JP2827777B2 - Method for calculating intermediate transfer characteristics in sound image localization control and sound image localization control method and apparatus using the same - Google Patents

Method for calculating intermediate transfer characteristics in sound image localization control and sound image localization control method and apparatus using the same

Info

Publication number
JP2827777B2
JP2827777B2 JP35300092A JP35300092A JP2827777B2 JP 2827777 B2 JP2827777 B2 JP 2827777B2 JP 35300092 A JP35300092 A JP 35300092A JP 35300092 A JP35300092 A JP 35300092A JP 2827777 B2 JP2827777 B2 JP 2827777B2
Authority
JP
Japan
Prior art keywords
sound image
image localization
characteristic
transfer characteristic
intermediate transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35300092A
Other languages
Japanese (ja)
Other versions
JPH06181600A (en
Inventor
徳彦 渕上
雅博 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP35300092A priority Critical patent/JP2827777B2/en
Publication of JPH06181600A publication Critical patent/JPH06181600A/en
Application granted granted Critical
Publication of JP2827777B2 publication Critical patent/JP2827777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Stereophonic System (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、離間して配設された複
数のトランスジューサから、同一の音源が供給され所定
の伝達特性を有する複数の信号変換回路で処理した信号
を再生して、実際のトランスジューサ(スピーカ)とは
異なる所望の任意の位置に音像が定位しているように感
じさせる音像定位制御に係り、特に、実際に測定した
(または予め算出された)伝達特性をもとに、(例え
ば、その中間の音像定位位置における)中間伝達特性の
算出する方法並びにこれを利用した音像定位制御方法及
び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reproducing signals processed by a plurality of signal conversion circuits having the same sound source and having predetermined transmission characteristics from a plurality of transducers arranged at a distance. The present invention relates to sound image localization control that makes a sound image appear to be localized at a desired arbitrary position different from a transducer (speaker) of the present invention. In particular, based on transfer characteristics actually measured (or calculated in advance), The present invention relates to a method for calculating an intermediate transfer characteristic (for example, at an intermediate sound image localization position) and a sound image localization control method and apparatus using the same.

【0002】[0002]

【従来の技術】従来より、両耳における信号のレベル差
と位相差(時間差)によって特定位置(特定方向)に音
源を感じさせる音像定位方法がある。この音像定位方法
は、測定したHRTF(頭部伝達関数)にもとずいて特
定位置に音像を定位させるための伝達特性を求めて、こ
の伝達特性をコンボルバ(畳み込み演算回路)などで実
現したものである。
2. Description of the Related Art Conventionally, there is a sound image localization method in which a sound source can be felt at a specific position (specific direction) by a signal level difference and a phase difference (time difference) in both ears. This sound image localization method obtains a transfer characteristic for localizing a sound image at a specific position based on a measured HRTF (head-related transfer function), and realizes this transfer characteristic with a convolver (convolution operation circuit) or the like. It is.

【0003】そして、より高品質な音像定位制御をする
には、多くの音像定位位置において、伝達特性(デー
タ)を測定収集する必要がある。例えば、後述する図7
に示すように、30度ごとの12組の伝達特性よりも1
5度ごとの24組の伝達特性を利用したほうが現実感の
ある音像定位制御ができる。さらに、音像定位に用いる
一対のスピーカと受聴者との位置関係を複数準備する場
合や、伝達特性の算出の基礎となる測定データを受聴者
の個人差(本人特性)まで考慮して複数準備する場合な
どでは、さらに多くの伝達特性(データ)が必要であ
る。
In order to perform higher-quality sound image localization control, it is necessary to measure and collect transfer characteristics (data) at many sound image localization positions. For example, FIG.
As shown in FIG.
The use of the 24 sets of transfer characteristics for every fifth degree enables more realistic sound image localization control. Furthermore, when preparing a plurality of positional relationships between a pair of speakers and a listener used for sound image localization, and preparing a plurality of measurement data on which the transfer characteristics are calculated in consideration of individual differences (personal characteristics) of the listeners. In some cases, more transfer characteristics (data) are required.

【0004】ところが、高精度な伝達特性を測定収集を
するには、多大な時間・手間・コストがかかる。さら
に、測定収集した多くの伝達特性(データ)を音像定位
制御装置のデータとして記憶しておく必要があるので、
装置の規模が大きくなる。すなわち、音像定位制御装置
のデジタルフィルタ(コンボルバ)用係数ROMの容量
が飛躍的に増大してしまう。このため、従来より、実際
に測定した伝達特性(以下、参照伝達特性と称する)を
もとに、その中間の音像定位位置における伝達特性(以
下、中間伝達特性と称する)を、実際に測定することな
く計算で算出することが試みられている。
However, it takes a great deal of time, labor, and cost to measure and collect highly accurate transfer characteristics. Further, it is necessary to store many transfer characteristics (data) measured and collected as data of the sound image localization control device.
The scale of the device increases. In other words, the capacity of the coefficient ROM for the digital filter (convolver) of the sound image localization control device increases dramatically. For this reason, conventionally, based on a transfer characteristic actually measured (hereinafter, referred to as a reference transfer characteristic), a transfer characteristic at an intermediate sound image localization position (hereinafter, referred to as an intermediate transfer characteristic) is actually measured. Attempts have been made to calculate without calculation.

【0005】従来では、このような中間伝達特性を、2
つの参照伝達特性の算術平均として算出していた。つま
り、時間軸領域での算出では、参照伝達特性の時間応答
波形の算術平均(時間的に対応する振幅の算術平均)か
ら、その中間位置の中間伝達特性を近似していた。周波
数領域での算出では、2つの参照伝達特性を周波数応答
として、ベクトル平均していた。ベクトル平均として、
具体的には2つの参照伝達特性を周波数応答としてベク
トル表現し、その実数部間,虚数部間をそれぞれ算術平
均して、中間伝達特性としていた。このベクトル平均を
詳述すると以下の通りである。ただし、任意の伝達特性
の離散時間応答をx(i)、x(i)の離散周波数応答
をX(i)(i=0 … N-1,X(i)は複素ベクトル)
とする。2つの参照伝達特性の一方をx(i),X
(i)とし、他方をy(i),Y(i)とし、従来技術
の算術平均(ベトル平均)により求めた中間伝達特性を
z(i),Z(i)とすると、(式a)及び(式b)の
ように、表現できる。
Conventionally, such an intermediate transfer characteristic is defined as 2
It was calculated as the arithmetic average of two reference transfer characteristics. That is, in the calculation in the time axis region, the intermediate transfer characteristic at the intermediate position is approximated from the arithmetic average of the time response waveform of the reference transfer characteristic (the arithmetic average of the amplitude corresponding to time). In the calculation in the frequency domain, vector averaging is performed using two reference transfer characteristics as frequency responses. As a vector mean,
Specifically, the two reference transfer characteristics are expressed as a vector as a frequency response, and the intermediate transfer characteristics are obtained by arithmetically averaging the real part and the imaginary part. The details of this vector averaging are as follows. Here, the discrete time response of an arbitrary transfer characteristic is x (i), and the discrete frequency response of x (i) is X (i) (i = 0... N-1, X (i) is a complex vector).
And One of the two reference transfer characteristics is x (i), X
(I), the other is y (i), Y (i), and z (i), Z (i) are the intermediate transfer characteristics obtained by the arithmetic mean (vector average) of the prior art. And (Equation b).

【0006】[0006]

【数1】 (Equation 1)

【数2】 (Equation 2)

【0007】したがって中間伝達特性の振幅Q及び位相
qは、
Therefore, the amplitude Q and phase q of the intermediate transfer characteristic are

【0008】[0008]

【数3】 (Equation 3)

【数4】 となる。(Equation 4) Becomes

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うに算術平均(ベクトル平均)して中間伝達特性を求め
る従来の算出方法では、その算出した中間伝達特性を用
いた時に、音像定位の劣化や音質の劣化が生じやすい問
題があった。そこで、本出願人はこの問題を解決するた
めに、劣化の原因を探求して、新たな中間伝達特性の算
出方法を見いだした。図12〜図15を参照して順次説
明する。
However, according to the conventional calculation method for obtaining the intermediate transfer characteristic by arithmetic averaging (vector averaging) as described above, when the calculated intermediate transfer characteristic is used, deterioration of sound image localization and sound quality are caused. There is a problem that deterioration of the glass easily occurs. In order to solve this problem, the present applicant has searched for a cause of deterioration and found a new method of calculating an intermediate transfer characteristic. This will be described sequentially with reference to FIGS.

【0010】図13は、相対開き角15度の2つの参照
伝達特性の周波数−振幅特性を示す例である。また、図
14(B)は,これらの参照伝達特性から上記した従来
の算出方法で求めた中間伝達特性の周波数−振幅特性で
ある。一方、図14(A)は参照伝達特性の中間位置に
おける中間伝達特性の実測値であり、その周波数−振幅
特性を示すものである。さらに、図15(B)は,前記
参照伝達特性から上記した従来の算出方法で求めた中間
伝達特性の周波数−位相特性である。一方、図15
(A)は参照伝達特性の中間位置における中間伝達特性
の実測値であり、その周波数−位相特性を示すものであ
る。
FIG. 13 is an example showing frequency-amplitude characteristics of two reference transfer characteristics having a relative opening angle of 15 degrees. FIG. 14B shows the frequency-amplitude characteristics of the intermediate transfer characteristics obtained from the reference transfer characteristics by the above-described conventional calculation method. On the other hand, FIG. 14A is a measured value of the intermediate transfer characteristic at an intermediate position of the reference transfer characteristic, and shows the frequency-amplitude characteristic. FIG. 15B shows the frequency-phase characteristics of the intermediate transfer characteristics obtained from the reference transfer characteristics by the above-described conventional calculation method. On the other hand, FIG.
(A) is a measured value of the intermediate transfer characteristic at an intermediate position of the reference transfer characteristic, and shows the frequency-phase characteristic thereof.

【0011】図15(A)及び(B)から明らかなよう
に、周波数−位相特性では算術平均による算出値と実測
値とに大きな差がない。しかし、図14(A)及び
(B)から明らかなように、周波数−振幅特性では算術
平均による算出値と実測値とに大きな差があり、特に2
kHz〜10kHz間の高域で大きな差があり、これが
実用上、音像定位の劣化や音質の劣化を生じさせる原因
と思われる。
As apparent from FIGS. 15A and 15B, in the frequency-phase characteristics, there is no large difference between the value calculated by arithmetic averaging and the measured value. However, as is clear from FIGS. 14A and 14B, in the frequency-amplitude characteristics, there is a large difference between the value calculated by the arithmetic mean and the actually measured value.
There is a large difference in the high frequency range between kHz and 10 kHz, which seems to be the cause of deterioration of sound image localization and sound quality in practical use.

【0012】[0012]

【課題を解決するための手段】そして、本出願人はさら
に中間伝達特性の周波数−振幅特性について分析を進め
た。図12(A)は2つの参照伝達特性X(i)とY
(i)の位相角の開きが小さい場合のベクトル平均、図
12(B)は2つの参照伝達特性X(i)とY(i)の
位相角の開きが大きく、位相差が±180度に近い場合
のベクトル平均を示す図である。同図に示すように、特
に位相角の開きが大きい場合、算術平均(ベクトル平
均)したZ(i)の振幅がX(i),Y(i)のそれよ
りも非常に小さくなってしまい、明らかに、中間伝達特
性の振幅としては明らかに不適格である。
The present applicant has further analyzed the frequency-amplitude characteristic of the intermediate transfer characteristic. FIG. 12A shows two reference transfer characteristics X (i) and Y
(I) Vector averaging when the difference between the phase angles is small. FIG. 12B shows that the difference between the phase angles of the two reference transfer characteristics X (i) and Y (i) is large and the phase difference is ± 180 degrees. It is a figure which shows the vector average of close case. As shown in the figure, especially when the phase angle is large, the amplitude of Z (i) obtained by arithmetic averaging (vector averaging) becomes much smaller than that of X (i) and Y (i). Obviously, the amplitude of the intermediate transfer characteristic is clearly ineligible.

【0013】つまり、位相の変化が激しい帯域や、一般
に位相差が大きくなりやすい周波数の高い高域では、2
つの参照伝達特性X(i)とY(i)との位相角の開き
が大きい場合が生じて、単に算術平均した中間伝達特性
の振幅では、精度が落ち音像定位の劣化や音質の劣化が
生じると思われる。これは、前述した図14(A)及び
(B)により詳述した実測値との比較結果とも一致す
る。前述した図15が示すように、2つの参照伝達特性
(なお、図15はいずれもその中間位置での中間伝達特
性)は高域で位相の変化が激しいので、参照伝達特性X
(i)とY(i)との位相角の開きが大きくなりやす
く、これを要因として中間伝達特性の振幅の精度が落ち
ている、といえる。
That is, in a band where the phase changes drastically, or in a high frequency range where the phase difference is liable to be large in general, 2
There may be a case where the phase angle between the two reference transfer characteristics X (i) and Y (i) is large, and the amplitude of the arithmetic transfer averaged intermediate transfer characteristic is reduced in accuracy, causing deterioration in sound image localization and deterioration in sound quality. I think that the. This agrees with the result of comparison with the actually measured values described in detail with reference to FIGS. 14A and 14B. As shown in FIG. 15 described above, the two reference transfer characteristics (in FIG. 15, the intermediate transfer characteristic at the intermediate position in both cases) have a sharp change in phase in the high frequency range.
It can be said that the difference in phase angle between (i) and Y (i) is likely to be large, and as a result, the accuracy of the amplitude of the intermediate transfer characteristic is reduced.

【0014】そこで、本発明は中間伝達特性中、特にそ
の振幅の算出方法を改良して、2つの参照伝達特性の位
相角の開きが大きい場合でも振幅を正しく算出して、音
像定位の劣化や音質の劣化がほとんど生じない中間伝達
特性を算出できるようにしたものである。すなわち、2
つの参照伝達特性の振幅を相乗平均して中間伝達特性の
振幅とした。
Therefore, the present invention improves the method of calculating the amplitude of the intermediate transfer characteristics, particularly the amplitude, and correctly calculates the amplitude even when the phase angle between the two reference transfer characteristics is large, thereby deteriorating the sound image localization. It is possible to calculate an intermediate transfer characteristic in which deterioration of sound quality hardly occurs. That is, 2
The amplitudes of the two reference transfer characteristics were geometrically averaged to obtain the amplitude of the intermediate transfer characteristic.

【0015】本発明は上記課題を解決するために、図4
及び図1などに示すように、離間して配設された複数の
トランスジューサ(スピーカsp1,sp2)から、同
一の音源(X)が供給され所定の伝達特性を有する複数
の信号変換回路(コンボルバ;係数がcfLx,cfR
xであるキャンセルフィルタからなる畳み込み演算処理
回路)で処理した信号を再生して、聴取者(M)に前記
トランスジューサとは異なる任意の位置(x)に音像が
定位しているように感じさせる音像定位制御における伝
達特性の算出方法であって、予め測定または算出された
(例えば、異なる音像定位位置に対する)複数の参照伝
達特性X(i)とY(i)から、周波数−振幅特性
(R)は前記参照伝達特性間の振幅特性の相乗平均と
し、周波数−位相特性(r)は前記参照伝達特性間のベ
クトル平均の位相成分として、前記参照伝達特性間の
(例えば、中間の定位位置における)中間伝達特性R
(i)を算出するようにしたことを特徴とする音像定位
制御における中間伝達特性の算出方法、並びにこれを利
用した音像定位制御方法及び装置を提供するものであ
る。
According to the present invention, in order to solve the above problems, FIG.
As shown in FIG. 1 and the like, the same sound source (X) is supplied from a plurality of transducers (loudspeakers sp1 and sp2) disposed apart from each other, and a plurality of signal conversion circuits (convolvers; Coefficients are cfLx, cfR
a signal processed by a convolution operation processing circuit comprising a cancellation filter which is x, and a sound image that makes a listener (M) feel that the sound image is localized at an arbitrary position (x) different from the transducer. This is a method of calculating a transfer characteristic in localization control, wherein a frequency-amplitude characteristic (R) is obtained from a plurality of reference transfer characteristics X (i) and Y (i) measured or calculated in advance (for example, for different sound image localization positions). Is the geometric mean of the amplitude characteristics between the reference transfer characteristics, and the frequency-phase characteristic (r) is the phase component of the vector average between the reference transfer characteristics as the phase component between the reference transfer characteristics (for example, at an intermediate localization position). Intermediate transfer characteristic R
A method for calculating an intermediate transfer characteristic in sound image localization control characterized by calculating (i), and a sound image localization control method and apparatus using the same.

【0016】[0016]

【作用】上記のような音像定位制御における伝達特性の
算出方法によれば、参照伝達特性X(i)とY(i)の
位相角の開きが大きい場合でも、中間伝達特性R(i)
の振幅Rが、相乗平均として実測に近い値として算出さ
れる。そして、この算出された中間伝達特性をもとに、
信号変換回路により信号処理されて、音像が(例えば、
参照伝達特性による音像定位位置の中間位置に)定位さ
れる。
According to the method for calculating the transfer characteristics in the sound image localization control as described above, even when the phase angle between the reference transfer characteristics X (i) and Y (i) is large, the intermediate transfer characteristics R (i) are obtained.
Is calculated as a value close to actual measurement as a geometric mean. Then, based on the calculated intermediate transfer characteristics,
The signal is processed by a signal conversion circuit, and a sound image is formed (for example,
The sound is localized at an intermediate position between the sound image localization positions based on the reference transfer characteristic.

【0017】[0017]

【実施例】本発明になる音像定位制御における中間伝達
特性の算出方法及びこれを利用した音像定位制御装置の
一実施例について、以下図面と共に説明する。最初に、
音像定位制御方法の基本原理について説明する。これ
は、離間して配設された一対のトランスジューサ(以
下、スピーカを例として説明する)を使用し、空間の任
意の位置に音像を定位させる技術である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for calculating an intermediate transfer characteristic in sound image localization control and a sound image localization control device using the same according to the present invention will be described below with reference to the drawings. At first,
The basic principle of the sound image localization control method will be described. This is a technique in which a sound image is localized at an arbitrary position in a space using a pair of transducers (hereinafter, a speaker will be described as an example) that are arranged apart from each other.

【0018】図5は音像定位の原理図である。sp1,
sp2は受聴者(実施例の中では、聴取者と称すること
もある)の前方左右に配置されるスピーカであり、sp
1から聴取者左耳までの頭部伝達特性(インパルス応
答)をh1L、右耳までの頭部伝達特性をh1R、sp
2から左右耳までの頭部伝達特性をh2L,h2Rとす
る。また、目的とする定位位置xに実際のスピーカを配
置したときの受聴者左右耳までの頭部伝達特性をpL
x,pRxとする。ここで各伝達特性は音響空間にスピ
ーカと、人頭またはダミーヘッドの両耳位置にマイクと
を配置して実際に測定したものを、適切な波形処理した
ものである。
FIG. 5 is a principle diagram of sound image localization. sp1,
sp2 is a speaker arranged in front and left of a listener (which may be referred to as a listener in the embodiment).
The head transfer characteristic (impulse response) from 1 to the listener's left ear is h1L, the head transfer characteristic from the right ear to h1R is sp
The head transfer characteristics from 2 to the left and right ears are defined as h2L and h2R. Also, the head transfer characteristic to the listener's left and right ears when an actual speaker is placed at the target localization position x is pL.
x, pRx. Here, each transfer characteristic is obtained by appropriately measuring waveforms obtained by arranging a speaker in an acoustic space and microphones at both ear positions of a human head or a dummy head and performing actual measurement.

【0019】次に、定位させたい音源ソースXを信号変
換装置cfLx,cfRx(コンボルバなどによる伝達
特性)に通して得られる信号を、それぞれsp1,sp
2で再生することを考える。このとき受聴者左右耳に得
られる信号をeL,eRとすると、 eL=h1L・cfLx・X+h2L・cfRx・X (式1) eR=h1R・cfLx・X+h2R・cfRx・X (〃 ) 一方、ソースXを目的の定位位置から再生したときに受
聴者左右耳に得られる信号をdL,dRとすると、 dL=pLx・X (式2) dR=pRx・X (〃 )
Next, signals obtained by passing a sound source X to be localized through signal converters cfLx and cfRx (transfer characteristics by a convolver or the like) are respectively converted into sp1 and sp
Consider playing on 2. At this time, assuming that the signals obtained from the left and right ears of the listener are eL and eR, eL = h1L · cfLx · X + h2L · cfRx · X (Equation 1) eR = h1R · cfLx · X + h2R · cfRx · X (〃) Let dL and dR be the signals obtained at the listener's left and right ears when the sound is reproduced from the target localization position, dL = pLx · X (Equation 2) dR = pRx · X (〃)

【0020】ここで、sp1,sp2の再生により受聴
者左右耳に得られる信号が、目的位置からソースを再生
したときの信号に一致すれば、受聴者はあたかも目的位
置にスピーカが存在するように音像を認識することとな
る。この条件eL=dL,eR=dRと(式1),(式
2)より、Xを消去して h1L・cfLx+h2L・cfRx=pLx (式3) h1R・cfLx+h2R・cfRx=pRx (〃 ) (式3)からcfLx,cfRxを求めると cfLx=(h2R・pLx−h2L・pRx)/H (式4a) cfRx=(−h1R・pLx+h1L・pRx)/H ( 〃) ただし、 H=h1L・h2R−h2L・h1R (式4b) したがって、(式4a),(式4b)により算出した伝
達特性cfLx,cfRxを用いてコンボルバ(畳み込
み演算処理回路)等により定位させたい信号を処理すれ
ば、目的の位置xに音像を定位させることができる。
Here, if the signals obtained in the left and right ears of the listener by the reproduction of sp1 and sp2 coincide with the signals obtained when the source is reproduced from the target position, the listener can operate as if the speaker exists at the target position. It will recognize the sound image. From the conditions eL = dL, eR = dR and (Equation 1) and (Equation 2), X is eliminated and h1L · cfLx + h2L · cfRx = pLx (Equation 3) h1R · cfLx + h2R · cfRx = pRx (〃) (Equation 3) ), CfLx = (h2R · pLx−h2L · pRx) / H (Equation 4a) cfRx = (− h1R · pLx + h1L · pRx) / H (〃) where H = h1L · h2R−h2L · h1R (Equation 4b) Therefore, if a signal to be localized by a convolver (convolution operation processing circuit) or the like is processed using the transfer characteristics cfLx and cfRx calculated by (Equation 4a) and (Equation 4b), the target position x can be obtained. The sound image can be localized.

【0021】具体的な信号変換装置の実現方法は様々考
えられるが、非対称なFIRデジタルフィルタ(コンボ
ルバ)を用いて実現すれば良い。なお、FIRデジタル
フィルタで用いる場合の最終の伝達特性は、時間応答関
数である。つまり、必要な定位位置xにおける伝達特性
cfLx,cfRxとして、(式4a),(式4b)で
求めたものを、1回のFIRフィルタ処理により実現す
るための係数として、cfLx,cfRxの係数をあら
かじめ作成し、ROMのデータとして準備しておく。R
OMから必要な音像定位位置の係数をFIRデジタルフ
ィルタに転送し、音源からの信号を畳み込み演算処理し
て一対のスピーカから再生すれば、所望の任意の位置に
音像が定位されることになる。
There are various possible ways of realizing the signal conversion device, but it is only necessary to use an asymmetric FIR digital filter (convolver). The final transfer characteristic when used in the FIR digital filter is a time response function. That is, as the transfer characteristics cfLx and cfRx at the required localization position x, those obtained by (Equation 4a) and (Equation 4b) are used as coefficients for realizing by one FIR filter process, and the coefficients cfLx and cfRx are used. It is created in advance and prepared as ROM data. R
If the coefficients of the required sound image localization position are transferred from the OM to the FIR digital filter, the signal from the sound source is convolution-processed, and reproduced from a pair of speakers, the sound image is localized at a desired arbitrary position.

【0022】以上のような原理に基づく音像定位制御方
法、及び音像定位制御方法における中間伝達特性の算出
方法について図3,図4及び図6〜8を参照して詳述す
る。図3は音像定位制御の方法のステップを示すもの
で、図4は音像定位制御装置のシステム構成図である。
The sound image localization control method based on the above principle and the method of calculating the intermediate transfer characteristic in the sound image localization control method will be described in detail with reference to FIGS. 3, 4, and 6 to 8. FIG. 3 shows steps of a method of sound image localization control, and FIG. 4 is a system configuration diagram of the sound image localization control device.

【0023】頭部伝達関数(Head Related Transfer
Function;以下、HRTFと称する)の測定(ステップ
101) これを図6,図7をもって説明する。図6は、HRTF
の測定システムを示すものである。ダミーヘッド(また
は人頭)DMの両耳に一対マイクロホンML,MRを設
置し、スピーカSPからの測定音を受け、録音器DAT
にソース音(リファレンスデータ)refL,refR
と被測定音(測定データ)L,Rを同期して記録する。
上記スピーカSPの位置を正面を0度(°)として取決
めた空間内の複数の角度θ(例えば、図7に示すよう
に、15度ごとに24ポイント)に設置し、それぞれ所
定の時間だけ、連続的に記録する。
Head Related Transfer Function
Function; hereinafter referred to as HRTF) (Step 101) This will be described with reference to FIGS. FIG. 6 shows the HRTF
1 shows a measurement system. A pair of microphones ML and MR are installed at both ears of the dummy head (or human head) DM, receive a measurement sound from the speaker SP, and a recorder DAT.
Source sound (reference data) refL, refR
And the measured sound (measurement data) L and R are recorded in synchronization.
The position of the speaker SP is set at a plurality of angles θ (for example, as shown in FIG. 7, 24 points every 15 degrees) in a space where the front is determined to be 0 degrees (°), and each is set for a predetermined time. Record continuously.

【0024】HRTFのインパルス応答(Impulse Re
sponse;以下、IRと称する)の算出(ステップ10
2) ステップ101で、同期して記録されたソース音(リフ
ァレンスデータ)refL,refRと被測定音(測定
データ)L,Rとを、ワークステーション(図示せず)
上で処理する。 ソース音(リファレンスデータ)の周波数応答をX
(S)、被測定音(測定データ)の周波数応答をY
(S)、測定位置におけるHRTFの周波数応答をIR
(S)とすると、(式5)に示す、入出力の関係があ
る。 Y(S)=IR(S)・X(S) (式5) したがって、HRTFの周波数応答をIR(S)は、 IR(S)=Y(S)/X(S) (式6) である。
HRTF impulse response (Impulse Re
calculation of sponse (hereinafter referred to as IR) (step 10)
2) In step 101, the source sounds (reference data) refL, refR and the measured sounds (measurement data) L, R, which are recorded synchronously, are transmitted to a workstation (not shown).
Process above. X is the frequency response of the source sound (reference data)
(S), the frequency response of the measured sound (measurement data) is represented by Y
(S) IR frequency response of HRTF at measurement position
Assuming (S), there is an input / output relationship shown in (Equation 5). Y (S) = IR (S) · X (S) (Equation 5) Therefore, the frequency response of the HRTF is expressed by IR (S) = Y (S) / X (S) (Equation 6) is there.

【0025】よって、リファレンスの周波数応答X
(S)、測定データの周波数応答Y(S)として、前記
ステップ101で求めたデータを時間同期した窓で切り
出し、それぞれFFT変換により、有限のフーリエ級数
展開して離散周波数とし、(式6)より、HRTFの周
波数応答IR(S)が、周知の計算方法で求められる。
この場合、IR(S)の精度をあげる(SN比の向上)
ために時間的に異なる数百個の窓に対してそれぞれIR
(S)を計算し、それらを平均化すると良い。そして、
計算したHRTFの周波数応答IR(S)を逆FFT変
換して、HRTFの時間軸応答(インパルス応答)IR
(第1のIR)とする。
Therefore, the frequency response X of the reference
(S) As the frequency response Y (S) of the measurement data, the data obtained in the step 101 is cut out by a window synchronized with time, and each of the data is subjected to a finite Fourier series expansion by FFT transform to obtain a discrete frequency. Thus, the frequency response IR (S) of the HRTF is obtained by a well-known calculation method.
In this case, the accuracy of IR (S) is increased (improvement of SN ratio).
For several hundred windows that differ in time
It is good to calculate (S) and average them. And
The calculated HRTF frequency response IR (S) is subjected to inverse FFT transform, and the HRTF time axis response (impulse response) IR
(First IR).

【0026】IR(インパルス応答)の整形処理(ス
テップ103) ここで、ステップ102で求めたIRを整形する。まず
例えばFFT変換により、ステップ102で求めた第1
のIRをオーディオスペクトラムにわたる離散周波数で
展開し、不要な帯域(高域には大きなディップが生じる
が、これは音像定位にあまり影響しない不要なものであ
る)を、BPF(バンドパスフィルタ)で除去する。こ
のように帯域制限すると、周波数軸上での不要なピーク
やディップが除去されて、キャンセルフィルタに不要な
係数が生じなくなるので、収束性がよくなり、係数を短
くすることができる。
IR (Impulse Response) Shaping Process (Step 103) Here, the IR obtained in Step 102 is shaped. First, for example, by FFT transform, the first
The IR band at discrete frequencies over the audio spectrum, and remove unnecessary bands (a large dip occurs in the high frequency band, which is an unnecessary one that does not significantly affect sound image localization) with a BPF (bandpass filter). I do. When the band is limited in this manner, unnecessary peaks and dips on the frequency axis are removed, and unnecessary coefficients are not generated in the cancel filter. Therefore, convergence is improved and the coefficients can be shortened.

【0027】そして、帯域制限されたIR(S)を逆F
FT変換して、IR(インパルス応答)を時間軸上で切
り出し窓(例えば、コサイン関数の窓)を掛けて、ウィ
ンド処理する(第2のIRとなる)。ウィンド処理する
ことにより、IRの有効長が長くなくなり、キャンセル
フィルタの収束性が向上して、音質の劣化が生じないよ
うになる。
Then, the band-limited IR (S) is converted to the inverse F
After performing FT conversion, an IR (impulse response) is multiplied by a cutout window (for example, a window of a cosine function) on the time axis, and a window process is performed (a second IR). By performing the window processing, the effective length of the IR is no longer long, the convergence of the cancel filter is improved, and the sound quality does not deteriorate.

【0028】キャンセルフィルタcfLx、cfRx
の算出(ステップ104) コンボルバ(たたみ込み積分回路)であるキャンセルフ
ィルタcfLx、cfRxは、前述した(式4a)及び
(式4b)に示したように、 cfLx=(h2R・pLx−h2L・pRx)/H (式4a) cfRx=(−h1R・pLx+h1L・pRx)/H ( 〃) ただし、H=h1L・h2R−h2L・h1R (式4b) である。
Cancel filters cfLx, cfRx
(Step 104) The cancellation filters cfLx and cfRx, which are convolvers (convolution integrators), are, as shown in (Equation 4a) and (Equation 4b), cfLx = (h2R · pLx−h2L · pRx) / H (Formula 4a) cfRx = (− h1R · pLx + h1L · pRx) / H (() where H = h1L · h2R−h2L · h1R (Formula 4b).

【0029】ここで、配置されるスピーカsp1,sp
2による頭部伝達特性h1L,h1R,h2L,h2R
及び、目的とする定位位置xに実際のスピーカを配置し
たときの頭部伝達特性pLx,pRxとして、上記ステ
ップ101〜103によって求められた、各角度θごと
の整形処理された第2のIR(インパルス応答)を代入
する。頭部伝達特性h1L,h1Rは、図8のLチャン
ネルスピーカの位置に対応するもので、正面から左に例
えば30度(θ=330度)に設置されるとすれば、θ
=330度のIRを用いる。頭部伝達特性h2R,h2
Lは、同図のRチャンネルスピーカの位置に対応するも
ので、正面から右に例えば30度(θ=30度)に設置
されるとすれば、θ=30度のIRを用いる(すなわ
ち、実際の音像再生時のシステム(例えば、後述する図
4に示す)に近いものを選ぶ)。
Here, the speakers sp1 and sp
2 transfer characteristics h1L, h1R, h2L, h2R
The second IR (formed at steps 101 to 103, which has been shaped and processed for each angle θ, as the head-related transfer characteristics pLx and pRx when an actual speaker is placed at the target localization position x). Impulse response). The head transfer characteristics h1L and h1R correspond to the position of the L-channel speaker in FIG. 8, and if it is set at, for example, 30 degrees (θ = 330 degrees) to the left from the front, θ
= 330 degrees IR is used. Head transfer characteristics h2R, h2
L corresponds to the position of the R-channel speaker in the figure, and if it is installed at, for example, 30 degrees (θ = 30 degrees) from the front to the right, an IR of θ = 30 degrees is used (that is, the actual IR is used). (For example, a system close to the system at the time of reproducing the sound image (for example, shown in FIG. 4 described later) is selected).

【0030】そして、頭部伝達特性pLx、pRxとし
ては、目的とする音源定位位置である正面から左右90
度の180度の範囲はもちろんのこと(図8では、24
0度の位置を例としている)、それを越える広範囲な空
間(全空間)における、15度ごとのIRを代入するこ
とにより、それに対応した全空間のcfLx、cfR
x、すなわち実測した15度ごとに24組のキャンセル
フィルタcfLx、cfRx群が求められる。キャンセ
ルフィルタcfLx、cfRx群は、最終的には、時間
軸上の応答であるIR(インパルス応答)として求めら
れる。しかし、これらのキャンセルフィルタの係数
(群)cfLx、cfRxは、実測した15度ごとの2
4組にすぎない。
The head-related transfer characteristics pLx and pRx are 90 degrees from the front which is the target sound source localization position.
The range of 180 degrees is of course (24 in FIG. 8).
The position of 0 degree is taken as an example), and the IR of every 15 degrees in a wide space (entire space) beyond that is substituted, so that the corresponding cfLx, cfR of the entire space is obtained.
x, that is, 24 sets of cancellation filters cfLx and cfRx are obtained for every 15 degrees actually measured. The group of cancellation filters cfLx and cfRx is finally obtained as an IR (impulse response) which is a response on the time axis. However, the coefficients (group) cfLx and cfRx of these cancellation filters are 2 for every 15 degrees actually measured.
There are only four sets.

【0031】中間伝達特性の算出(ステップ105) そこで、実際の測定にもとずいて算出したキャンセルフ
ィルタ(コンボルバ)の係数cfLx、cfRxをもと
にして、その中間の音像定位位置における伝達特性(中
間伝達特性)を求めて、 7.5度ごとに48組の伝達特性
とする。この中間伝達特性の算出に際して、本発明で
は、中間伝達特性の周波数−振幅特性を2つの参照伝達
特性の振幅特性の相乗平均として求め、周波数−位相特
性は2つの参照伝達特性の周波数複素ベクトルのベクト
ル平均の位相成分として求める。これが、本願の要部で
あり、以下、図1及び図2を参照して説明する。
Calculation of Intermediate Transfer Characteristics (Step 105) Then, based on the coefficients cfLx and cfRx of the cancel filter (convolver) calculated based on the actual measurement, the transfer characteristics at the intermediate sound image localization position ( Intermediate transfer characteristics) are obtained and 48 sets of transfer characteristics are set every 7.5 degrees. In the calculation of the intermediate transfer characteristic, in the present invention, the frequency-amplitude characteristic of the intermediate transfer characteristic is obtained as the geometric mean of the amplitude characteristics of the two reference transfer characteristics, and the frequency-phase characteristic is obtained by calculating the frequency complex vector of the two reference transfer characteristics. Obtained as the phase component of the vector average. This is the main part of the present application, and will be described below with reference to FIGS.

【0032】図1は、2つの参照伝達特性から中間伝達
特性の算出方法をベクトル表示した概念図である。2つ
の参照伝達特性の一方をx(i),X(i)とし、他方
をy(i),Y(i)とし、上記の方法により求める中
間伝達特性をr(i),R(i)とすると、その中間伝
達特性の振幅R及び位相rは、次に示す(式c)及び
(式d)のように示される。
FIG. 1 is a conceptual diagram in which a method of calculating an intermediate transfer characteristic from two reference transfer characteristics is represented by a vector. One of the two reference transfer characteristics is x (i), X (i) and the other is y (i), Y (i), and the intermediate transfer characteristics determined by the above method are r (i), R (i). Then, the amplitude R and the phase r of the intermediate transfer characteristic are represented by the following (formula c) and (formula d).

【0033】[0033]

【数5】 (Equation 5)

【数6】 (Equation 6)

【0034】したがって、例えば、30度と45度の中
間位置である37.5度の中間伝達特性は、前記ステッ
プで求めた、30度と45度におけるキャンセルフィル
タの時間軸応答を、2つの参照伝達特性x(i),y
(i)として、中間伝達特性の時間軸応答r(i)を求
めれば良い。すなわち、時間軸応答をx(i),y
(i)をFFT変換(FFT変換などの直交変換)し
て、周波数応答X(i),Y(i)として、(式c)及
び(式d)から、中間伝達特性の時間軸応答R(i)を
求め、これを逆FFT変換して中間伝達特性の時間軸応
答r(i)が求まる。
Therefore, for example, an intermediate transfer characteristic of 37.5 degrees, which is an intermediate position between 30 degrees and 45 degrees, is obtained by calculating the time axis response of the cancel filter at 30 degrees and 45 degrees obtained in the above step by two reference values. Transfer characteristics x (i), y
As (i), the time axis response r (i) of the intermediate transfer characteristic may be obtained. That is, the time axis response is x (i), y
(I) is subjected to FFT transformation (orthogonal transformation such as FFT transformation), and frequency responses X (i) and Y (i) are obtained from (Equation c) and (Equation d). i) is obtained, and this is subjected to inverse FFT transform to obtain a time axis response r (i) of the intermediate transfer characteristic.

【0035】このような中間伝達特性の算出方法によれ
ば、前述したように、参照伝達特性X(i)とY(i)
の位相角の開きが大きい場合でも、相乗平均として、中
間の音像定位位置に対する中間伝達特性R(i)の振幅
Rが、実測に近い値として算出される。この点を図2
(A)及び(B)で模式的に説明する。図2(A)及び
(B)は、X(i)の振幅を1と固定し、Y(i)の振
幅を0.25, 0.5,1,2,4と可変したときの中間伝達
特性R(i),Z(i)を示すもので、同図(A)は相
乗平均した本願発明の実施例であるR(i)、同図
(B)は算術平均した従来例であるZ(i)を示す。算
術平均したZ(i)は、参照伝達特性X(i)とY
(i)の振幅と大幅に異なる。これに対して、相乗平均
したR(i)はほぼ中間的な大きさを示し、中間伝達特
性の振幅としてほぼ妥当といえる。
According to such a method of calculating the intermediate transfer characteristics, as described above, the reference transfer characteristics X (i) and Y (i)
Is large, the amplitude R of the intermediate transfer characteristic R (i) with respect to the intermediate sound image localization position is calculated as a value close to the actual measurement as a geometric mean. Figure 2 shows this point.
This will be described schematically with reference to (A) and (B). FIGS. 2A and 2B show the intermediate transfer characteristics R (i) when the amplitude of X (i) is fixed at 1 and the amplitude of Y (i) is changed to 0.25, 0.5, 1, 2, and 4. (A) shows the geometrically averaged R (i) of the embodiment of the present invention, and FIG. (B) shows the arithmetically averaged Z (i) of the prior art. Show. The arithmetically averaged Z (i) is the reference transfer characteristic X (i) and Y
Significantly different from the amplitude of (i). On the other hand, the geometrically averaged R (i) has a substantially intermediate magnitude, and it can be said that the amplitude is substantially appropriate as the amplitude of the intermediate transfer characteristic.

【0036】この結果、図14(A)及び(C)に示す
ように、実測に近い中間伝達特性が得られることにな
る。同図(A)は中間伝達特性の周波数−振幅特性の実
測値、同図(C)は相乗平均により算出した中間伝達特
性の周波数−振幅特性である。両者は極めて近い特性を
有している。したがって、実測値を良く近似した、音像
定位感や音質の劣化をほとんどない中間伝達特性が得ら
れたといえる。このようにして、24組の中間伝達特性
が計算で算出され、実測した15度ごとに24組の伝達
特性と合わせて、 7.5度ごとに48組の伝達特性(キャ
ンセルフィルタcfLx、cfRxの係数)が得られ
る。
As a result, as shown in FIGS. 14A and 14C, an intermediate transfer characteristic close to the actual measurement is obtained. FIG. 7A shows actual measured values of the frequency-amplitude characteristics of the intermediate transfer characteristics, and FIG. 7C shows the frequency-amplitude characteristics of the intermediate transfer characteristics calculated by geometric mean. Both have very similar characteristics. Therefore, it can be said that an intermediate transfer characteristic that closely approximates the actually measured value and hardly deteriorates the sound image localization feeling and the sound quality is obtained. In this way, 24 sets of intermediate transfer characteristics are calculated by calculation, and 48 sets of transfer characteristics (coefficients of cancel filters cfLx and cfRx) are added every 7.5 degrees, together with 24 sets of transfer characteristics actually measured every 15 degrees. Is obtained.

【0037】一般的には、実測された360/M(M:
2以上の整数)度ごとの参照伝達特性をもとに、中間伝
達特性をN回(N:1以上の整数)算出すると、360
/(M・2)度ごとに音像定位制御できる。上記実施
例では、M=24,N=1として 7.5度ごとに求めて音
像定位制御するようにしているが、M=16,N=2と
して約5.63度ごとに求めて音像定位制御するようにして
も良い。また、水平面での人間の音像認識の分解能は、
約3〜4度だといわれている。したがって、M=24,
N=2として中間伝達特性を2回算出して、約3.75度ご
とに音像処理をするようにすれば、音像をほぼ連続させ
て任意の位置に定位させることが可能である。
In general, 360 / M (M:
When the intermediate transfer characteristic is calculated N times (N: an integer of 1 or more) based on the reference transfer characteristic for each degree (an integer of 2 or more) degrees, 360
/ (M · 2 N ) degrees can control sound image localization. In the above embodiment, M = 24 and N = 1 are obtained every 7.5 degrees to perform sound image localization control. However, M = 16 and N = 2 are obtained every approximately 5.63 degrees to perform sound image localization control. May be. In addition, the resolution of human sound image recognition on the horizontal plane is
It is said to be about 3-4 degrees. Therefore, M = 24,
If the intermediate transfer characteristic is calculated twice with N = 2 and the sound image processing is performed about every 3.75 degrees, it is possible to localize the sound image at an arbitrary position almost continuously.

【0038】各定位ポイントxのキャンセルフィルタ
のスケーリング(ステップ106) また、実際にコンボルバ(キャンセルフィルタ)で音像
処理される音源(ソース音)のスペクトラム分布は、統
計的にみるとピンクノイズのように分布するもの、ある
いは高域でなだらかに下がるものなどがあり、いずれに
しても音源は単一音とは異なるために、畳み込み演算
(積分)を行ったときオーバーフローして、歪が発生す
る危険がある。
The scaling of the cancellation filter at each localization point x (step 106) The spectrum distribution of the sound source (source sound) actually subjected to sound image processing by the convolver (cancel filter) is statistically similar to pink noise. In some cases, the sound source is different from a single sound, so there is a danger that the convolution operation (integration) will overflow and cause distortion. is there.

【0039】そこで、オーバーフローを防止するため、
キャンセルフィルタcfLx、cfRxの全係数をスケ
ーリングする。そして、ウィンド窓(コサイン窓)によ
り、実際のコンボルバ(本実施例では、スケーリング処
理された最終的なキャンセルフィルタをコンコルバと称
している)の係数の数にあわせて、両端が0となるよう
に、ウィンド処理して、係数の有効長を短くする。この
ようにしてスケーリング処理されて、最終的にコンボル
バに係数として供給されるデータ群(この例では、7.
5度ごとに音像定位が可能な48組のコンボルバの係数
群)cfLx、cfRxが求まる。
Therefore, in order to prevent overflow,
All coefficients of the cancel filters cfLx and cfRx are scaled. Then, by using a window window (cosine window), both ends are set to 0 in accordance with the number of coefficients of an actual convolver (in this embodiment, a final cancellation filter that has been scaled is referred to as a convolver). , Window processing to shorten the effective length of the coefficient. A data group that is thus scaled and finally supplied as a coefficient to the convolver (in this example, 7.
48 sets of convolver coefficient groups) cfLx and cfRx capable of localizing the sound image every 5 degrees are obtained.

【0040】音源からの信号を畳み込み演算して再生
(ステップ107) 例えば、ゲーム機の音響再生装置として、図4に示すよ
うに、ゲーム操作者(聴取者)Mを中心として左右30
度づづ離間して一対のスピーカsp1,sp2を配設
し、これら一対のスピーカsp1,sp2には、一対の
コンボルバ(畳み込み演算処理回路)1,2で処理され
た音響信号が再生されるように構成する。係数ROM3
には、前記ステップ101〜106で求められた7.5
度ごとの48組のコンボルバの係数群cfLx、cfR
xが記憶されている。一対のコンボルバ1,2には、同
一の音源X(例えば、ゲーム用シンセサイザからの飛行
音など)からの信号が供給されると共に、所望の係数c
fLx、cfRx(例えば、飛行音を左後方120度
(θ=240度)の位置に音像定位させたい時は、θ=
240度の係数)が、選択されてコンボルバ1,2に設
定される。例えば、ゲーム機などのメインCPU(中央
演算装置)からの音像定位命令にもとずいてコントロー
ル用サブCPU4が、係数ROM3から所望の定位位置
の係数を一対のコンボルバ1,2に転送する。
A signal from a sound source is convoluted and reproduced (step 107). For example, as a sound reproducing device for a game machine, as shown in FIG.
A pair of loudspeakers sp1 and sp2 are disposed at regular intervals so that sound signals processed by a pair of convolvers (convolution operation processing circuits) 1 and 2 are reproduced on the pair of loudspeakers sp1 and sp2. Constitute. Coefficient ROM3
Is 7.5 calculated in steps 101 to 106.
48 sets of convolver coefficients cfLx, cfR per degree
x is stored. A signal from the same sound source X (for example, a flight sound from a game synthesizer) is supplied to the pair of convolvers 1 and 2, and a desired coefficient c
fLx, cfRx (for example, when the sound image is to be localized at the position of 120 degrees left behind (θ = 240 degrees), θ =
240 °) is selected and set in the convolvers 1 and 2. For example, based on a sound image localization command from a main CPU (central processing unit) of a game machine or the like, the control sub CPU 4 transfers a coefficient at a desired localization position from the coefficient ROM 3 to the pair of convolvers 1 and 2.

【0041】このようにして、一対のコンボルバ1,2
により音源Xからの信号は時間軸上で畳み込み演算処理
がなされて、離間して配設された一対のスピーカsp
1,sp2から再生される。一対のスピーカsp1,s
p2から再生され音は、両耳へのクロストークがキャン
セルされて、所望の位置に音源があるように音像定位し
て、ゲーム操作者(聴取者)Mに聞かれ、極めて現実感
に満ちた音として再生される。コンボルバ1,2の係数
は、例えば操作者Mの操作に応じた飛行機の動きの推移
と共に、最適な音像位置が順次選択され、切換えられ
る。また、飛行音から、例えばミサイル音に変更される
時は、音源Xからのソース音が飛行音からミサイル音に
変更される。このようにして、任意の位置に音像を自由
に定位させられる。
Thus, the pair of convolvers 1 and 2
The signal from the sound source X is subjected to convolution calculation processing on the time axis, and a pair of speakers sp
1 and sp2. A pair of speakers sp1, s
The sound reproduced from p2 is canceled out of the crosstalk to both ears, the sound image is localized so that the sound source is located at a desired position, and the sound is heard by the game operator (listener) M, which is very realistic. Played as sound. As for the coefficients of the convolvers 1 and 2, for example, an optimal sound image position is sequentially selected and switched together with the transition of the movement of the airplane according to the operation of the operator M. When the sound is changed from the flight sound to, for example, a missile sound, the source sound from the sound source X is changed from the flight sound to the missile sound. In this way, the sound image can be freely localized at any position.

【0042】なお、再生のためのトランスジューサとし
てはー対のスピーカsp1,sp2のかわりにヘッドホ
ーンを用いることもできる。この場合は、HRTFの測
定条件が異なるので、係数を別に準備して再生状況に応
じて切換えると良い。また、実施例で説明した、離間し
て配設された一対のトランスジューサ(スピーカ)から
同一の音源が供給された一対のコンボルバで処理した信
号を再生する構成は、音像定位の効果を得るための最小
限の構成を示すものである。よって、必要に応じては、
一対、すなわち、2つ以上のトランスジューサ及びコン
ボルバを追加構成しても良いことはもちろんであり、さ
らに、コンボルバの係数が長い場合などには、係数を分
割して複数個のコンボルバで構成しても良い。
As a transducer for reproduction, a headphone can be used instead of the pair of speakers sp1 and sp2. In this case, since the measurement conditions of the HRTF are different, it is preferable to prepare a coefficient separately and switch according to the reproduction state. Further, the configuration described in the embodiment for reproducing a signal processed by a pair of convolvers to which the same sound source is supplied from a pair of transducers (speakers) disposed at a distance is used to obtain the effect of sound image localization. It shows a minimum configuration. Therefore, if necessary,
Of course, a pair, ie, two or more transducers and convolvers may be additionally configured. Further, when the convolver has a long coefficient, the coefficient may be divided into a plurality of convolvers. good.

【0042】また、上記実施例では、ステップ105の
段階で、(式c),(式d)にもとずいて算出したキャ
ンセルフィルタcfLx、cfRxの伝達特性に対し
て、その中間位置の中間伝達特性を求めた。しかし、ス
テップ101〜103の段階で測定処理された頭部伝達
特性(HRTF)に対して、その中間位置の中間伝達特
性を求めても良く、この場合でも、本発明による算出方
法の効果がある。
In the above embodiment, the transmission characteristics of the cancel filters cfLx and cfRx calculated based on (Equation c) and (Equation d) at the stage of step 105 are compared with the intermediate transmission at the intermediate position. The characteristics were determined. However, an intermediate transfer characteristic at an intermediate position may be obtained with respect to the head transfer characteristic (HRTF) measured in steps 101 to 103. Even in this case, the calculation method according to the present invention has the effect. .

【0043】(実施例2)次に、上記実施例で説明した
中間伝達特性の算出方法を利用した音像定位制御装置に
ついて説明する。上記実施例では、図3及び図4に示す
ように、中間伝達特性を予め算出して、これを音像定位
制御装置の係数ROMに記憶させるものであった。ここ
で説明する音像定位制御装置は、必要に応じて装置側で
中間伝達特性の算出方法をするように構成したものであ
る。
(Embodiment 2) Next, a description will be given of a sound image localization control device using the method for calculating the intermediate transfer characteristic described in the above embodiment. In the above embodiment, as shown in FIGS. 3 and 4, an intermediate transfer characteristic is calculated in advance and stored in the coefficient ROM of the sound image localization control device. The sound image localization control device described here is configured so that the intermediate transfer characteristic is calculated on the device side as necessary.

【0044】図9は音像定位制御装置を示すものであ
る。この装置は、図4に示した音像定位制御装置と同様
の目的とするものであり、その構成上の特徴を特に示す
ものである。係数ROM5には、基本とする伝達特性
(前記ステップ101〜106で予め算出された、例え
ば実測に基ずく音像定位位置15度ごとの24組のコン
ボルバの係数)が記憶された記憶手段である。FFT回
路6,中間伝達特性算出回路7,逆FFT回路8は、周
波数領域で中間伝達特性を算出する手段であり、中間伝
達特性算出回路9は前述したステップ106と同様な方
法で中間伝達特性を算出するものである。
FIG. 9 shows a sound image localization control device. This device has the same purpose as that of the sound image localization control device shown in FIG. 4, and particularly shows its structural features. The coefficient ROM 5 is storage means for storing basic transfer characteristics (coefficients of 24 sets of convolvers for every 15 degrees of the sound image localization position based on actual measurement, for example, calculated in advance in steps 101 to 106). The FFT circuit 6, the intermediate transfer characteristic calculating circuit 7, and the inverse FFT circuit 8 are means for calculating an intermediate transfer characteristic in the frequency domain. The intermediate transfer characteristic calculating circuit 9 calculates the intermediate transfer characteristic in the same manner as in step 106 described above. It is to be calculated.

【0045】係数供給手段(サブCPU)9は、メイン
CPUからの音像定位命令に応じて音像位置の係数をコ
ンボルバ1,2に供給するものである。係数の供給時、
係数ROM5に記憶されている係数であれば、係数供給
手段9はそれを係数ROM5からコンボルバ1,2に供
給する。一方、係数ROM5に記憶されていない係数、
すなわち中間位置の係数であれば、その中間位置を算出
する2つの参照係数(前述したように、中間位置の両側
の参照伝達特性)を係数ROM5からFFT回路6に供
給し、FFT回路6で周波数応答に変換する。そして、
変換した2つ参照伝達特性(周波数応答)をもとに、中
間伝達特性算出回路7で両者の中間伝達特性が算出され
る。算出された中間伝達特性は、逆FFT回路8で時間
軸応答とされて、コンボルバ1,2に供給される。
The coefficient supply means (sub CPU) 9 supplies coefficients of the sound image position to the convolvers 1 and 2 in response to a sound image localization command from the main CPU. When supplying coefficients,
If the coefficient is stored in the coefficient ROM 5, the coefficient supply means 9 supplies it to the convolvers 1 and 2 from the coefficient ROM 5. On the other hand, coefficients not stored in the coefficient ROM 5;
That is, if the coefficient is at the intermediate position, two reference coefficients for calculating the intermediate position (as described above, the reference transfer characteristics on both sides of the intermediate position) are supplied from the coefficient ROM 5 to the FFT circuit 6, and the FFT circuit 6 Convert to response. And
Based on the two converted reference transfer characteristics (frequency response), the intermediate transfer characteristic calculation circuit 7 calculates the intermediate transfer characteristics of both. The calculated intermediate transfer characteristic is converted to a time axis response by the inverse FFT circuit 8 and supplied to the convolvers 1 and 2.

【0046】このように、音像定位制御装置側で、必要
に応じて中間伝達特性の算出するように構成すれば、係
数ROMの容量を小規模にしたままで、音像定位位置を
連続的に変化させて、音像を滑らかに移動を表現するこ
とを容易に実現できる。
As described above, if the sound image localization control device is configured to calculate the intermediate transfer characteristic as required, the sound image localization position is continuously changed while the capacity of the coefficient ROM is kept small. Thus, smooth movement of the sound image can be easily realized.

【0047】なお、係数供給手段(サブCPU)9は、
メインCPUからの音像定位命令に応じて、それに続く
音像定位位置を予想して、予め中間伝達特性を算出して
記憶しておき、次の音像定位命令に応じた係数を即座に
供給できるようにしても良い。
The coefficient supply means (sub CPU) 9
In response to a sound image localization command from the main CPU, a subsequent sound image localization position is predicted, an intermediate transfer characteristic is calculated and stored in advance, and a coefficient corresponding to the next sound image localization command can be immediately supplied. May be.

【0049】(実施例3)実施例2では、複数の音像定
位位置に対応するために、中間伝達特性を算出した例で
あるが、コンボルバ1,2は、定位位置における伝達特
性cfLx,cfRxとして、(式4a),(式4b)
で求めたものを、1回のFIRフィルタ処理により実現
するように構成されたものであった。
(Third Embodiment) In the second embodiment, the intermediate transfer characteristics are calculated to correspond to a plurality of sound image localization positions. However, the convolvers 1 and 2 use the transfer characteristics cfLx and cfRx at the localization positions as the transfer characteristics cfLx and cfRx. , (Equation 4a), (Equation 4b)
Was obtained by one FIR filter process.

【0048】これに対して、この実施例は、図10に示
すように、定位位置における伝達特性cfLx,cfR
xとして、(式4a),(式4b)で求まるものを、3
回のFIRフィルタ処理により実現するように、片側を
3つに分割したのコンボルバで構成したものである。こ
れは、音像定位に用いるスピーカセットsp1,sp2
と受聴者Mとの位置関係を複数準備する場合などに適し
た例である。
On the other hand, in this embodiment, as shown in FIG. 10, the transfer characteristics cfLx, cfR
As x, the value obtained by (Equation 4a) and (Equation 4b) is 3
It is configured by a convolver that divides one side into three parts so as to be realized by the FIR filtering process. This corresponds to speaker sets sp1 and sp2 used for sound image localization.
This is an example suitable for a case where a plurality of positional relations between the user and the listener M are prepared.

【0049】前記した(式4a),(式4b)より、コ
ンボルバの伝達特性cfLx,cfRxは、 cfLx=(h2R・pLx−h2L・pRx)/H (式4a) cfRx=(−h1R・pLx+h1L・pRx)/H ( 〃) ただし、 H=h1L・h2R−h2L・h1R (式4b) である。
From the above (Equation 4a) and (Equation 4b), the transfer characteristics cfLx and cfRx of the convolver are cfLx = (h2R · pLx−h2L · pRx) / H (formula 4a) cfRx = (− h1R · pLx + h1L · pRx) / H (〃) where H = h1L · h2R−h2L · h1R (Equation 4b).

【0050】そこで、共通な係数pLx,pRxに着目
すると、図10のように、一部をクロスさせて片側を3
つに分割した一対のコンボルバ10〜15と、一対の加
算器16,17で構成できる。このように構成すると、
コンボルバ10,13の係数である。pLx,pRxの
みを変更するだけで、音像定位位置を変更できる。した
がって、係数ROM3に準備されていない中間位置に音
像定位させる場合でも、係数(伝達特性)pLx,pR
xについてのみ、上述したような方法で、中間伝達特性
を算出してコンボルバに供給すれば良い。よって、FF
T回路6,中間伝達特性算出回路7,逆FFT回路8か
らなる中間伝達特性を算出する手段の負担が小さくな
る。
Therefore, focusing on the common coefficients pLx and pRx, as shown in FIG.
A pair of convolvers 10 to 15 and a pair of adders 16 and 17 can be used. With this configuration,
These are coefficients of the convolvers 10 and 13. The sound image localization position can be changed only by changing only pLx and pRx. Therefore, even when the sound image is localized at an intermediate position not prepared in the coefficient ROM 3, the coefficients (transfer characteristics) pLx, pR
Only for x, the intermediate transfer characteristic may be calculated and supplied to the convolver by the method described above. Therefore, FF
The burden on the means for calculating the intermediate transfer characteristic, which is composed of the T circuit 6, the intermediate transfer characteristic calculation circuit 7, and the inverse FFT circuit 8, is reduced.

【0051】また、音像定位に用いるスピーカーセット
と受聴者との位置関係を複数準備する時には、例えばゲ
ーム操作者(聴取者)Mを中心として左右30度ずつ離
間して一対のスピーカsp1,sp2を配設される場合
(図4に示す)と、これより狭く左右15度ずつ離間し
て一対のスピーカsp1,sp2を配設される場合(図
4に、括弧して示す)とに対応する時では、実際のシス
テム設置状態に応じて、コンボルバ11,12,14,
15の係数であるh2R/H,−h2L/H,h1L/
H,−h2L/Hを変更すれば良い。このときも、係数
ROM5に記憶準備されていない状態(角度位置)に対
して、上述したような方法で、中間伝達特性を算出して
コンボルバに供給すれば良い。
When preparing a plurality of positional relationships between a speaker set used for sound image localization and a listener, a pair of speakers sp1 and sp2 are separated from each other by, for example, 30 degrees left and right around a game operator (listener) M. When corresponding to a case where the speaker is arranged (shown in FIG. 4) and a case where a pair of speakers sp1 and sp2 are arranged narrower and spaced apart by 15 degrees left and right (shown in parentheses in FIG. 4). Then, depending on the actual system installation state, the convolvers 11, 12, 14,
H2R / H, -h2L / H, h1L /
H, -h2L / H may be changed. Also at this time, the intermediate transfer characteristic may be calculated and supplied to the convolver by the method described above for a state (angular position) not stored and stored in the coefficient ROM 5.

【0052】また、伝達特性は、算出の基礎となる測定
データにおける受聴者の個人差(本人特性、例えば、頭
の大きさ、耳の形状など)などによっても異なる。これ
に対しては、個人差に応じた複数の状態に対して、その
状態の代表的な位置(例えば、30度ごとの12組)だ
けの伝達特性を準備しておき、あとは必要に応じて中間
伝達特性の算出を繰り返せば、細かく位置関係を制御で
きる。また、これとは反対に、個人差に応じた代表的な
状態に対してだけ(例えば、頭の大きい大人と、小さい
幼児の2状態だけ)の伝達特性を準備しておき、あとは
必要に応じて(例えば、大人と幼児の中間である小学生
の場合など)、両者の中間伝達特性の算出しても対応で
きる。
The transfer characteristics also differ depending on the individual differences (personal characteristics, for example, head size, ear shape, etc.) of the listener in the measurement data on which the calculation is based. In response to this, for a plurality of states corresponding to individual differences, transfer characteristics of only representative positions of the states (for example, 12 sets every 30 degrees) are prepared, and then, as necessary. By repeating the calculation of the intermediate transfer characteristic, the positional relationship can be finely controlled. On the other hand, on the contrary, the transfer characteristics of only the representative state corresponding to individual differences (for example, only two states of an adult with a large head and a small infant) are prepared, and the necessary Accordingly, it is also possible to calculate an intermediate transfer characteristic between the two, for example, in the case of an elementary school student between an adult and an infant.

【0053】また、中間伝達特性の算出を利用して、す
なわち、代表的な頭部伝達特性を用いた伝達特性から、
本来測定等では得られない仮想の中間的な頭部伝達特性
に基づく伝達特性を算出し、より多数の個人差を吸収す
るようにすることも可能である。例えば、前記ステップ
101の頭部伝達関数(HRTF)の測定において、測
定の対象となるダミーヘッドは単なる抽象化されたモデ
ルにすぎず、必ずしも一般的に通用する伝達特性が求め
られるわけではない。そこで、複数人の異なる人頭に対
して頭部伝達関数(HRTF)を測定し、各人により異
なる耳,顔,頭などの条件を反映した測定データを得
て、これを参照伝達特性として、中間伝達特性を算出す
る。すると、算出された中間伝達特性は多数の個人差が
吸収された一般的に通用する伝達特性となるので、ゲー
ム機などに利用して音像定位させても、ほとんどの操作
者にその効果を与えることができ、極めて実用的な音像
定位装置を提供できる。
Further, utilizing the calculation of the intermediate transfer characteristic, that is, from the transfer characteristic using the representative head transfer characteristic,
It is also possible to calculate a transfer characteristic based on a virtual intermediate head transfer characteristic that cannot be originally obtained by measurement or the like, and to absorb a greater number of individual differences. For example, in the measurement of the head related transfer function (HRTF) in step 101, the dummy head to be measured is merely an abstracted model, and does not necessarily require a generally accepted transfer characteristic. Therefore, a head related transfer function (HRTF) is measured for a plurality of different heads, and measurement data reflecting conditions such as different ears, faces, and heads is obtained for each person, and this is used as a reference transfer characteristic. Calculate the intermediate transfer characteristics. Then, since the calculated intermediate transfer characteristic is a transfer characteristic that is generally accepted in which a large number of individual differences are absorbed, even if the sound image is localized using a game machine or the like, the effect is given to most operators. Thus, an extremely practical sound image localization device can be provided.

【0054】また、上述したように、音像定位に用いる
スピーカーセットと受聴者との位置関係や、受聴者の個
人差などに対応すべく、複数の係数群を切換える場合で
は、これらシステム構成に関する情報(システム情報)
を検知する手段や入力する手段を設けて、これらのシス
テム情報を制御手段4に入力して、係数群が切換えられ
るようにしておくと良い。
As described above, when a plurality of coefficient groups are switched in order to cope with the positional relationship between a speaker set used for sound image localization and a listener and individual differences among the listeners, information on these system configurations is used. (System information)
It is preferable to provide a means for detecting and inputting the information, and to input such system information to the control means 4 so that the coefficient group can be switched.

【0055】(実施例3)ところで、上記実施例では、
装置の係数ROM3,5には、インパルス応答(時間軸
応答)のデータが記憶準備されている例であった。この
実施例は、周波数応答として、データが装置の係数RO
M23に記憶準備されている例である。図11に示す装
置では、畳み込み演算回路が、切だし窓掛け手段18,
FFT変換手段19,乗算手段20,逆FFT手段2
1,加算手段22により構成され、音源からの信号を周
波数領域で畳み込み演算するように構成されている。係
数ROM23に記憶された基本的な伝達特性を参照し
て、その中間位置の伝達特性を算出するには、そのま
ま、前記した中間伝達特性算出回路7より、前述したス
テップ106と同様な方法で中間伝達特性を算出する。
この装置においては、中間伝達特性を算出するためのF
FT回路,逆FFT回路が不要である。
(Embodiment 3) By the way, in the above embodiment,
In this example, the impulse response (time axis response) data is stored and prepared in the coefficient ROMs 3 and 5 of the apparatus. In this embodiment, as the frequency response, the data is the coefficient RO of the device.
This is an example in which storage is prepared in M23. In the device shown in FIG. 11, the convolution operation circuit includes the windowing means 18,
FFT transformation means 19, multiplication means 20, inverse FFT means 2
1, an adding means 22, which is configured to perform a convolution operation on a signal from a sound source in a frequency domain. To calculate the transfer characteristic at the intermediate position with reference to the basic transfer characteristic stored in the coefficient ROM 23, the intermediate transfer characteristic calculating circuit 7 directly calculates the intermediate transfer characteristic by the same method as in step 106 described above. Calculate the transfer characteristics.
In this device, F for calculating the intermediate transfer characteristic is used.
No FT circuit or inverse FFT circuit is required.

【0056】[0056]

【発明の効果】以上詳述したように、本発明になる音像
定位制御における中間伝達特性の算出方法は、予め測定
または算出された複数の参照伝達特性から、周波数−振
幅特性は前記参照伝達特性間の振幅特性の相乗平均と
し、周波数−位相特性は前記参照伝達特性間のベクトル
平均の位相成分として、前記参照伝達特性間の中間伝達
特性を算出するようにしたものであるから、参照伝達特
性の位相角の開きが大きい場合でも、中間伝達特性の振
幅が相乗平均として実測に近い値として算出される。よ
って、その算出した中間伝達特性を用いた時に、音像定
位の劣化や音質の劣化が生じることがない。したがっ
て、中間伝達特性を利用して、音像を360度の広範囲
にわたり、ほぼ連続させて任意の位置に定位させること
ができる。
As described above in detail, the method for calculating the intermediate transfer characteristic in the sound image localization control according to the present invention uses the reference transfer characteristic based on a plurality of reference transfer characteristics measured or calculated in advance. Since the geometrical average of the amplitude characteristics between the reference transfer characteristics is calculated, and the frequency-phase characteristic is calculated as the phase component of the vector average between the reference transfer characteristics, the intermediate transfer characteristic between the reference transfer characteristics is calculated. Is large, the amplitude of the intermediate transfer characteristic is calculated as a geometric mean as a value close to the actual measurement. Therefore, when the calculated intermediate transfer characteristics are used, deterioration of sound image localization and deterioration of sound quality do not occur. Therefore, the sound image can be localized at an arbitrary position almost continuously over a wide range of 360 degrees using the intermediate transfer characteristic.

【0057】さらに、参照伝達特性から実測値に近い中
間伝達特性が算出されるので、計算による中間伝達特性
の算出を数回繰り返しても、実用に耐え得る伝達特性が
得られ、実測が必要な伝達特性が少なくなる。よって、
データ(伝達特性)の測定収集工程が減少する。さら
に、音像定位制御装置の係数ROMなどに記憶させてお
くデータ(伝達特性)の容量が減少するので、装置の規
模を小さくできる。
Further, since the intermediate transfer characteristic close to the actually measured value is calculated from the reference transfer characteristic, even if the calculation of the intermediate transfer characteristic by calculation is repeated several times, a transfer characteristic that can be used practically is obtained, and actual measurement is required. Transfer characteristics are reduced. Therefore,
The process of collecting and collecting data (transfer characteristics) is reduced. Further, since the capacity of data (transfer characteristics) stored in the coefficient ROM or the like of the sound image localization control device is reduced, the size of the device can be reduced.

【0058】また、測定した代表的な伝達特性から、実
際の測定では得られない仮想的な中間伝達特性を算出す
ることにより、測定条件の差,聴取者の個人差などを吸
収した伝達特性が得られる。したがって、この算出した
中間伝達特性を利用することにより、音像定位の効果が
人により大幅に異なることがなくなり、極めて実用的な
音像定位制御装置を提供することができる。
Further, by calculating a virtual intermediate transfer characteristic that cannot be obtained by actual measurement from the measured representative transfer characteristics, the transfer characteristics absorbing the differences in the measurement conditions, the individual differences of the listeners, and the like can be obtained. can get. Therefore, by utilizing the calculated intermediate transfer characteristics, the effect of sound image localization does not significantly differ from person to person, and an extremely practical sound image localization control device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる音像定位制御における中間伝達特
性の算出方法を説明する図で、特に、振幅の算出原理を
説明する図である。
FIG. 1 is a diagram illustrating a method of calculating an intermediate transfer characteristic in sound image localization control according to the present invention, and is a diagram particularly illustrating a principle of calculating an amplitude.

【図2】中間伝達特性の振幅を説明する図で、(A)は
実施例、(B)は従来例である。
FIGS. 2A and 2B are diagrams for explaining an amplitude of an intermediate transfer characteristic, wherein FIG. 2A is an embodiment and FIG.

【図3】本発明になる中間伝達特性の算出方法を利用し
た音像定位制御方法の各ステップを示すチャートであ
る。
FIG. 3 is a chart showing steps of a sound image localization control method using a calculation method of an intermediate transfer characteristic according to the present invention.

【図4】本発明になる中間伝達特性の算出方法を利用し
た音像定位装置の基本的な構成図である。
FIG. 4 is a basic configuration diagram of a sound image localization apparatus using a method of calculating an intermediate transfer characteristic according to the present invention.

【図5】音像定位制御の基本原理を示す構成図である。FIG. 5 is a configuration diagram showing a basic principle of sound image localization control.

【図6】HRTF(頭部伝達関数)の測定システムを示
す構成図である。
FIG. 6 is a configuration diagram showing an HRTF (head-related transfer function) measurement system.

【図7】HRTF測定のポイントを説明する図である。FIG. 7 is a diagram illustrating points of HRTF measurement.

【図8】キャンセルフィルタの算出を説明する図であ
る。
FIG. 8 is a diagram illustrating calculation of a cancel filter.

【図9】本発明になる中間伝達特性の算出方法を利用し
た音像定位制御装置の第2の実施例を示す構成図であ
る。
FIG. 9 is a configuration diagram showing a second embodiment of the sound image localization control device using the calculation method of the intermediate transfer characteristic according to the present invention.

【図10】本発明になる中間伝達特性の算出方法を利用
した音像定位制御装置の第3の実施例を示す構成図であ
る。
FIG. 10 is a configuration diagram showing a third embodiment of a sound image localization control device using a method for calculating an intermediate transfer characteristic according to the present invention.

【図11】本発明になる中間伝達特性の算出方法を利用
した音像定位制御装置の第4の実施例を示す構成図であ
る。
FIG. 11 is a configuration diagram showing a fourth embodiment of the sound image localization control device using the calculation method of the intermediate transfer characteristic according to the present invention.

【図12】(A)は参照伝達特性の位相角の開きが小さ
い場合の算術平均、(B)は参照伝達特性の位相角の開
きが大きい場合の算術平均を示す図である。
12A is a diagram illustrating an arithmetic average when the difference between the phase angles of the reference transfer characteristics is small, and FIG. 12B is a diagram illustrating the arithmetic average when the difference between the phase angles of the reference transfer characteristics is large.

【図13】2つの参照伝達特性の周波数−振幅特性の例
である。
FIG. 13 is an example of frequency-amplitude characteristics of two reference transfer characteristics.

【図14】(A)は中間伝達特性の周波数−振幅特性の
実測値、(B)は参照伝達特性から従来の算出方法で求
めた中間伝達特性の周波数−振幅特性、(C)は参照伝
達特性から本発明の算出方法で求めた中間伝達特性の周
波数−振幅特性である。
14A is a measured value of a frequency-amplitude characteristic of an intermediate transfer characteristic, FIG. 14B is a frequency-amplitude characteristic of an intermediate transfer characteristic obtained from a reference transfer characteristic by a conventional calculation method, and FIG. It is a frequency-amplitude characteristic of the intermediate transfer characteristic obtained from the characteristic by the calculation method of the present invention.

【図15】(A)は中間伝達特性の周波数−位相特性の
実測値、(B)は参照伝達特性から算術平均して求めた
中間伝達特性の周波数−位相特性である。
FIG. 15A is a measured value of the frequency-phase characteristic of the intermediate transfer characteristic, and FIG. 15B is a frequency-phase characteristic of the intermediate transfer characteristic obtained by arithmetic averaging from the reference transfer characteristic.

【符号の説明】[Explanation of symbols]

1,2,10〜15 コンボルバ 3,5,23 係数ROM 4 係数供給手段 7 中間伝達特性算出手段 101 頭部伝達関数(HRTF)を測定するステップ 102 HRTFのインパルス応答を算出するステップ 103 IR(インパルス応答)を整形処理するステッ
プ 104 キャンセルフィルタ(参照伝達特性)を算出す
るステップ 105 中間伝達特性を算出するステップ 106 キャンセルフィルタのスケーリングをするステ
ップ 107 音源からの信号を畳み込み演算して再生するス
テップ sp1,sp2 スピーカ h1L,h1R スピーカsp1から受聴者左右耳まで
の頭部伝達特性 h2L,h2R スピーカsp2から受聴者左右耳まで
の頭部伝達特性 pLx,pRx 目的とする定位位置xに実際のスピー
カーを配置したときの受聴者左右耳までの頭部伝達特性 cfLx,cfRx キャンセルフィルタ(の係数) DM ダミーヘッド(または人頭) M 聴取者(ゲーム操作者、聴取者) X 音源 x 目的とする音像定位位置 X(i),Y(i) 参照伝達特性 R(i) 中間伝達特性 R 振幅 r 位相(位相角)
1, 2, 10 to 15 Convolver 3, 5, 23 Coefficient ROM 4 Coefficient supply means 7 Intermediate transfer characteristic calculation means 101 Step of measuring head related transfer function (HRTF) 102 Step of calculating impulse response of HRTF 103 IR (Impulse) Response shaping step 104 Computing the cancel filter (reference transfer characteristic) 105 Computing the intermediate transfer characteristic 106 Scaling the cancel filter 107 Convolving and reproducing the signal from the sound source sp1, sp2 Speakers h1L, h1R Head transfer characteristics from speaker sp1 to listener's left and right ears h2L, h2R Head transfer characteristics from speaker sp2 to listener's left and right ears pLx, pRx An actual speaker is arranged at a desired localization position x. Sometimes Head transfer characteristics to the listener's right and left ears cfLx, cfRx Cancel filter (coefficient of) DM Dummy head (or head) M Listener (game operator, listener) X Sound source x Target sound image localization position X (i) , Y (i) reference transfer characteristic R (i) intermediate transfer characteristic R amplitude r phase (phase angle)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】離間して配設された複数のトランスジュー
サから、同一の音源が供給され所定の伝達特性を有する
複数の信号変換回路で処理した信号を再生して、聴取者
に前記トランスジューサとは異なる任意の位置に音像が
定位しているように感じさせる音像定位制御における伝
達特性の算出方法であって、 予め測定または算出された複数の参照伝達特性から、周
波数−振幅特性は前記参照伝達特性間の振幅特性の相乗
平均とし、周波数−位相特性は前記参照伝達特性間のベ
クトル平均の位相成分として、前記参照伝達特性間の中
間伝達特性を算出するようにしたことを特徴とする音像
定位制御における中間伝達特性の算出方法。
A signal reproduced from a plurality of transducers arranged at a distance and supplied by a plurality of signal conversion circuits having the same sound source and having a predetermined transmission characteristic is reproduced by a plurality of transducers. A method of calculating a transfer characteristic in sound image localization control for causing a sound image to be localized at a different arbitrary position, wherein a frequency-amplitude characteristic is obtained from a plurality of reference transfer characteristics measured or calculated in advance. Sound image localization control, wherein an intermediate transfer characteristic between the reference transfer characteristics is calculated as a phase component of a vector average between the reference transfer characteristics, and a frequency-phase characteristic is a geometric mean of amplitude characteristics between the reference transfer characteristics. Calculation method of intermediate transfer characteristics in.
【請求項2】離間して配設された複数のトランスジュー
サから、同一の音源が供給され所定の伝達特性を有する
複数の信号変換回路で処理した信号を再生して、聴取者
に前記トランスジューサとは異なる任意の位置に音像が
定位しているように感じさせる音像定位制御装置におい
て、 予め測定または算出された複数の参照伝達特性から、周
波数−振幅特性は前記参照伝達特性間の振幅特性の相乗
平均とし、周波数−位相特性は前記参照伝達特性間のベ
クトル平均の位相成分として、前記参照伝達特性間の中
間伝達特性を算出する手段を有し、 前記算出された中間伝達特性にもとずいて音像定位制御
するようにしたことを特徴とする音像定位制御装置。
2. A plurality of transducers arranged at a distance reproduce signals processed by a plurality of signal conversion circuits having the same sound source and having predetermined transmission characteristics, and provide the listener with a signal from the plurality of transducers. In a sound image localization control device that makes it feel as if a sound image is localized at a different arbitrary position, a frequency-amplitude characteristic is calculated by calculating a geometric mean of amplitude characteristics between the reference transfer characteristics from a plurality of reference transfer characteristics measured or calculated in advance. The frequency-phase characteristic has means for calculating an intermediate transfer characteristic between the reference transfer characteristics as a phase component of a vector average between the reference transfer characteristics, and a sound image based on the calculated intermediate transfer characteristic is provided. A sound image localization control device characterized by performing localization control.
【請求項3】離間して配設された複数のトランスジュー
サから、同一の音源が供給され所定の伝達特性を有する
複数の信号変換回路で処理した信号を再生して、聴取者
に前記トランスジューサとは異なる任意の位置に音像が
定位しているように感じさせるべくシステム構成される
音像定位制御装置であって、 予め測定または算出された複数の参照伝達特性と、周波
数−振幅特性は前記参照伝達特性間の振幅特性の相乗平
均とし、周波数−位相特性は前記参照伝達特性間のベク
トル平均の位相成分として、前記複数の参照伝達特性か
ら算出された中間伝達特性とが、記憶される伝達特性記
憶手段と、 構成されたシステム情報に応じて、前記伝達特性記憶手
段の伝達特性を適宜選択して前記信号変換回路に供給す
る手段とを有し、 構成されたシステムに応じた音像定位制御するようにし
たことを特徴とする音像定位制御装置。
3. A signal processed by a plurality of signal conversion circuits provided with the same sound source and having a predetermined transfer characteristic is reproduced from a plurality of transducers arranged at a distance, and the listener is provided with the transducer. What is claimed is: 1. A sound image localization control system configured to make a sound image seem to be localized at a different arbitrary position, wherein a plurality of reference transfer characteristics measured or calculated in advance and the frequency-amplitude characteristics are the reference transfer characteristics. Transfer characteristic storing means for storing a geometric mean of amplitude characteristics between the frequency characteristics and a frequency-phase characteristic as a phase component of a vector average between the reference transfer characteristics and an intermediate transfer characteristic calculated from the plurality of reference transfer characteristics. Means for appropriately selecting a transfer characteristic of the transfer characteristic storage means in accordance with the configured system information and supplying the selected transfer characteristic to the signal conversion circuit. Sound image localization control apparatus being characterized in that so as to sound image localization control according to Temu.
【請求項4】請求項1に記載した音像定位制御における
中間伝達特性の算出方法にしたがって、 実測された代表的な伝達特性から仮想的な中間伝達特性
を算出して、 この算出した中間伝達特性にもとずいて音像定位制御す
るようにしたことを特徴とする音像定位制御方法。
4. A virtual intermediate transfer characteristic is calculated from representative measured transfer characteristics in accordance with the method for calculating an intermediate transfer characteristic in the sound image localization control according to claim 1. A sound image localization control method, wherein sound image localization control is performed based on the sound image localization control.
【請求項5】離間して配設された複数のトランスジュー
サから、同一の音源が供給され所定の伝達特性を有する
複数の信号変換回路で処理した信号を再生して、聴取者
に前記トランスジューサとは異なる任意の位置に音像が
定位しているように感じさせる音像定位制御における伝
達特性の算出方法であって、 予め測定または算出された異なる音像定位位置に対する
複数の参照伝達特性から、周波数−振幅特性は前記参照
伝達特性間の振幅特性の相乗平均とし、周波数−位相特
性は前記参照伝達特性間のベクトル平均の位相成分とし
て、前記参照伝達特性の中間の音像定位位置に対する中
間伝達特性を算出するようにしたことを特徴とする音像
定位制御における中間伝達特性の算出方法。
5. A plurality of transducers arranged at a distance reproduces signals processed by a plurality of signal conversion circuits having the same sound source supplied thereto and having predetermined transfer characteristics. A method of calculating a transfer characteristic in sound image localization control that makes a sound image appear to be localized at a different arbitrary position, wherein a frequency-amplitude characteristic is obtained from a plurality of reference transfer characteristics measured or calculated in advance for different sound image localization positions. Is the geometric mean of the amplitude characteristics between the reference transfer characteristics, and the frequency-phase characteristic is the phase component of the vector average between the reference transfer characteristics, and calculates an intermediate transfer characteristic for an intermediate sound image localization position of the reference transfer characteristics. A method for calculating an intermediate transfer characteristic in sound image localization control, characterized in that:
【請求項6】請求項5に記載した音像定位制御における
中間伝達特性の算出方法にしたがって、 実測された360/M(M:2以上の整数)度ごとの参
照伝達特性をもとに、中間伝達特性をN回(N:1以上
の整数)算出して、 360/(M・2)度ごとに音像定位制御するように
したことを特徴とする音像定位制御方法。
6. A method for calculating an intermediate transfer characteristic in the sound image localization control according to claim 5, wherein the intermediate transfer characteristic is calculated on the basis of the measured reference transfer characteristic for each 360 / M (M: an integer of 2 or more) degrees. A sound image localization control method, wherein a transfer characteristic is calculated N times (N: an integer equal to or greater than 1) and sound image localization control is performed every 360 / (M · 2N ) degrees.
JP35300092A 1992-12-11 1992-12-11 Method for calculating intermediate transfer characteristics in sound image localization control and sound image localization control method and apparatus using the same Expired - Lifetime JP2827777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35300092A JP2827777B2 (en) 1992-12-11 1992-12-11 Method for calculating intermediate transfer characteristics in sound image localization control and sound image localization control method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35300092A JP2827777B2 (en) 1992-12-11 1992-12-11 Method for calculating intermediate transfer characteristics in sound image localization control and sound image localization control method and apparatus using the same

Publications (2)

Publication Number Publication Date
JPH06181600A JPH06181600A (en) 1994-06-28
JP2827777B2 true JP2827777B2 (en) 1998-11-25

Family

ID=18427889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35300092A Expired - Lifetime JP2827777B2 (en) 1992-12-11 1992-12-11 Method for calculating intermediate transfer characteristics in sound image localization control and sound image localization control method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP2827777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046217B2 (en) 2004-08-27 2011-10-25 Panasonic Corporation Geometric calculation of absolute phases for parametric stereo decoding

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845407B2 (en) * 2005-03-30 2011-12-28 クラリオン株式会社 How to generate a reference filter
CN102395098B (en) * 2005-09-13 2015-01-28 皇家飞利浦电子股份有限公司 Method of and device for generating 3D sound
KR101333031B1 (en) * 2005-09-13 2013-11-26 코닌클리케 필립스 일렉트로닉스 엔.브이. Method of and device for generating and processing parameters representing HRTFs
JP4780119B2 (en) * 2008-02-15 2011-09-28 ソニー株式会社 Head-related transfer function measurement method, head-related transfer function convolution method, and head-related transfer function convolution device
JP2009206691A (en) 2008-02-27 2009-09-10 Sony Corp Head-related transfer function convolution method and head-related transfer function convolution device
JP5540581B2 (en) 2009-06-23 2014-07-02 ソニー株式会社 Audio signal processing apparatus and audio signal processing method
JP5533248B2 (en) 2010-05-20 2014-06-25 ソニー株式会社 Audio signal processing apparatus and audio signal processing method
JP2012004668A (en) 2010-06-14 2012-01-05 Sony Corp Head transmission function generation device, head transmission function generation method, and audio signal processing apparatus
JP5954147B2 (en) * 2012-12-07 2016-07-20 ソニー株式会社 Function control device and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046217B2 (en) 2004-08-27 2011-10-25 Panasonic Corporation Geometric calculation of absolute phases for parametric stereo decoding

Also Published As

Publication number Publication date
JPH06181600A (en) 1994-06-28

Similar Documents

Publication Publication Date Title
JP3976360B2 (en) Stereo sound processor
US6611603B1 (en) Steering of monaural sources of sound using head related transfer functions
CN101009953B (en) Acoustic characteristic corrector
US5579396A (en) Surround signal processing apparatus
US6574339B1 (en) Three-dimensional sound reproducing apparatus for multiple listeners and method thereof
US5404406A (en) Method for controlling localization of sound image
US5761315A (en) Surround signal processing apparatus
JP2010520671A (en) Speech spatialization and environmental simulation
JP2827777B2 (en) Method for calculating intermediate transfer characteristics in sound image localization control and sound image localization control method and apparatus using the same
JPH08182100A (en) Method and device for sound image localization
JPH06245300A (en) Sound image localization controller
JP2870333B2 (en) Sound image localization control device
JPH09135499A (en) Sound image localization control method
JP2910891B2 (en) Sound signal processing device
JPH08205298A (en) Sound image localization controller
JPH09191500A (en) Method for generating transfer function localizing virtual sound image, recording medium recording transfer function table and acoustic signal edit method using it
JP2755081B2 (en) Sound image localization control method
JP2924502B2 (en) Sound image localization control device
JP2924539B2 (en) Sound image localization control method
JP2870562B2 (en) Method of sound image localization control
JPH06198074A (en) Video game machine
JPH08102999A (en) Stereophonic sound reproducing device
JP2985557B2 (en) Surround signal processing device
JP2985919B2 (en) Sound image localization control device
JPH09327100A (en) Headphone reproducing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 15