. The variation in thickness was as large as ± 0.1 μm, and the unevenness was large and not uniform. Comparative Example 2 In Example 1, gas introduction was performed without using a porous body.
A thin film was formed in the same manner except for using the annular tube 113 shown in FIG.
【0030】プラズマの状態は実施例1の場合と異な
り、筋があらわれ均一なものではなかった。膜厚分布の
測定結果を図5に一点鎖線で示す。厚みのバラツキは±
0.1μm程度もあり、均一ではなかった。 −比較例3− 実施例4において、多孔質誘電体を用いなかった他は、
同様にしてテフロンシートの改質処理を行った。The state of the plasma was different from that of Example 1 and streaks appeared and were not uniform. The measurement result of the film thickness distribution is shown by a dashed line in FIG. Variation in thickness is ±
It was about 0.1 μm and was not uniform. -Comparative Example 3-In Example 4, except that the porous dielectric was not used,
The Teflon sheet was modified in the same manner.
【0031】同様にして、ピール強度を測定したが、
0.05kgf/cm2 と実施例に比べて遙に劣るもの
であった。Similarly, the peel strength was measured.
It was 0.05 kgf / cm 2 , which was far inferior to the examples.
【0032】[0032]
【発明の効果】この発明のプラズマ処理方法は、処理用
プラズマが大気圧付近の圧力下でのプラズマであるた
め、低圧雰囲気の形成・制御用の装備が不要であり、処
理空間を広く採り易くて、一度に広い面積を処理するの
に適するだけでなく、連続処理も容易となる上、プラズ
マの均一性が高いため、被処理物に均一な処理が施せる
ようになり、コスト低減も実現出来、非常に実用的であ
る。According to the plasma processing method of the present invention, since the processing plasma is a plasma under a pressure near the atmospheric pressure, equipment for forming and controlling a low-pressure atmosphere is not required, and the processing space can be widened easily. In addition to being suitable for processing a large area at a time, continuous processing is easy and the uniformity of the plasma is high, so that the processing target can be uniformly processed and the cost can be reduced. , Very practical.
【0033】この発明のプラズマ処理装置は、上記の実
用的なプラズマ処理方法の実施が行えるため、非常に有
用である。The plasma processing apparatus of the present invention is very useful because the above-described practical plasma processing method can be performed.
【図1】実施例にかかるプラズマ処理装置の構成例をあ
らわす説明図である。FIG. 1 is an explanatory diagram illustrating a configuration example of a plasma processing apparatus according to an embodiment.
【図2】実施例にかかるプラズマ処理装置の他の構成例
をあらわす説明図である。FIG. 2 is an explanatory diagram illustrating another configuration example of the plasma processing apparatus according to the embodiment.
【図3】実施例のプラズマ処理装置におけるプラズマを
あらわす説明図である。FIG. 3 is an explanatory diagram showing plasma in the plasma processing apparatus of the embodiment.
【図4】実施例のプラズマ処理装置で処理した被処理物
をあらわす斜視図である。FIG. 4 is a perspective view illustrating an object to be processed processed by the plasma processing apparatus of the embodiment.
【図5】実施例および比較例で形成した薄膜の厚み分布
測定結果をあらわすグラフである。FIG. 5 is a graph showing thickness distribution measurement results of thin films formed in Examples and Comparative Examples.
【図6】従来のプラズマ処理装置をあらわす説明図であ
る。FIG. 6 is an explanatory view showing a conventional plasma processing apparatus.
【図7】図6のプラズマ処理装置の環状管をあらわす平
面図である。FIG. 7 is a plan view showing an annular tube of the plasma processing apparatus of FIG. 6;
【図8】従来の他のプラズマ処理装置をあらわす説明図
である。FIG. 8 is an explanatory view showing another conventional plasma processing apparatus.
【図9】図8のプラズマ処理装置の上電極の通気孔形成
面をあらわす平面図である。FIG. 9 is a plan view showing a ventilation hole forming surface of an upper electrode of the plasma processing apparatus of FIG. 8;
【図10】図8のプラズマ処理装置で処理した被処理物を
あらわす斜視図である。10 is a perspective view illustrating an object to be processed processed by the plasma processing apparatus of FIG. 8;
【図11】図8の処理装置におけるプラズマをあらわす説
明図である。FIG. 11 is an explanatory diagram showing plasma in the processing apparatus of FIG. 8;
1 反応槽 2 上部電極 3 下部電極 4 被処理物 5 交流電源 16 通気孔 20 多孔質誘電体(多孔質体) DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Upper electrode 3 Lower electrode 4 Workpiece 5 AC power supply 16 Vent hole 20 Porous dielectric (porous material)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 康志 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 岡崎 幸子 東京都杉並区高井戸東2丁目20番11号 (72)発明者 小駒 益弘 埼玉県和光市下新倉843−15 (56)参考文献 特開 平2−50969(JP,A) 特開 昭62−218577(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 16/00 - 16/56 C23F 4/00 - 4/04 H05H 1/46 H01L 21/205 H01L 21/302──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasushi Sawada 1048 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Works, Ltd. Masuhiro Kokoma 843-15 Shimo-Nikura, Wako-shi, Saitama (56) References JP-A-2-50969 (JP, A) JP-A-62-218577 (JP, A) (58) Fields investigated (Int. 6 , DB name) C23C 16/00-16/56 C23F 4/00-4/04 H05H 1/46 H01L 21/205 H01L 21/302
Claims (5)
気圧付近の圧力下で生起させられたプラズマであって、
前記電極の少なくとも一方の電極の他方の電極に臨む面
に開口した通気孔からのガス導入を伴うプラズマによ
り、被処理物の表面を処理するプラズマ処理方法におい
て、前記通気孔が開口する面の上に、ランダムな方向を
向いて開口した多数の微細孔を有する多孔質体を設けて
おき、前記通気孔からのガスが前記多孔質体を通ってプ
ラズマに入るようにしたことを特徴とするプラズマ処理
方法。Claims: 1. A plasma generated between a pair of electrodes placed opposite to each other under a pressure near atmospheric pressure,
In a plasma processing method for processing a surface of an object to be processed by plasma accompanied by gas introduction from a ventilation hole opened to a surface of at least one of the electrodes facing the other electrode, the plasma processing method may include a step of: To a random direction
A plasma processing method, comprising: providing a porous body having a large number of fine holes that are open facing each other; and allowing gas from the vent to enter the plasma through the porous body.
の電極を備えており、前記電極の少なくとも一方の電極
の他方の電極に臨む面には多数の通気孔が開口してい
て、両電極の間に大気圧付近の圧力下で生起させられ前
記通気孔からのガス導入を伴うプラズマで被処理物を処
理するようになっているプラズマ処理装置において、前
記通気孔が開口する面の上には、ランダムな方向を向い
て開口した多数の微細孔を有する多孔質体が設けられて
いて、前記通気孔からのガスが多孔質体を通ってプラズ
マに入るようになっていることを特徴とするプラズマ処
理装置。And a pair of electrodes disposed opposite to each other at a predetermined distance, and a plurality of ventilation holes are opened on a surface of at least one of the electrodes facing the other electrode. In a plasma processing apparatus configured to process an object to be processed with plasma generated between the electrodes under a pressure close to the atmospheric pressure and accompanied by gas introduction from the vent, a surface above the surface where the vent is opened Faces a random direction
A plasma processing apparatus, comprising: a porous body having a large number of fine pores which are opened by opening; and a gas from the vent holes enters the plasma through the porous body.
載のプラズマ処理装置。Wherein the porous body is a plasma processing apparatus 請 Motomeko 2 wherein ing a dielectric material.
求項2または3記載のプラズマ処理装置。4. A plasma plasma processing apparatus Oh Ru請 <br/> Motomeko 2 or 3, wherein in the glow discharge plasma.
以下である請求項2,3,4のいずれかに記載のプラズ
マ処理装置。5. The porous body has an average pore diameter of 500 μm.
The plasma processing apparatus according to any one of Der Ru請 Motomeko 2,3,4 below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16091592A JP2837993B2 (en) | 1992-06-19 | 1992-06-19 | Plasma processing method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16091592A JP2837993B2 (en) | 1992-06-19 | 1992-06-19 | Plasma processing method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH062149A JPH062149A (en) | 1994-01-11 |
JP2837993B2 true JP2837993B2 (en) | 1998-12-16 |
Family
ID=15725068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16091592A Expired - Lifetime JP2837993B2 (en) | 1992-06-19 | 1992-06-19 | Plasma processing method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2837993B2 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994022628A1 (en) * | 1993-04-05 | 1994-10-13 | Seiko Epson Corporation | Combining method and apparatus using solder |
WO1995015832A1 (en) * | 1993-12-09 | 1995-06-15 | Seiko Epson Corporation | Combining method and apparatus using solder |
JP3700177B2 (en) | 1993-12-24 | 2005-09-28 | セイコーエプソン株式会社 | Atmospheric pressure plasma surface treatment equipment |
US6006763A (en) * | 1995-01-11 | 1999-12-28 | Seiko Epson Corporation | Surface treatment method |
JPH08279495A (en) * | 1995-02-07 | 1996-10-22 | Seiko Epson Corp | Method and system for plasma processing |
JP3521587B2 (en) * | 1995-02-07 | 2004-04-19 | セイコーエプソン株式会社 | Method and apparatus for removing unnecessary substances from the periphery of substrate and coating method using the same |
JP3959745B2 (en) * | 1995-04-07 | 2007-08-15 | セイコーエプソン株式会社 | Surface treatment equipment |
JP3598602B2 (en) * | 1995-08-07 | 2004-12-08 | セイコーエプソン株式会社 | Plasma etching method, liquid crystal display panel manufacturing method, and plasma etching apparatus |
JPH09233862A (en) * | 1995-12-18 | 1997-09-05 | Seiko Epson Corp | Method and device for generating power using piezoelectric body, and electronic equipment |
JPH09312545A (en) | 1996-03-18 | 1997-12-02 | Seiko Epson Corp | Piezoelectric element, its producing method and mount device of piezoelectric oscillator bar |
US5918354A (en) * | 1996-04-02 | 1999-07-06 | Seiko Epson Corporation | Method of making a piezoelectric element |
EP1073091A3 (en) | 1999-07-27 | 2004-10-06 | Matsushita Electric Works, Ltd. | Electrode for plasma generation, plasma treatment apparatus using the electrode, and plasma treatment with the apparatus |
US6477980B1 (en) * | 2000-01-20 | 2002-11-12 | Applied Materials, Inc. | Flexibly suspended gas distribution manifold for plasma chamber |
KR20000024528A (en) * | 2000-02-18 | 2000-05-06 | 강정구 | RF Low Temperature Plasma Touch at Atmospheric Pressure |
US7074720B2 (en) | 2001-06-25 | 2006-07-11 | Matsushita Electric Industrial Co., Ltd. | Plasma treating apparatus, plasma treating method and method of manufacturing semiconductor device |
JP2003007682A (en) * | 2001-06-25 | 2003-01-10 | Matsushita Electric Ind Co Ltd | Electrode member for plasma treatment apparatus |
JP2003257648A (en) * | 2002-03-05 | 2003-09-12 | Seiko Epson Corp | Surface treating device, organic el device manufacturing apparatus, organic el device, and electronic apparatus |
JP4100011B2 (en) * | 2002-03-13 | 2008-06-11 | セイコーエプソン株式会社 | Surface treatment apparatus, organic EL device manufacturing apparatus, and manufacturing method |
DE10211442A1 (en) * | 2002-03-15 | 2003-09-25 | Aixtron Ag | Device for depositing thin layers on a substrate used in the production of III-V semiconductors comprises a process chamber arranged in a reactor housing and having a base formed by a susceptor for receiving at least one substrate |
JP4604591B2 (en) * | 2004-07-28 | 2011-01-05 | パナソニック株式会社 | Plasma processing method |
JP4908801B2 (en) | 2005-08-16 | 2012-04-04 | 株式会社神戸製鋼所 | Copper base material for electronic parts and electronic parts |
US8361276B2 (en) * | 2008-02-11 | 2013-01-29 | Apjet, Inc. | Large area, atmospheric pressure plasma for downstream processing |
JP5082967B2 (en) * | 2008-03-21 | 2012-11-28 | 株式会社島津製作所 | Plasma electrode and plasma chemical vapor deposition apparatus |
JP2011144412A (en) | 2010-01-13 | 2011-07-28 | Honda Motor Co Ltd | Plasma film-forming apparatus |
JP2011252085A (en) | 2010-06-02 | 2011-12-15 | Honda Motor Co Ltd | Plasma film deposition method |
JP2012004160A (en) * | 2010-06-14 | 2012-01-05 | Tokyo Electron Ltd | Substrate processing method and substrate processing apparatus |
JP5264938B2 (en) * | 2011-01-13 | 2013-08-14 | 株式会社半導体理工学研究センター | Neutral particle irradiation type CVD equipment |
CN114126179A (en) * | 2021-11-09 | 2022-03-01 | 中国人民解放军军事科学院国防工程研究院工程防护研究所 | Device and method for generating large-area uniform glow discharge plasma |
-
1992
- 1992-06-19 JP JP16091592A patent/JP2837993B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH062149A (en) | 1994-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2837993B2 (en) | Plasma processing method and apparatus | |
US6299948B1 (en) | Method and device for surface treatment with a plasma at atmospheric pressure | |
US6849306B2 (en) | Plasma treatment method at atmospheric pressure | |
JP4921710B2 (en) | Method for generating atmospheric pressure glow discharge plasma | |
US5391855A (en) | Apparatus for atmospheric plasma treatment of a sheet-like structure | |
US7300859B2 (en) | Atmospheric glow discharge with concurrent coating deposition | |
EP1506063B1 (en) | Atomisation of a precursor into an excitation medium for coating a remote substrate | |
EP0809275A1 (en) | Treatment method in glow-discharge plasma and apparatus therefor | |
JP3959906B2 (en) | Plasma processing apparatus and plasma processing method | |
JP2004509432A (en) | Glow discharge plasma processing apparatus and glow discharge plasma processing method | |
US20050208215A1 (en) | Oxide film forming method and oxide film forming apparatus | |
US20050020038A1 (en) | Atmospheric glow discharge with concurrent coating deposition | |
JPH04358076A (en) | Method and device for atmospheric plasma reaction | |
US6855379B2 (en) | Method and device for surface-treating substrates | |
JPH02281734A (en) | Treating method of surface by plasma | |
US7214413B2 (en) | Method and device for generating an activated gas curtain for surface treatment | |
US20030049468A1 (en) | Cascade arc plasma and abrasion resistant coatings made therefrom | |
JP3014111B2 (en) | Atmospheric pressure glow plasma etching method | |
JP2524942B2 (en) | Plasma surface treatment equipment | |
JP2003017413A (en) | Plasma processing equipment and method | |
JP3533094B2 (en) | Atmospheric pressure discharge plasma processing method and atmospheric pressure plasma processing apparatus | |
JP4341149B2 (en) | Surface treatment method | |
JP3954765B2 (en) | Continuous film forming method and continuous film forming apparatus using atmospheric pressure plasma | |
JP3551319B2 (en) | Dry surface treatment method for making porous material surface hydrophilic | |
JPS5927212B2 (en) | plasma reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071009 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081009 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081009 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20091009 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091009 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101009 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20101009 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20111009 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111009 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20121009 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20121009 |