JP2819579B2 - Bending magnets for charged particle devices - Google Patents

Bending magnets for charged particle devices

Info

Publication number
JP2819579B2
JP2819579B2 JP1004381A JP438189A JP2819579B2 JP 2819579 B2 JP2819579 B2 JP 2819579B2 JP 1004381 A JP1004381 A JP 1004381A JP 438189 A JP438189 A JP 438189A JP 2819579 B2 JP2819579 B2 JP 2819579B2
Authority
JP
Japan
Prior art keywords
coil
return yoke
charged particle
coils
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1004381A
Other languages
Japanese (ja)
Other versions
JPH02183956A (en
Inventor
敏恵 牛島
忠利 山田
俊二 山本
照徳 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1004381A priority Critical patent/JP2819579B2/en
Publication of JPH02183956A publication Critical patent/JPH02183956A/en
Application granted granted Critical
Publication of JP2819579B2 publication Critical patent/JP2819579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は荷電粒子の進行方向を曲げるために使用さ
れる荷電粒子装置用偏向電磁石に関し、特にそのコイル
部分の電磁力の改良に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bending electromagnet for a charged particle device used to bend the traveling direction of charged particles, and more particularly to an improvement in an electromagnetic force of a coil portion thereof. .

〔従来の技術〕[Conventional technology]

第9図は例えば特願昭63−110822号明細書「荷電粒子
装置用偏向電磁石」に示された従来のバナナ型偏向電磁
石装置を示す平面図であり、第10図は第9図のX−X線
断面図である。また第11図、第12図は従来の他の例によ
るバナナ型偏向電磁石装置を示す平面図及びそのXII−X
II線断面図である。図において、(1)はリターンヨー
ク、(2)は内径側コイル巻線、(3)は外径側コイル
巻線、(4)はコイル巻線(2),(3)間に介在する
アパーチヤー、(5)はバナナ型コイル、(7)は電流
方向である。通常、第9図,第10図に示す装置の構成
は、コイル(2),(3)が常電導コイルの場合であ
り、第11図,第12図に示す装置の構成は、コイル
(2),(3)が超電導コイルの場合である。
FIG. 9 is a plan view showing a conventional banana-type bending electromagnet apparatus disclosed in, for example, Japanese Patent Application No. 63-110822, "Bending Electromagnet for Charged Particle Apparatus," and FIG. It is an X-ray sectional view. FIGS. 11 and 12 are plan views showing a banana-type bending electromagnet apparatus according to another conventional example and its XII-X.
FIG. 2 is a sectional view taken along line II. In the figure, (1) is a return yoke, (2) is an inner diameter coil winding, (3) is an outer diameter coil winding, and (4) is an aperture interposed between the coil windings (2) and (3). , (5) are the banana coils, and (7) is the current direction. Normally, the configuration of the device shown in FIGS. 9 and 10 is a case where the coils (2) and (3) are normal conducting coils, and the configuration of the device shown in FIGS. ) And (3) are the cases of superconducting coils.

次に動作について説明する。偏向電磁石は、磁界によ
るローレンツカを利用して、荷電粒子を曲げるために用
いられる。コイル(2),(3)に電流を通電すると、
アパーチヤー(4)に磁界が発生する。アパーチヤー
(4)内を荷電粒子が通過するとき、荷電粒子はローレ
ンツカを受けてその進行方向を曲げられる。
Next, the operation will be described. The bending electromagnet is used to bend charged particles using Lorentzka by a magnetic field. When a current is applied to the coils (2) and (3),
A magnetic field is generated in the aperture (4). When the charged particles pass through the aperture (4), the charged particles receive Lorentzka and are bent in the traveling direction.

ところでアパーチヤー(4)に磁界が発生すると、コ
イル(2),(3)とリターンヨーク(1)との間にマ
クスウエルの応力が働く。力の方向は第13図に示すよう
にコイルの上下方向に|F1|,|F2|の応力が働いて、お互
いに引き合うか、又はコイルがリターンヨーク(1)に
引き寄せられる。また、|F3|,|F4|のように内径側コイ
ル(2)は内側リターンヨーク方向へ、外径側コイル
(3)は外側リターンヨーク方向である。この際コイル
(2),(3)は1対のバナナコイルであるので、応力
の強い方向へ引かれることとなる。
When a magnetic field is generated in the aperture (4), Maxwell stress acts between the coils (2) and (3) and the return yoke (1). As for the direction of the force, as shown in FIG. 13, the stress of | F 1 |, | F 2 | acts in the vertical direction of the coil to attract each other or the coil is drawn to the return yoke (1). Also, as in | F 3 | and | F 4 |, the inner diameter side coil (2) is directed toward the inner return yoke, and the outer diameter side coil (3) is directed toward the outer return yoke. At this time, since the coils (2) and (3) are a pair of banana coils, they are pulled in the direction of high stress.

ここで、リターンヨーク(1)は磁界のリターンが通
るヨークであり、通常は鉄製である。
Here, the return yoke (1) is a yoke through which the return of the magnetic field passes, and is usually made of iron.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の荷電粒子装置用偏向電磁石は以上のように構成
されているので、コイルにかかるマクスウエルの応力が
極めて大きく、そのためコイルを支えるサポートが必要
であつたり、リターンヨークに付けてしまうことが必要
となり、そのためコイルとリターンヨークの間に構造物
を挿入することができないなどの問題点があつた。|F
3|,|F4|の応力においては、コイル外径方向の応力|F3|
が極めて大きかつた。
Since the conventional bending electromagnet for charged particle devices is configured as described above, the Maxwell stress applied to the coil is extremely large, so it is necessary to support the coil and attach it to the return yoke. Therefore, there is a problem that a structure cannot be inserted between the coil and the return yoke. | F
3 |, | F 4 | stress in the coil radial direction | F 3 |
Was extremely large.

また、コイルとして超電導コイルを使用した場合、コ
イルを冷却するためのクライオがコイルとリターンヨー
クの間に必要となる。このため従来の装置では、コイル
を支えるために極めて大きなサポートが必要となり、そ
のためクライオへの侵入熱が極めて大きくなるという問
題があつた。
When a superconducting coil is used as a coil, a cryo for cooling the coil is required between the coil and the return yoke. For this reason, in the conventional apparatus, an extremely large support is required to support the coil, and therefore, there is a problem that the heat penetrating into the cryo becomes extremely large.

この発明は上記のような問題点を解消するためになさ
れたもので、コイル(2),(3)にかかる応力を平衡
させ、コイル径方向の電磁力サポートがほとんど必要の
ない荷電粒子装置用偏向電磁石装置を得ることを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is intended for a charged particle device which balances the stress applied to the coils (2) and (3) and hardly needs an electromagnetic force support in the coil radial direction. An object is to obtain a bending electromagnet device.

また、上下コイルが引き合う力とコイルがリターンヨ
ークに引かれる力を平衡させ、コイルの垂直方向の電磁
力サポートをほとんど必要としない荷電粒子装置用偏向
電磁石装置を得ることを目的とする。
It is another object of the present invention to obtain a bending electromagnet device for a charged particle device, which balances the force of attracting the upper and lower coils with the force of the coil being pulled by the return yoke, and hardly needs the electromagnetic force support in the vertical direction of the coil.

〔課題を解決するための手段〕 この発明に係る荷電粒子装置用偏向電磁石は、内径側
コイル巻線と外径側コイル巻線からなるコイル、及びこ
のコイルを取り囲むリターンヨークを備え、内径側コイ
ルと内側リターンヨーク間の距離を、外径側コイルと外
側のリターンヨーク間の距離より小さく構成することに
より、コイルとリターンヨーク間に働く径方向の応力を
平衡させたものである。
[Means for Solving the Problems] A deflection electromagnet for a charged particle device according to the present invention includes a coil including an inner diameter coil winding and an outer diameter coil winding, and a return yoke surrounding the coil. The distance between the outer return coil and the outer return yoke is made smaller than the distance between the outer diameter coil and the outer return yoke, thereby balancing the radial stress acting between the coil and the return yoke.

また、内径側コイル巻線と外径側コイル巻線からな
り、このコイル巻線のそれぞれがアパーチヤーを介在し
て対称に対向するように配置したコイル、及びこのコイ
ルとギャップを設けてコイルを取り囲むリターンヨーク
を備え、コイル巻線とリターンヨークとの間の距離と、
コイル巻線とコイルの対称面との間の距離を実質的に同
一にしたものである。
Further, a coil composed of an inner diameter side coil winding and an outer diameter side coil winding, each of which is disposed so as to be symmetrically opposed to each other with an aperture interposed therebetween, and a gap is provided between the coil and the coil to surround the coil With a return yoke, the distance between the coil winding and the return yoke,
The distance between the coil winding and the plane of symmetry of the coil is substantially the same.

〔作用〕[Action]

この発明においてはコイルとリターンヨークとの間に
働くそれぞれの応力を内径側コイルと内側リターンヨー
ク間距離を、外径側コイルと外側リターンヨーク間距離
よりも短かくすることにより、コイルとリターンヨーク
間に働く径方向の応力を平衡させたので、コイル支持材
がほとんど必要なくなり構造物の挿入、コイルの設計を
容易にすることができる。
In the present invention, the respective stresses acting between the coil and the return yoke are reduced by making the distance between the inner diameter side coil and the inner return yoke shorter than the distance between the outer diameter side coil and the outer return yoke. Since the radial stress acting between them is balanced, the coil supporting material is hardly needed, and the insertion of the structure and the design of the coil can be facilitated.

また、上下のコイルがお互いに引きあう応力と、コイ
ルが上側リターンヨークに引かれる応力を、コイルと上
下コイル対称面との距離と、コイルと上側リターンヨー
ク間距離を実質的に等しくすることにより平衡させるこ
とができる。それによりコイル支持材がほとんど必要な
くなり構造物の挿入、コイルの設計を容易にすることが
できる。
Also, the stress that the upper and lower coils pull each other and the stress that the coil is pulled by the upper return yoke are obtained by making the distance between the coil and the upper and lower coil symmetry plane and the distance between the coil and the upper return yoke substantially equal. Can be balanced. As a result, almost no coil supporting material is required, and the insertion of the structure and the design of the coil can be facilitated.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第
1図はこの発明の一実施例による荷電粒子用偏向電磁石
を示す断面図であり、図において、(1)はリターンヨ
ーク、(2)は内径側コイル巻線、(3)は外径側コイ
ル巻線、(4)はビームの通るアパーチヤーである。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a charged particle bending electromagnet according to an embodiment of the present invention. In FIG. 1, (1) is a return yoke, (2) is an inner diameter coil winding, and (3) is an outer diameter side. The coil winding, (4), is an aperture through which the beam passes.

この実施例において、内径側コイル巻線(2)と内側
リターンヨーク(1)間の距離(t1)を180mm、外径側
コイル巻線(3)と外側リターンヨーク(1)間の距離
(t2)を300mm、上下リターンヨーク幅650mm、内側リタ
ーンヨーク幅100mm、外側リターンヨーク幅450mm、コイ
ル断面120mm×120mmとしている。
In this embodiment, the distance (t 1 ) between the inner diameter coil winding (2) and the inner return yoke ( 1 ) is 180 mm, and the distance (t 1 ) between the outer diameter coil winding (3) and the outer return yoke (1) is ( t 2 ) is 300 mm, the upper and lower return yoke width is 650 mm, the inner return yoke width is 100 mm, the outer return yoke width is 450 mm, and the coil cross section is 120 mm × 120 mm.

偏向電磁石は磁界によるローレンツカを利用して荷電
粒子を曲げるために用いられる。コイル(2),(3)
に電流を通電すると、アパーチヤー(4)に磁界が発生
する。アパーチヤー(4)内を荷電粒子が通過するとき
荷電粒子はローレンツカを受けてその進行を曲げられ
る。
A bending electromagnet is used to bend charged particles using Lorentzka by a magnetic field. Coil (2), (3)
When a current is supplied to the aperture (4), a magnetic field is generated in the aperture (4). When the charged particles pass through the aperture (4), the charged particles are subjected to Lorentzka and are bent.

リターンヨーク(1)は磁界のリターンが通るヨーク
であり、通常は鉄製である。
The return yoke (1) is a yoke through which the return of the magnetic field passes, and is usually made of iron.

ところでアパーチヤー(4)に磁界が発生するとコイ
ル(2),(3)とリターンヨークの間にマクスウエル
の応力が働く。力の方向は内径側コイル(2)はリター
ンヨーク(1)内側方向へ、外径側コイルは外側リター
ンヨーク方向へ引かれる。この際コイル(2),(3)
は1対のバナナコイルであるので応力の強い方向へ引か
れることとなる。実際曲率半径の長い外側方向への力が
強いためコイル(2),(3)は外側リターンヨーク
(1)へ引き寄せられることとなる。
When a magnetic field is generated in the aperture (4), Maxwell stress acts between the coils (2) and (3) and the return yoke. The direction of the force is such that the inner diameter side coil (2) is pulled toward the inside of the return yoke (1), and the outer diameter side coil is drawn toward the outer return yoke. At this time, coils (2) and (3)
Is a pair of banana coils, it is pulled in the direction of high stress. Actually, the coils (2) and (3) are attracted to the outer return yoke (1) because the force in the outer direction having a longer radius of curvature is stronger.

コイル(2),(3)とリターンヨーク(1)の間に
構造物を挿入する場合、コイル(2),(3)とリター
ンヨーク(1)の間にギヤツプを設ける必要がある。そ
の時上記のような応力の差のためにコイルを支えるサポ
ートが必要となる。しかし、上記実施例では内径側コイ
ル(2)・内側リターンヨーク間距離(t1)を、外径側
コイル(3)・外側リターンヨーク間距離(t2)よりも
短かくすることによりそれぞれのコイルに働くマクスウ
エルの応力を平衡させることができる。このためコイル
(2),(3)をサポートする支持材の必要なく、コイ
ル(2),(3)とリターンヨーク(1)との間にギヤ
ツプをもうけることができ、コイル(2),(3)とリ
ターンヨーク(1)との間に構造物を挿入することがで
きる。またコイルの設計が容易となる。
When inserting a structure between the coils (2) and (3) and the return yoke (1), it is necessary to provide a gap between the coils (2) and (3) and the return yoke (1). At that time, a support for supporting the coil is required due to the difference in stress as described above. However, in the above embodiment, the distance (t 1 ) between the inner diameter side coil (2) and the inner return yoke is made shorter than the distance (t 2 ) between the outer diameter side coil (3) and the outer return yoke. The Maxwell stress acting on the coil can be balanced. For this reason, a gap can be provided between the coils (2) and (3) and the return yoke (1) without the need for a support member for supporting the coils (2) and (3), and the coils (2) and (3) can be provided. A structure can be inserted between 3) and the return yoke (1). Also, the coil design becomes easy.

この実施例による応力と比較例としてt1=250mm、t2
=200mmとした時の応力を下の表に示す。コイルに流し
た電流密度を2000A/mm2とした時のアパーチヤー(4)
の中心磁場(T)、外径側コイルにかかる力|F1|(ton/
rad)、内径側コイルにかかる力|F2|(ton/rad)、上記
力の差|F1|−|F2|(ton/rad)の値を実施例と比較例に
対してそれぞれ求めたものである。
The stress according to this example and t 1 = 250 mm, t 2
The table below shows the stresses when 200 mm was set. Aperture when the current density passed through the coil is 2000 A / mm 2 (4)
Center magnetic field (T), the force on the outer coil | F 1 | (ton /
rad), the force | F 2 | (ton / rad) applied to the inner diameter side coil, and the value of the difference | F 1 | − | F 2 | (ton / rad) of the above-mentioned forces are obtained for the example and the comparative example, respectively. It is a thing.

上記表によれば、|F1|−|F2|が比較例7.63ton/radに
対し、実施例5.60ton/radとなり、マツクスウエルの応
力の差を平衡させるのに効果があることがわかる。
According to the above table, | F 1 | − | F 2 | is 7.60 ton / rad in Example, compared with 7.63 ton / rad in Comparative Example, indicating that it is effective in balancing the difference in the stress of Matsukuswell. .

第2図はこの発明の他の実施例による荷電粒子用偏向
電磁石を示す断面図であり、(8)はコイルの対称面で
ある。この例では、コイル巻線(2),(3)とコイル
の対称面(8)との間の距離(t4)と、コイル巻線
(2),(3)とリターンヨーク(1)との間の距離
(t3)とを実質的に同一にしており、例えばt3=79mm、
t4=79mm、上下リターンヨーク幅450mm、内側リターン
ヨーク幅100mm、外側リターンヨーク幅450mm、コイル断
面120mm×120mmで構成している。アパーチヤー(4)に
磁界が発生すると、上下コイル間が相互に引き合う電磁
力と、コイルがリターンヨークに引き寄せられる電磁力
が発生する。この際、コイル(2),(3)は上記電磁
力の強い方へと引かれることとなる。実際コイル
(2),(3)とリターンヨーク(1)の間に構造物を
挿入する場合コイル(2),(3)とリターンヨーク
(1)の間にギヤツプを設ける必要がある。その際、コ
イルを支えるサポートが必要となる。しかし、上記実施
例ではコイル(2),(3)とリターンヨーク(1)と
の距離t3とコイル(2),(3)と上下コイル対称面と
の距離t4を等しくすることにより、前記の2つの電磁力
を平衡させることができる。このためコイル(2),
(3)をサポートする支持材の必要なくコイル(2),
(3)とリターンヨーク(1)との間にギヤツプを設け
ることができ、コイル(2),(3)とリターンヨーク
(1)との間に構造物を挿入することができる。またコ
イルの設計が容易となる。
FIG. 2 is a sectional view showing a charged particle bending electromagnet according to another embodiment of the present invention, and (8) is a plane of symmetry of the coil. In this example, the distance (t 4 ) between the coil windings (2), (3) and the plane of symmetry (8) of the coil, the coil windings (2), (3) and the return yoke (1) Is substantially the same as (t 3 ), for example, t 3 = 79 mm,
t 4 = 79 mm, upper and lower return yoke width 450 mm, inner return yoke width 100 mm, outer return yoke width 450 mm, coil cross section 120 mm x 120 mm. When a magnetic field is generated in the aperture (4), an electromagnetic force that attracts the upper and lower coils to each other and an electromagnetic force that causes the coil to be attracted to the return yoke are generated. At this time, the coils (2) and (3) are pulled toward the stronger electromagnetic force. When a structure is actually inserted between the coils (2) and (3) and the return yoke (1), it is necessary to provide a gap between the coils (2) and (3) and the return yoke (1). At that time, support for supporting the coil is required. However, the coil in the above embodiment (2), a distance t 3 and the coil of the return yoke (1) (2), by equalizing the distance t 4 between the upper and lower coil symmetry plane and (3) (3), The two electromagnetic forces can be balanced. Therefore, the coil (2),
Coil (2), without the need for supporting material to support (3)
A gap can be provided between (3) and the return yoke (1), and a structure can be inserted between the coils (2) and (3) and the return yoke (1). Also, the coil design becomes easy.

第7図はt4=79mmとし、t3=50,79,100mmでの電磁力
の比較を示すグラフであり、横軸はt3(mm)、縦軸は第
8図のFに示すように、外側への電磁力(Kg/rad)を示
している。この実施例では、t3=79mm、t4=79mmとし、
電磁力を平衡させている。
FIG. 7 is a graph showing a comparison of electromagnetic force when t 4 = 79 mm and t 3 = 50, 79,100 mm. The horizontal axis is t 3 (mm), and the vertical axis is as shown in F of FIG. , The electromagnetic force to the outside (Kg / rad). In this embodiment, t 3 = 79 mm, t 4 = 79 mm,
Electromagnetic force is balanced.

上記実施例では、t3=t4の場合について述べたが、こ
れに限るものではなく、上下コイル間の吸引力と鉄心と
コイル間の吸引力をバランスさせることにより上下コイ
ル間の吸引力をほとんど0にすれば、上下コイル間のサ
ポートをなくすことができる。従つて上記実施例のよう
にt3=t4で必ずしも成立しなくてもよく、上下コイル間
の吸引力が最も小さくなるような関係にt3とt4を決めれ
ばよい。例えば第7図によれば、t3がt4よりわずかに大
きい時に上下コイル間の電磁力が0となる。
In the above embodiment, the case of t 3 = t 4 has been described. However, the present invention is not limited to this, and the attractive force between the upper and lower coils is balanced by the attractive force between the upper and lower coils and the attractive force between the iron core and the coil. If it is almost zero, the support between the upper and lower coils can be eliminated. Therefore, it is not always necessary to establish t 3 = t 4 as in the above embodiment, and t 3 and t 4 may be determined in such a manner that the attraction between the upper and lower coils is minimized. For example, according to Figure 7, t 3 is the electromagnetic force is zero between the upper and lower coil when slightly larger than t 4.

この発明に係る荷電粒子装置用偏向電磁石の利用分野
として、例えばSOR光(Syhcrotron Orbital Radiatio
n)の発生装置がある。SOR光とは電子の軌道を磁場によ
つて偏向させたとき、軌道接線方向に発生する波長数Å
〜数10Åの光である。この発明の説明を行うに当たつて
はSOR光の取り出し用真空チエンバーについては触れて
はいないが、SOR光を取出す場合には外径側リターンヨ
ークに直線状の貫通孔を設け、この孔よりSOR孔を電磁
石外部に取り出せばよい。
The field of application of the bending electromagnet for the charged particle device according to the present invention is, for example, SOR light (Syhcrotron Orbital Radiatio).
n) There is a generator. SOR light is the number of wavelengths generated in the tangent direction of an orbit when the orbit of an electron is deflected by a magnetic field.
~ Several tens of light. In describing the present invention, a vacuum chamber for extracting SOR light is not described, but when extracting SOR light, a straight through hole is provided in the outer diameter side return yoke, and a hole is formed from this hole. The SOR hole may be taken out of the electromagnet.

なお、上記実施例では1対のバナナ型コイルについて
示したがバナナ型コイルが2対以上であつても良く、上
記実施例と同様の効果を奏することができる。また第3
図と第4図は第1図においてt1=180mm、t2=300mm、上
下リターンヨーク幅650mm、内径リターンヨーク幅100m
m、外径リターンヨーク幅450mmとした場合の実施例であ
り、上記実施例と同様の効果を奏することができる。ま
た、第5図と第6図に示すようにD型と呼ばれるコイル
(6)に鉄心がついた型状の電磁石でも良く、この場合
も上記実施例と同様の効果を奏することができる。ま
た、D型コイルが3対以上あつてもよく、この場合も上
記実施例と同様の効果を奏することができる。また、コ
イル(2),(3)に超電導コイルを使用した場合、コ
イル支持材はコイルの取付位置の偏心による電磁力のみ
受けもてばよいので、サポートが極めて小さくてよく、
そのためコイルへの熱の侵入を極めて小さくすることが
できる。また、上記実施例では、第1図,第2図に示す
ようにコイルの径方向の電磁力の平衡と垂直方向の電磁
力の平衡をそれぞれ別々に実施しているが、同時にコイ
ルの径方向と垂直方向の電磁力を平衡させるように構成
することもできる。
In the above embodiment, a pair of banana coils is shown. However, two or more pairs of banana coils may be provided, and the same effects as in the above embodiment can be obtained. Also the third
FIGS. 4 and 4 show t 1 = 180 mm, t 2 = 300 mm, upper and lower return yoke widths 650 mm, inner diameter return yoke width 100 m in FIG.
m, the outer diameter of the return yoke is 450 mm, and the same effect as the above embodiment can be obtained. Further, as shown in FIGS. 5 and 6, a D-shaped coil (6) having an iron core attached to a coil (6) may be used. In this case, the same effect as in the above embodiment can be obtained. Further, three or more pairs of D-shaped coils may be provided, and in this case, the same effect as in the above embodiment can be obtained. Also, when superconducting coils are used for the coils (2) and (3), the coil support needs to receive only the electromagnetic force due to the eccentricity of the coil mounting position, so that the support may be extremely small.
Therefore, the penetration of heat into the coil can be extremely reduced. Further, in the above embodiment, the balance of the electromagnetic force in the radial direction of the coil and the balance of the electromagnetic force in the vertical direction are separately performed as shown in FIGS. And the electromagnetic force in the vertical direction can be balanced.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、内径側コイル巻線
と外径側コイル巻線からなるコイル、及びこのコイルを
取り囲むリターンヨークを備える荷電粒子装置用偏向電
磁力において、内径側コイルと内側のリターンヨーク間
の距離を、外径側コイルと外側のリターンヨーク間の距
離より小さく構成することにより、コイルとリターンヨ
ーク間に働く径方向の応力を平衡させたので、コイル径
方向の電磁力サポートをほとんど不必要にできる荷電粒
子装置用偏向電磁石を得ることができる効果がある。
As described above, according to the present invention, in the deflection electromagnetic force for the charged particle device including the coil including the inner diameter side coil winding and the outer diameter side coil winding, and the return yoke surrounding the coil, the inner diameter side coil and the inner side By setting the distance between the return yokes smaller than the distance between the outer diameter side coil and the outer return yoke, the radial stress acting between the coil and the return yoke is balanced, so that the electromagnetic force in the coil radial direction There is an effect that a bending electromagnet for a charged particle device that can hardly require a support can be obtained.

また、内径側コイル巻線と外径側コイル巻線からな
り、このコイル巻線のそれぞれがアパーチヤーを介在し
て対称に対向するように配置したコイル、及びこのコイ
ルとギャップを設けてコイルを取り囲むリターンヨーク
を備える荷電粒子装置用偏向電磁石において、コイル巻
線とリターンヨークとの間の距離と、コイル巻線とコイ
ルの対称面との間の距離を実質的に同一にしたことによ
り、コイルに働く電磁力を平衡させることができ、コイ
ル垂直方向の電磁力サポートをほとんど不必要にできる
荷電粒子装置用偏向電磁石を得ることができる効果があ
る。
Further, a coil composed of an inner diameter side coil winding and an outer diameter side coil winding, each of which is disposed so as to be symmetrically opposed to each other with an aperture interposed therebetween, and a gap is provided between the coil and the coil to surround the coil In the deflection electromagnet for a charged particle device having a return yoke, the distance between the coil winding and the return yoke and the distance between the coil winding and the plane of symmetry of the coil are made substantially the same. The working electromagnetic force can be balanced, and there is an effect that a bending electromagnet for a charged particle device can be obtained in which the electromagnetic force support in the vertical direction of the coil is almost unnecessary.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による荷電粒子装置用偏向
電磁石の要部を示す断面図、第2図はこの発明の他の実
施例による荷電粒子装置用偏向電磁石の要部を示す断面
図、第3図はさらに他の実施例を示す平面図、第4図は
第3図のIV−IV線断面図、第5図はこの発明のさらに他
の実施例による荷電粒子装置用偏向電磁石を示す平面
図、第6図は第5図のVI−VI線断面図、第7図は他の実
施例に係り、コイルとリターンヨーク間の距離に対する
電磁力を示すグラフ、第8図はその説明図、第9図は従
来の荷電粒子装置用偏向電磁石を示す平面図、第10図は
第9図のX−X線断面図、第11図は従来の荷電粒子装置
用偏向電磁石の他の例を示す平面図、第12図は第11図の
XII−XII線断面図、第13図は従来の電磁石にかかる力を
示す説明図である。 図中、(1)はリターンヨーク、(2)は内径側コイル
巻線、(3)は外径側コイル巻線、(4)はアパーチヤ
ーである。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing a main part of a deflection electromagnet for a charged particle device according to one embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a main part of a deflection electromagnet for a charged particle device according to another embodiment of the present invention. FIG. 3 is a plan view showing still another embodiment, FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 3, and FIG. 5 shows a deflection electromagnet for a charged particle device according to still another embodiment of the present invention. FIG. 6 is a sectional view taken along the line VI-VI of FIG. 5, FIG. 7 is a graph showing electromagnetic force with respect to a distance between a coil and a return yoke, and FIG. FIG. 9, FIG. 9 is a plan view showing a conventional deflection electromagnet for a charged particle device, FIG. 10 is a sectional view taken along line XX of FIG. 9, and FIG. 11 is another example of a conventional deflection electromagnet for a charged particle device. FIG. 12 is a plan view of FIG.
FIG. 13 is a sectional view taken along the line XII-XII, and FIG. 13 is an explanatory view showing a force applied to a conventional electromagnet. In the figure, (1) is a return yoke, (2) is an inner diameter coil winding, (3) is an outer diameter coil winding, and (4) is an aperture. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾原 照徳 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社中央研究所内 (56)参考文献 特開 昭63−226900(JP,A) 特開 昭63−228600(JP,A) (58)調査した分野(Int.Cl.6,DB名) G21K 1/093 H05H 7/04 H01J 37/147──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Terunori Ohara 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Inside the Central Research Laboratory of Mitsubishi Electric Corporation (56) References JP-A-63-226900 (JP, A) 63-228600 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G21K 1/093 H05H 7/04 H01J 37/147

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内径側コイル巻線と外径側コイル巻線から
なるコイル、及びこのコイルを取り囲むリターンヨーク
を備える荷電粒子装置用偏向電磁石において、上記内径
側コイルと内側の上記リターンヨーク間の距離を、上記
外径側コイルと外側の上記リターンヨーク間の距離より
小さく構成することにより、上記コイルと上記リターン
ヨーク間に働く径方向の応力を平衡させたことを特徴と
する荷電粒子装置用偏向電磁石。
In a deflection electromagnet for a charged particle device comprising a coil comprising an inner diameter side coil winding and an outer diameter side coil winding, and a return yoke surrounding the coil, between the inner diameter side coil and the inner side return yoke. The distance is smaller than the distance between the outer diameter side coil and the outer return yoke, thereby balancing radial stress acting between the coil and the return yoke. Bending electromagnet.
【請求項2】内径側コイル巻線と外径側コイル巻線から
なり、このコイル巻線のそれぞれがアパーチャーを介在
して対称に対向するように配置したコイル、及びこのコ
イルとギャップを設けて上記コイルを取り囲むリターン
ヨークを備える荷電粒子装置用偏向電磁石において、上
記コイル巻線と上記リターンヨークとの間の距離と、上
記コイル巻線と上記コイルの対称面との間の距離を実質
的に同一にしたことを特徴とする荷電粒子装置用偏向電
磁石。
2. A coil comprising an inner diameter side coil winding and an outer diameter side coil winding, each of which is disposed so as to be symmetrically opposed to each other through an aperture, and provided with this coil and a gap. In the bending electromagnet for a charged particle device including a return yoke surrounding the coil, a distance between the coil winding and the return yoke, and a distance between the coil winding and a plane of symmetry of the coil are substantially reduced. A bending electromagnet for a charged particle device, characterized in that it is the same.
JP1004381A 1989-01-10 1989-01-10 Bending magnets for charged particle devices Expired - Lifetime JP2819579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1004381A JP2819579B2 (en) 1989-01-10 1989-01-10 Bending magnets for charged particle devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1004381A JP2819579B2 (en) 1989-01-10 1989-01-10 Bending magnets for charged particle devices

Publications (2)

Publication Number Publication Date
JPH02183956A JPH02183956A (en) 1990-07-18
JP2819579B2 true JP2819579B2 (en) 1998-10-30

Family

ID=11582781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1004381A Expired - Lifetime JP2819579B2 (en) 1989-01-10 1989-01-10 Bending magnets for charged particle devices

Country Status (1)

Country Link
JP (1) JP2819579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525447B2 (en) * 2010-11-22 2013-09-03 Massachusetts Institute Of Technology Compact cold, weak-focusing, superconducting cyclotron

Also Published As

Publication number Publication date
JPH02183956A (en) 1990-07-18

Similar Documents

Publication Publication Date Title
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
EP0473097A2 (en) System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning
EP0870316B1 (en) Composite concentric-gap magnetic lens and deflector with conical pole pieces
US3878395A (en) Method and means for operating x-ray tubes with rotary anodes
JP2002270397A (en) Septum electromagnet for beam deflection and separation, electromagnet for beam deflection and separation, beam deflecting method
EP0221735A1 (en) Linear motors
JP2819579B2 (en) Bending magnets for charged particle devices
JPS5961763A (en) Apparatus for generating uniform magnetic field
EP0084653A2 (en) Composite concentric-gap magnetic lens
EP0118198A1 (en) Magnets
US5847399A (en) Deflection system
EP0764853B1 (en) Magnet assembly in MRI instrument
US2260725A (en) Electron beam deflection apparatus
JP3782991B2 (en) Wien filter for use in scanning electron microscopes, etc.
KR20130098215A (en) Mass analyzer apparatus and systems operative for focusing ribbon ion beams and for separating desired ion species from unwanted ion species in ribbon ion beams
JP2658491B2 (en) Deflection magnet for charged particle devices
KR100308720B1 (en) Color compensation particle beam column
JPS6012739B2 (en) Objective lenses for scanning electron microscopes, etc.
JP5401198B2 (en) Insertion light source device
JPH0397208A (en) Deflecting electromagnet for charged particle equipment
JPH06349593A (en) Sheet plasma generation method and device
US20220148844A1 (en) Composite solenoid magnetic lens
JPH0515305U (en) Iron core structure of laminated bending magnet
KR920005002B1 (en) Cathode ray tube
JPH04292844A (en) Mass spectro meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11