JP2824131B2 - Granulated blast furnace fine aggregate - Google Patents

Granulated blast furnace fine aggregate

Info

Publication number
JP2824131B2
JP2824131B2 JP19325990A JP19325990A JP2824131B2 JP 2824131 B2 JP2824131 B2 JP 2824131B2 JP 19325990 A JP19325990 A JP 19325990A JP 19325990 A JP19325990 A JP 19325990A JP 2824131 B2 JP2824131 B2 JP 2824131B2
Authority
JP
Japan
Prior art keywords
water
fine aggregate
blast furnace
granulated
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19325990A
Other languages
Japanese (ja)
Other versions
JPH0483747A (en
Inventor
春樹 大前
三郎 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16304974&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2824131(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP19325990A priority Critical patent/JP2824131B2/en
Publication of JPH0483747A publication Critical patent/JPH0483747A/en
Application granted granted Critical
Publication of JP2824131B2 publication Critical patent/JP2824131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンクリート用およびモルタル用の細骨材
に関する。
Description: TECHNICAL FIELD The present invention relates to fine aggregate for concrete and mortar.

従来技術 コンクリートおよびモルタル用細骨材として近年、川
砂の涸渇並びに採取規制のため、海砂、山砂等の使用量
が増大する傾向があるが、海砂の使用に際しては、除塩
が必要であるほか内陸部まで運搬するのに運搬コストが
嵩むなどの問題がある。山砂に関しては、例えば日本に
広く分布する花崗岩の風化残積土である真砂土を使用す
る場合、大量採取及び内陸部における使用時の運搬コス
トの低減が可能であるという利点がある反面、風化によ
り脆弱化し、微粉末が多く吸水率等が大きいことから真
砂土を用いたコンクリートは、ある一定のコンシステン
シーを得るために多くの単位水量を必要とし、材料分
離、収縮ひゞ割れ、強度、耐久性、水密性などにおける
問題並びに単位セメント量の増大といった問題を生ず
る。
Prior art In recent years, the use of sea sand and mountain sand has tended to increase due to the depletion of river sand and the regulation of extraction as fine aggregate for concrete and mortar. In addition, there is a problem that the transportation cost increases to transport to the inland area. Regarding mountain sand, for example, when masago, which is weathered residual soil of granite widely distributed in Japan, is used, there is an advantage that it is possible to collect a large amount and reduce the transportation cost when using it inland, but weathering Concrete using sand sand requires a large amount of water in order to obtain a certain consistency due to its weakness due to the large amount of fine powder and high water absorption, etc. Problems such as durability and watertightness and an increase in the amount of unit cement are caused.

発明が解決しようとする課題 真砂土は以上のように、吸水率、安定性損失重量、洗
い損失重量が高く、0.15mm以下の微粉末と2.5〜5mmの粗
粒分が非常に多く粒度分布も偏っているという品質を有
している。
Problems to be Solved by the Invention As described above, the sand absorption is high in water absorption, stability loss weight, and washing loss weight, and the fine powder of 0.15 mm or less and the coarse particles of 2.5 to 5 mm are very large and the particle size distribution is also large. It has the quality of being biased.

本発明は、こうした真砂土の品質を改善し、単位水量
の減少並びに強度の向上を図ることを目的とする。
An object of the present invention is to improve the quality of such sand, to reduce the unit water volume and to improve the strength.

課題を解決手段 本発明は、銑鉄を製造する際に生成される副産物の水
砕クラグ(以下単に水砕という)が安価で、吸水率、安
定性損失重量並びに洗い損失重量が低く、しかも粒度分
布も0.3〜2.5mmの中間粒度が多いという品質を持つ点に
着目し、これを混合した細骨材を得ることにより上記の
目的を達成しようとするものである。
Means for Solving the Problems The present invention provides an inexpensive granulated crush (hereinafter simply referred to as granulated) as a by-product when producing pig iron, a low water absorption rate, a low stability loss weight and a low washing loss weight, and a particle size distribution. The present invention is intended to achieve the above object by obtaining a fine aggregate obtained by mixing fine particles with a quality of 0.3 to 2.5 mm having a large intermediate particle size.

すなわち本発明の高炉水砕細骨材は、真砂土に水砕を
40〜60%好ましくは50%代替したことを特徴とするもの
である。
That is, the granulated blast furnace fine aggregate of the present invention
40 to 60%, preferably 50%.

本発明者らは、AE剤を用いた水砕代替真砂土AEコンク
リートにおいて、単位水量等を一定にして細骨剤に使用
する水砕の代替率を変化させ(これを以下同一配合とい
う)、スランプ試験を行ったところ、第1図に示される
ように水セメント比45、55、65%のいづれの場合も水砕
代替率が50%まではスランプが大幅に増加することを見
出した。第1表に示されるように、スランプが増大する
水砕代替率50%のとき、0.3〜5mmまでの粒度分布がほゞ
均等になっていることによりワーカビリティが改善さ
れ、スランプが増加したものと考えられる。
The present inventors, in the granulated earth sand substitute AE concrete using AE agent, by changing the replacement rate of granulation used for fine aggregates with constant unit water volume etc. (this is hereinafter referred to as the same blend), As a result of the slump test, as shown in FIG. 1, it was found that the slump significantly increased when the water cement ratio was 45%, 55% or 65%, and the water granulation replacement ratio was up to 50%. As shown in Table 1, when the slump increases and the water granulation replacement rate is 50%, the workability is improved and the slump is increased because the particle size distribution from 0.3 to 5 mm is almost uniform. it is conceivable that.

本発明者らは次に各水砕代替率において、目標スラン
プ8±1cm、目標空気量6±1%が得られるように、単
位水量を増減させた(このことを以下調整配合とい
う)。第2図に水砕代替真砂土AEコンクリートの水砕代
替率と単位水量の関係を示す。同図から見られるよう
に、水砕代替率50%のときに単位水量が最も減少し、水
セメント比45%、水砕代替率50%のときに約20kg/m3
減少した。これは水砕を代替することにより粒度が著し
く改善されたことと、水砕の吸水率が非常に低いことが
水砕代替真砂土AEコンクリートのコンシステンシーを改
善したものと考えられる。
The present inventors then increased or decreased the unit water amount so as to obtain a target slump of 8 ± 1 cm and a target air amount of 6 ± 1% at each of the water granulation substitution rates (this is hereinafter referred to as “adjustment blending”). Fig. 2 shows the relationship between the water granulation alternative rate and the unit water volume of the granulated sand-mass earth AE concrete. As can be seen from the figure, the unit water volume decreased the most when the water granulation replacement ratio was 50%, and decreased by about 20 kg / m 3 when the water cement ratio was 45% and the water granulation replacement ratio was 50%. This is considered to be due to the remarkable improvement of particle size by substituting granulation and the extremely low water absorption of granulation, which improved the consistency of granulated sand-sand substitute AE concrete.

コンクリートの圧縮強度は、コンクリートに含まれる
空気量が一定で、骨材強度がコンクリート強度に影響し
ない範囲(410kg f/cm2強度以内)で、次式によって求
められるセメント空間比を大きくすることによって高め
ることができる。
The compressive strength of concrete is determined by increasing the cement space ratio determined by the following formula within the range where the amount of air contained in the concrete is constant and the aggregate strength does not affect the concrete strength (within 410 kg f / cm 2 strength). Can be enhanced.

C:セメントの絶対容積 V:コンクリート中にできる空隙 第2表は同一配合及び調整配合によるセメント空間比
と圧縮強度の関係を示す。
C: Absolute volume of cement V: Void formed in concrete Table 2 shows the relationship between the cement space ratio and compressive strength with the same and adjusted blending.

真砂土に代替する水砕として本発明者らはまた、ロサ
ンゼルス試験機を用い、水砕10kgに対して鋼球10個を投
入し、回転数を250rpmにして加工した水砕を使用してみ
たところ、粒形が改善され、流動性が良くなったほか未
加工水砕を使用したものと比ベコンクリートの圧縮強度
が高められた。これは水砕が潰されて比表面積が大きく
なり、セメントペーストの付着強度が増したためと考え
られる。
The present inventors also used a Los Angeles test machine as a granulator to substitute for sand sand, used a granulator processed by turning 10 rpm into 10 steel balls and rotating at 250 rpm. However, the grain shape was improved, the fluidity was improved, and the compressive strength of the concrete using the raw water granulation was increased. This is presumably because the water granulation was crushed and the specific surface area was increased, and the adhesive strength of the cement paste was increased.

第3図は、未加工水砕と上記加工水砕を用いた水砕代
替真砂土AEコンクリートのセメント水比と圧縮強度の関
係を示すものである。
FIG. 3 shows the relationship between the cement water ratio and the compressive strength of the granulated sand substitute AE concrete using unprocessed water granulation and the above-mentioned processed water granulation.

なお、真砂土に代替した水砕は本来、遅延型高性能減
水剤を使用しなくてもよいため、水砕代替率の増加に伴
い遅延型高性能減水剤の過剰添加となって凝結の始発時
間、終結時間に遅れが生じがちとなる。そのため水砕代
替率の増加に伴い遅延型高性能減水剤の添加量を減少す
るか或いは標準型の高性能減水剤を用いる必要がある。
In addition, since granulated granules replaced with sand sand originally do not require the use of a delayed-type high-performance water reducing agent, the delayed-type high-performance water reducing agent is added excessively with the increase in the rate of water granulation replacement, and the first flocculation occurs. Time and closing time tend to be delayed. Therefore, it is necessary to reduce the amount of the delayed-type high-performance water reducing agent or to use a standard-type high-performance water reducing agent with an increase in the water granulation replacement ratio.

なお、実施例についてはコンクリート用細骨材として
記述したが、モルタル用細骨材に用いても当然同様な効
果を奏することはいうまでもない。
Although the embodiment has been described as a fine aggregate for concrete, it goes without saying that the same effect can be obtained by using the fine aggregate for mortar.

発明の効果 本発明のコンクリート用及びモルタル用細骨材は以上
のように、真砂上に水砕を40〜60%代替し、粒度改善し
てなるものでこれを用いることによりコンクリートのワ
ーカビリティを改善し、単位水量の減少並びに強度を向
上させることができる。
Effect of the Invention As described above, the fine aggregate for concrete and mortar of the present invention replaces water granulation on masago by 40 to 60% and improves the particle size. By using this, the workability of concrete is improved. It can improve the unit water amount as well as the strength.

【図面の簡単な説明】[Brief description of the drawings]

第1図は水砕代替率とスランプの関係を示すグラフ図、
第2図は水砕代替率と単位水量の関係を示すグラフ図、
第3図は加工水砕と未加工水砕のセメント水比と圧縮強
度の関係を示すグラフ図である。
FIG. 1 is a graph showing the relationship between the water granulation substitution rate and slump.
Figure 2 is a graph showing the relationship between the water granulation replacement rate and the unit water volume,
FIG. 3 is a graph showing the relationship between the cement water ratio and the compressive strength of processed and unprocessed water granulation.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真砂土に銑鉄を製造する際に生成される副
産物の水砕スラグを40〜60%代替してなる高炉水砕細骨
材。
1. Granulated blast furnace fine aggregate obtained by substituting 40-60% of granulated slag as a by-product generated when pig iron is produced in masago.
【請求項2】真砂土に代替される水砕スラグは50%であ
る請求項1に記載の高炉水砕細骨材。
2. The granulated blast furnace fine aggregate according to claim 1, wherein the granulated slag replaced with the masago is 50%.
【請求項3】水砕スラグは加工して比表面積を大きくし
てなる請求項1又は2に記載の高炉水砕細骨材。
3. The granulated blast furnace fine aggregate according to claim 1, wherein the granulated slag is processed to increase the specific surface area.
JP19325990A 1990-07-21 1990-07-21 Granulated blast furnace fine aggregate Expired - Lifetime JP2824131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19325990A JP2824131B2 (en) 1990-07-21 1990-07-21 Granulated blast furnace fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19325990A JP2824131B2 (en) 1990-07-21 1990-07-21 Granulated blast furnace fine aggregate

Publications (2)

Publication Number Publication Date
JPH0483747A JPH0483747A (en) 1992-03-17
JP2824131B2 true JP2824131B2 (en) 1998-11-11

Family

ID=16304974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19325990A Expired - Lifetime JP2824131B2 (en) 1990-07-21 1990-07-21 Granulated blast furnace fine aggregate

Country Status (1)

Country Link
JP (1) JP2824131B2 (en)

Also Published As

Publication number Publication date
JPH0483747A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
JP7084111B2 (en) Solidifying material for highly organic soil or humus soil
JP4585753B2 (en) Ground improvement material
JP7114385B2 (en) Method for producing calcia-improved soil
JP4109376B2 (en) Method for producing soil mortar using lime-treated soil and embankment method using the same
JP2824131B2 (en) Granulated blast furnace fine aggregate
JP6316576B2 (en) Cement composition
JPH10236862A (en) Backfilling material
JP7059039B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP2006016212A (en) Concrete composition
WO2001004426A1 (en) Lime-improved soil mortar and method for production thereof and fluidization treatment method using the same
JP4847056B2 (en) Concrete containing crushed shell
KR100538374B1 (en) Preparing method of solidifier and solidification of soil thereof
JP2001040652A (en) Soil improvement method and solidifying material
JP4112666B2 (en) Solidified material
JP4485136B2 (en) Manufacturing method for port concrete
JPS636593B2 (en)
JP3501543B2 (en) Ground consolidated material
JP4017609B2 (en) Method for producing fluidized soil
CN107512885A (en) A kind of ready-mixed concrete and production method with artificial sand and thin river sand
JPS58176155A (en) Preparation of grout material for cavity filling
JPH10130043A (en) Heavy mortar
JP3266112B2 (en) Ground improvement method
JP3569696B2 (en) Concrete production method
JP4979365B2 (en) Concrete using concrete admixture
JP7081939B2 (en) concrete