JPH02183956A - Deflecting electromagnet for charged particle device - Google Patents

Deflecting electromagnet for charged particle device

Info

Publication number
JPH02183956A
JPH02183956A JP1004381A JP438189A JPH02183956A JP H02183956 A JPH02183956 A JP H02183956A JP 1004381 A JP1004381 A JP 1004381A JP 438189 A JP438189 A JP 438189A JP H02183956 A JPH02183956 A JP H02183956A
Authority
JP
Japan
Prior art keywords
coil
return yoke
coils
distance
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1004381A
Other languages
Japanese (ja)
Other versions
JP2819579B2 (en
Inventor
Toshie Ushijima
牛島 敏恵
Tadatoshi Yamada
山田 忠利
Shunji Yamamoto
俊二 山本
Terunori Ohara
尾原 照徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1004381A priority Critical patent/JP2819579B2/en
Publication of JPH02183956A publication Critical patent/JPH02183956A/en
Application granted granted Critical
Publication of JP2819579B2 publication Critical patent/JP2819579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To almost dispense with the electromagnetic force support in the coil diameter direction by making the distance between an inner diameter side coil and an inside return yoke smaller than the distance between an outer diameter side coil and an outside return yoke. CONSTITUTION:The distance t1 between an inner diameter side coil 2 and an inside return yoke is made shorter than the distance t2 between an outer diameter side coil and an outside return yoke, thus the Maxwell stresses applied to respective coils can be balanced. No support material supporting the coils 2 and 3 is required, and the insertion of a structure and the design of coils are facilitated. The distance t3 between the coils 2 and 3 and the return yoke 1 and the distance t4 between the coils 2 and 3 and the vertical coil symmetrical faces are made equal, thus the electromagnetic forces of the above two coils can be balanced. No support material supporting the coils 2 and 3 is required, and the insertion of a structure and the design of coils can be facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野) この発明は荷電粒子の進行方向を曲げるために使用され
る荷電粒子装置用偏向電磁石に関し、特にそのコイル部
分の電磁力の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a bending electromagnet for a charged particle device used to bend the traveling direction of charged particles, and particularly relates to an improvement in the electromagnetic force of the coil portion thereof. .

〔従来の技術1 第9図は例えば特願昭63−110822号明創書「荷
電粒子装置用−向t5a石」に示された従来のバナナ5
1s向電磁石装置を示す平面図であり、第10図は第9
図のX−X線断面図である。また第11図、第12図は
従来の他の例によるバナナ型蝙向1f磁石装置を示す平
面図及びその■−■線断面図である。図において、(1
)はリターンヨーク、(2)は内径側コイル巻線、(3
)は外径側コイル巻線、(4)はコイル巻線(2)、 
(3)間に介在するアパーチャー、(5)はバナナ型コ
イル、(7)は電流方向である。通常。
[Prior art 1] Fig. 9 shows, for example, the conventional banana 5 shown in Japanese Patent Application No. 110822/1982 entitled ``For charged particle devices - t5a stone''.
10 is a plan view showing the 1s direction electromagnet device, and FIG.
It is a sectional view taken along the line XX in the figure. Further, FIGS. 11 and 12 are a plan view and a sectional view taken along the line ■-■ of a banana-shaped 1f magnet device according to another conventional example. In the figure, (1
) is the return yoke, (2) is the inner diameter side coil winding, (3
) is the outer diameter side coil winding, (4) is the coil winding (2),
(3) is an aperture interposed between them, (5) is a banana-shaped coil, and (7) is a current direction. usually.

第9図、第10図に示す装置の構成は、コイル(2)(
3)が常電導コイルの場合であり、第11図、第12図
に示す装置の構成は、コイル(2)、 (3)が超電導
コイルの場合である。
The configuration of the device shown in FIGS. 9 and 10 consists of a coil (2) (
3) is a case where a normal conducting coil is used, and the configuration of the apparatus shown in FIGS. 11 and 12 is a case where the coils (2) and (3) are superconducting coils.

次に動作について説明する。偏向電磁石は、磁界による
ローレンツ力を利用して、荷電粒子を曲げるために用い
られる。コイル(2)、 (3)に電流を通電すると、
アパーチャー(4)に磁界が発生するつアパーチャー(
4)内を荷11t、g1子が通過するとき、荷電粒子は
ローレンツ力を受けてその進行方向を曲げられる、 ところでアパーチャー(4)に磁界が発生すると、コイ
ル(2)、(3B:リターンヨーク(1)との間にマク
スウェルの応力が働り、力の方向は第13図に示すよう
にコイルの上下方向に1rll、 IE”21の応力が
働いて、お互いに引き合うか、又はコイルがリターンヨ
ーク(1)に引き寄せられる。また、lF”31. +
1’4+のように内径側コイル(2)は内側リターンヨ
ーク方向へ、外径側コイル(3)は外側リターンヨーク
方向である。この際コイル(2)、 (3)は1対のバ
ナナコイルであるので、応力の強い方向へ引かれること
となる。
Next, the operation will be explained. Bending electromagnets are used to bend charged particles using the Lorentz force caused by a magnetic field. When current is applied to coils (2) and (3),
A magnetic field is generated in the aperture (4).
4) When the charges 11t and g1 pass through the inside, the charged particles receive the Lorentz force and bend their traveling direction.By the way, when a magnetic field is generated in the aperture (4), the coils (2) and (3B: return yoke Maxwell's stress acts between (1) and the direction of the force is 1rll, IE''21 stress acts in the vertical direction of the coil as shown in Figure 13, and they either pull each other or the coil returns. It is attracted to the yoke (1).Also, lF”31. +
1'4+, the inner diameter side coil (2) is directed toward the inner return yoke, and the outer diameter side coil (3) is directed toward the outer return yoke. At this time, since the coils (2) and (3) are a pair of banana coils, they will be pulled in the direction of the stronger stress.

ここで、リターンヨーク(1)は磁界のリターンが通る
ヨークであり、通常は鉄製である。
Here, the return yoke (1) is a yoke through which the return of the magnetic field passes, and is usually made of iron.

[発明が解決しようとする課題j 従来の荷電粒子装置用偏向電磁石は以上のように構成さ
れているので、コイルにかかるマクスウェルの応力が極
めて大きく、そのためコイルを支えるサポートが必要で
あったり、リターンヨークに付けてしまうことが必要と
なり、そのためコイルとリターンヨークの間に構造物を
挿入することができないなどの問題点があった。、H’
31,11・°41の応力においては、コイル外径方向
の応力IF51が極めて大きかった。
[Problem to be Solved by the Inventionj] Since the conventional bending electromagnet for charged particle devices is configured as described above, the Maxwell's stress applied to the coil is extremely large. It is necessary to attach the coil to the yoke, which poses problems such as the inability to insert a structure between the coil and the return yoke. ,H'
At a stress of 31,11°41, the stress IF51 in the direction of the outer diameter of the coil was extremely large.

また、コイルとして超電導コイルを使用した場合、コイ
ルを冷却するためのクライオがコイルとリターンヨーク
の間に必要となる。このため従来の装置では、コイルを
支えるために極めて大きなサポートが必要となり、その
ためクライオへの浸入熱が極めて大きくなるという問題
があった。
Furthermore, when a superconducting coil is used as the coil, a cryostat for cooling the coil is required between the coil and the return yoke. For this reason, conventional devices require extremely large supports to support the coils, which poses the problem of extremely large amounts of heat entering the cryo.

この発明は上記のような問題点を解消するためになされ
たもので、コイル(2)、 (3)にかかる応力を平衡
させ、コイル径方向の電磁カサポートがほとんど必要の
ない荷電粒子装置用偏向電磁石装置をj停ることを目的
とする。
This invention was made to solve the above-mentioned problems, and it balances the stress applied to the coils (2) and (3), and is suitable for charged particle devices that require almost no electromagnetic force support in the coil radial direction. The purpose is to stop the bending electromagnet device.

また、上下コイルが引き合う力とコイルがリターンヨー
クに引かれる力を平衡させ、コイルの垂直方向の電磁カ
サポートをほとんど必要としない荷電粒子装置用偏向電
磁石装置を得ることを目的とする。
Another object of the present invention is to provide a deflection electromagnet device for a charged particle device that balances the force between the upper and lower coils and the force that the coil is attracted to the return yoke, and that hardly requires an electromagnetic force support in the vertical direction of the coil.

〔課題を解決するための手段1 この発明に係る荷電粒子装置用偏向電磁石は、内径側コ
イル巻線と外径側コイル巻線からなるコイル、及びこの
コイルを取り囲むリターンヨークを備え、内径側コイル
と内側リターンヨーク間の距離を、外径側コイルと外側
のリターンヨーク間の距離より小さく構成したものであ
る。
[Means for Solving the Problems 1] A bending electromagnet for a charged particle device according to the present invention includes a coil consisting of an inner diameter coil winding and an outer diameter coil winding, and a return yoke surrounding this coil. The distance between the coil and the inner return yoke is configured to be smaller than the distance between the outer diameter side coil and the outer return yoke.

また、内径側コイル巻線と外径側コイル巻線からなり、
このコイル巻線のそれぞれがアパーチャーを介在して対
称に対向するように配置したコイル、及びこのコイルを
取り囲むリターンヨークを備え、コイル巻線とリターン
ヨークとの間の距離と、コイル巻線とコイルの対称面と
の間の距離を実質的に同一にしたものである。
In addition, it consists of an inner diameter coil winding and an outer diameter coil winding,
Each of the coil windings includes a coil arranged to face each other symmetrically with an aperture in between, and a return yoke surrounding the coil, and the distance between the coil winding and the return yoke and the distance between the coil winding and the coil The distance between the plane of symmetry and the plane of symmetry is made substantially the same.

〔作用j この発明においてはコイルとリターンヨークとの間に働
くそれぞれの応力を内径側コイルと内側リターンヨーク
間距離を、外径側コイルと外側リターンヨーク間距離よ
りも短かくすることにより平衡させることができる。そ
れによりコイル支持材がほとんど必要なくなり構造物の
挿入、コイルの設計を容易にすることができろう また、上下のコイルがお互いに引きあう応力とコイルが
上側リターンヨークに引かれる応力をコイルと上下コイ
ル対称面との距離と、コイルと上側リターンヨーク間距
離を実質的に等しくすることにより平衡させることがで
きる。それによりコイル支持材がほとんど必要なくなり
構造物の挿入、コイルの設計を容易にすることができる
[Operation j] In this invention, the respective stresses acting between the coil and the return yoke are balanced by making the distance between the inner diameter side coil and the inner return yoke shorter than the distance between the outer diameter side coil and the outer return yoke. be able to. This eliminates the need for coil support materials, making it easier to insert structures and design coils.In addition, the stress caused by the upper and lower coils attracting each other, and the stress caused by the coils being attracted to the upper return yoke, are reduced by the upper and lower coils. Balance can be achieved by making the distance between the coil symmetry plane and the distance between the coil and the upper return yoke substantially equal. This eliminates the need for almost any coil support material, making it easier to insert the structure and design the coil.

〔実施例1 以下、この発明の一実施例を図について説明するう第1
図はこの発明の一実施例による荷電粒子用偏向tt!1
石を示す断面図であり、図において、(1)はリターン
ヨーク、(2)は内径側コイル巻線、(3)は外径側コ
イル巻線、(4)はビームの通るアパーチャーである。
[Example 1] Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
The figure shows the deflection for charged particles tt! according to an embodiment of the present invention. 1
It is a sectional view showing a stone, and in the figure, (1) is a return yoke, (2) is a coil winding on the inner diameter side, (3) is a coil winding on the outer diameter side, and (4) is an aperture through which the beam passes.

この実施例において、内径側コイル巻線(2)と内側リ
ターンヨーク(1)間の距g (tl)を180M、外
径側コイル巻線(3)と外側リターンヨーク(1)間の
距離(t2)を300ag、上下リターンヨーク幅65
0 tm 、内側リターンヨーク幅100m、外側リタ
ーンヨーク幅450M、コイル断面120 M X 1
20 tm  としている。
In this example, the distance g (tl) between the inner diameter side coil winding (2) and the inner return yoke (1) is 180M, and the distance between the outer diameter side coil winding (3) and the outer return yoke (1) is 180M. t2) is 300ag, upper and lower return yoke width is 65
0 tm, inner return yoke width 100m, outer return yoke width 450M, coil cross section 120M x 1
20 tm.

偏向電磁石は磁界によるローレンツ力を利用して荷電粒
子を曲げるために用いられる。コイル(2)(3)に電
流を通電すると、アパーチャー(4)に磁界が発生する
。アパーチャー(4)内を荷電粒子が通過するとき荷電
粒子はローレンツ力を受けてその進行を曲げられる。
Bending electromagnets are used to bend charged particles using the Lorentz force caused by a magnetic field. When current is applied to the coils (2) and (3), a magnetic field is generated in the aperture (4). When a charged particle passes through the aperture (4), it is subjected to a Lorentz force and its progress is bent.

リターンヨーク(1)は磁界のリターンが通るヨークで
あり、通常は鉄製である。
The return yoke (1) is a yoke through which the return of the magnetic field passes, and is usually made of iron.

ところでアパーチャー(4)に磁界が発生するとコイル
(2)、 (3)とリターンヨークの間にマクスウェル
の応力が働く。力の方向は内径側コイル(2)はりター
ンヨーク(1)内側方向へ、外径側コイルは外側リター
ンヨーク方向へ引かれる。この際コイtv (2) +
(3)は1対のバナナコイルであるので応力の強い方向
へ引かれることとなる。実際曲率半径の長い外側方向へ
の力が強いためコイ/v(2)I(3)は外側リターン
ヨーク(1)へ引き寄せられることとなる。
By the way, when a magnetic field is generated in the aperture (4), Maxwell's stress acts between the coils (2), (3) and the return yoke. The direction of the force is that the inner diameter coil (2) is pulled inward of the turn yoke (1), and the outer diameter coil is pulled toward the outer return yoke. At this time Koi tv (2) +
Since (3) is a pair of banana coils, it will be pulled in the direction of stronger stress. In fact, since the force in the outward direction where the radius of curvature is long is strong, the carp/v(2)I(3) is drawn toward the outer return yoke (1).

コイ/”(2)、 (3)とリターンヨーク(1)の間
に構造物を挿入する場合、コイル(2)、 (3)とリ
ターンヨーク(1)の間にギャップを設ける必要がある
。その時上記のような応力の差のためにコイルを支える
サポートが必要となる。しかし、上記実施例では内径側
コイル(2)・内側リターンヨーク間距離(tx)を、
外径側コイル(3)・外側リターンヨークIi5距4 
(+、2) jりも短かくすることによりそれぞれのコ
イルに働くマクスウェルの応力を平衡させることができ
る。
When inserting a structure between the coils (2), (3) and the return yoke (1), it is necessary to provide a gap between the coils (2), (3) and the return yoke (1). At that time, a support is required to support the coil due to the difference in stress as described above.However, in the above embodiment, the distance between the inner diameter side coil (2) and the inner return yoke (tx) is
Outer diameter side coil (3)/outer return yoke Ii5 distance 4
By making (+, 2) j shorter, the Maxwell's stress acting on each coil can be balanced.

このためコイル(2)、 (3)をサポートする支持材
の必要なく、コイル(2)、 (3)とリターンヨーク
(1)との間にギャップをもうけることができ、コイル
(2)、 (3)とリターンヨーク(1)との間に構造
物を挿入することができる。またコイルの設計が容易と
なる。
Therefore, a gap can be created between the coils (2), (3) and the return yoke (1) without the need for supporting materials to support the coils (2), (3). 3) and the return yoke (1). Moreover, the design of the coil becomes easy.

この実施例による応力と比軟例としてtl=250y、
 t2=200amとした時の応力を下の表に示す。
As an example of stress and ratio according to this example, tl=250y,
The stress when t2=200 am is shown in the table below.

コイルに流した電流密Kを2000 A、イーとした時
のアパーチャー(4)の中心磁場(T)、外径側コイル
にかかる力11i’ l l (ton/rad )、
内径側コイルにかかる力tr21 (tOn/rad)
、上記力の差IE”11− IF”21 (tOn/、
d)の値を実施例と比較例に対してそれぞれ求めたもの
である。
When the current density K passed through the coil is 2000 A and E, the central magnetic field (T) of the aperture (4), the force applied to the outer diameter side coil 11i' l l (ton/rad),
Force applied to the inner coil tr21 (tOn/rad)
, the above force difference IE"11-IF"21 (tOn/,
The values of d) were determined for each example and comparative example.

表 上記衣によれば、lF+I −lE”21  が比較例
7.63 ton/radに対し、実施例5゜60 t
on/radとなり、マックスウェルの応力の差を平衡
させるのに効果があることがわかる。
According to the clothes mentioned above, lF+I -lE"21 was 7.63 ton/rad in the comparative example, while it was 60 t in the example 5.
on/rad, and it can be seen that it is effective in balancing the difference in Maxwell's stress.

第2図はこの発明の池の実施例による荷電粒子用偏向を
磁石を示す断面図であり、(8)はコイルの対称面であ
る。この例では、コイル巻線(2)、 (3)とコイル
の対称面(8)との間の距M (t4)と、コイル巻線
(2)、 (3)とリターンヨーク(1)との間の距離
(t3)とを実質的に同一にしており、例えばt3=7
9a*、t4=79B、上下リターンヨーク幅450m
、内偵1リターンヨーク幅Loom、外側リターンヨー
ク幅450萌、コイル断面120HX120四で構成し
ている。アパーチャ(4)に磁界が発生すると、上下コ
イル間が相互に引き合う電磁力と、コイルがリターンヨ
ークに引き寄せられる電磁力が発生する。この際、コイ
ル(2)、 (3)は上記電磁力の強い方へと引かれる
こととなる。実際コイル(2)、 (3)とリターンヨ
ーク(1)の間に構造物を挿入する場合コイル(2)、
 (3)とリターンヨーク(1)の間にギャップを設け
る必要がある。その際、コイルを支えるサポートが必要
となる。しかし、上記実施例ではコイル(2)、 (3
)とリターンヨーク(1)との距離t3とコイル(2)
、 (3)と上下コイル対称面との距4 t4を等しく
することにより、前記の2つの電磁力を平衡させること
ができる。
FIG. 2 is a sectional view showing a magnet for deflecting charged particles according to an embodiment of the present invention, and (8) is a plane of symmetry of the coil. In this example, the distance M (t4) between the coil windings (2), (3) and the plane of symmetry of the coil (8), and the distance between the coil windings (2), (3) and the return yoke (1). The distance between them (t3) is made substantially the same, for example, t3=7
9a*, t4=79B, upper and lower return yoke width 450m
, inner return yoke width Loom, outer return yoke width 450mm, coil cross section 120H x 120mm. When a magnetic field is generated in the aperture (4), an electromagnetic force that attracts the upper and lower coils to each other and an electromagnetic force that draws the coil to the return yoke are generated. At this time, the coils (2) and (3) will be drawn toward the direction where the electromagnetic force is stronger. When actually inserting a structure between coils (2), (3) and return yoke (1), coil (2),
It is necessary to provide a gap between (3) and return yoke (1). In this case, a support is required to support the coil. However, in the above embodiment, the coils (2), (3
) and the distance t3 between the return yoke (1) and the coil (2)
By making the distance 4 t4 between , (3) and the plane of symmetry of the upper and lower coils equal, the two electromagnetic forces described above can be balanced.

このためコイル(2)、 (3)をサポートする支持材
の必要なくコイル(2)、 (3)とリターンヨーク(
1)との間にギャップを設けることができ、コイル(2
)、 (3)とリターンヨーク(1)との間に構造物を
挿入することができろうまたコイルの設計が容品となる
Therefore, there is no need for supporting materials to support the coils (2), (3) and the return yoke (
A gap can be provided between the coil (2) and the coil (2).
), (3) and the return yoke (1) may be inserted, and the design of the coil may be modified.

第7図はt””79mとし、t3= 50.79.10
0mでの電磁力の比較を示すグラフであり、横軸はt3
−)、縦軸は第8図のFに示すように、外側への電磁力
(Kg/ rad )を示している。この実施例では、
t3=79am 、 t4=79amとし、電磁力を平
衡させている。
In Figure 7, t"" is 79m, and t3 = 50.79.10
This is a graph showing a comparison of electromagnetic force at 0 m, and the horizontal axis is t3.
-), and the vertical axis indicates the outward electromagnetic force (Kg/rad), as shown in F in FIG. In this example,
The electromagnetic force is balanced by setting t3=79am and t4=79am.

上記実施例では、t3 = t4の場合について述べた
が、これに限るものではなく、上下コイル間の吸引力と
鉄心とコイル間の吸引力をバランスさせることにより上
下コイル間の吸引力をほとんど0にすれば、上下コイル
間のサポートをなくそうとすることができる。従って上
記実施例のようにt3=t4で必ずしも成立しなくても
よく、上下コイル間の吸引力が最も小さくなるような関
係にt3とt4を決めればよい。例えば第7図によれば
、t3がt4よりわずかに大きい時に上下コイル間の電
磁力が0となる。
In the above embodiment, the case where t3 = t4 was described, but the case is not limited to this. By balancing the attraction force between the upper and lower coils and the attraction force between the iron core and the coil, the attraction force between the upper and lower coils can be reduced to almost 0. By doing so, it is possible to eliminate the support between the upper and lower coils. Therefore, it is not necessary that t3=t4 as in the above embodiment, and t3 and t4 may be determined in a relationship such that the attraction force between the upper and lower coils is minimized. For example, according to FIG. 7, when t3 is slightly larger than t4, the electromagnetic force between the upper and lower coils becomes 0.

この発明に係る荷電粒子装置用偏向電磁石の利用分野と
して、例えばSOR光(5yhcrotron 0rh
ital Radia tion  の発生装置がある
。SOR光とは電子の軌道を磁場によって偏向させたと
き、軌道接線方向に発生する波長数スル数10λの光で
ある。この発明の説明を行うに当たってはSOR光の取
り出し用真空チェンバーについては触れてはいないが、
SOR光を取出す場合には外径側リターンヨークに直線
状の貫通孔を設け、この孔よりSOR光を電磁石外部に
取り出せばよい。
As an application field of the bending electromagnet for charged particle devices according to the present invention, for example, SOR light (5yhcrotron 0rh
There is a generator for ital Radiation. SOR light is light with a wavelength of 10λ that is generated in the tangential direction of the orbit when the orbit of an electron is deflected by a magnetic field. In explaining this invention, the vacuum chamber for extracting SOR light is not mentioned;
In order to take out the SOR light, a linear through hole may be provided in the return yoke on the outer diameter side, and the SOR light may be taken out to the outside of the electromagnet through this hole.

なお、上記実施例では1対のバナナ型コイルについて示
したがバナナ型コイルが2対以上であっても良く、上記
実施例と同様の効果を奏することができる。また第3図
と第4図は第1図においてtl=180mg 、 t2
=300am 、上下リターンヨーク幅650m、内径
リターンヨーク幅100m 、外径リターンヨーク幅4
50Mとした場合の実施例であり、上記実施例と同様の
効果を奏することができる。また、第5図と第6図に示
すようにD型と呼ばれるコイル(6)に鉄心がついた型
状の電磁石でも良く。
In the above embodiment, one pair of banana-shaped coils is shown, but two or more pairs of banana-shaped coils may be used, and the same effects as in the above embodiment can be achieved. Also, in Figures 3 and 4, tl = 180mg and t2 in Figure 1.
= 300am, upper and lower return yoke width 650m, inner diameter return yoke width 100m, outer diameter return yoke width 4
This is an example in which the length is 50M, and the same effects as in the above example can be achieved. Alternatively, as shown in FIGS. 5 and 6, a D-shaped electromagnet having a coil (6) with an iron core may be used.

この場合も上記実施例と同様の効果を奏することができ
る。また、D型コイルが3対以上あってもよく、この場
合も上記実施例と同様の効果を奏することができるっま
た、コイル(2)、 (3)に超電導コイルを使用した
場合、コイル支持材はコイルの取付位置の扇心による電
磁力のみ受けもてばよいので、サポートが極めて小さく
てよく、そのためコイルへの熱の侵入を極めて小さくす
ることができるっまた、上記実施例では、第1図、第2
図に示すようにコイルの径方向の電磁力の平衡と垂直方
向の電磁力の平衡をそれぞれ別々に実施しているが、同
時にコイルの径方向と垂直方向の!磁力と平衡させるよ
うに構成することもできる。
In this case as well, the same effects as in the above embodiment can be achieved. Further, there may be three or more pairs of D-shaped coils, and in this case, the same effect as in the above embodiment can be achieved.Furthermore, when superconducting coils are used for coils (2) and (3), coil support Since the material only needs to receive the electromagnetic force from the fan core at the mounting position of the coil, the support can be extremely small, and therefore the intrusion of heat into the coil can be minimized. Figure 1, 2nd
As shown in the figure, the balance of the electromagnetic force in the radial direction of the coil and the balance of the electromagnetic force in the vertical direction are carried out separately, but at the same time, the balance of the electromagnetic force in the radial direction and the vertical direction of the coil is carried out separately. It can also be configured to balance the magnetic force.

〔発明の効果1 以上のように、この発明によれば、内径側コイル巻線と
外径側コイル巻線からなるコイル、及びこのコイルを取
り囲むリターンヨークを備える荷電粒子装置用偏向電磁
力において、内径側コイルと内側のリターンヨーク間の
距離を、外径側コイルと外側のリターンヨーク間の距離
より小さく構成したことにより、内径側及び外径側コイ
ルに働くマクヌウエルの応力を平衡させ、コイル径方向
の電磁カサポートをほとんど不必要にできる荷電粒子装
置用偏向1磁石を得ることができる効果がある。
[Effect of the Invention 1 As described above, according to the present invention, in the deflection electromagnetic force for a charged particle device comprising a coil consisting of an inner diameter coil winding and an outer diameter coil winding, and a return yoke surrounding this coil, By configuring the distance between the inner diameter side coil and the inner return yoke to be smaller than the distance between the outer diameter side coil and the outer return yoke, the McNuwell stress acting on the inner diameter side and outer diameter side coils is balanced, and the coil diameter This has the effect of making it possible to obtain a deflection magnet for a charged particle device, which can almost eliminate the need for a directional electromagnetic force support.

また、内径側コイル巻線と外径側コイル巻線からなり、
このコイル巻線のそれぞれがアパーチャー’を介在して
対称に対向するように配置したコイル、及ヒコのコイ)
Vを取り囲むリターンヨークラ備える荷電粒子装置用偏
向電磁石において、コイル巻線とリターンヨークとの間
の距離と、コイル巻線とコイルの対称面との間の距離を
実質的に同一にしたことにより、コイルに働く!磁力を
平衡させることができ、コイル垂直方向の″W電磁カサ
ポートほとんど不必要にできる荷電粒子装置用偏向[磁
石を得ることができる効果がある。
In addition, it consists of an inner diameter coil winding and an outer diameter coil winding,
The coils are arranged so that each of these coil windings is symmetrically opposed to each other with an aperture in between.
In a deflecting electromagnet for a charged particle device equipped with a return yoke surrounding V, the distance between the coil winding and the return yoke and the distance between the coil winding and the plane of symmetry of the coil are made substantially the same. , work on the coil! This has the effect of making it possible to balance the magnetic force and to obtain a deflection magnet for a charged particle device, which makes it almost unnecessary to support the "W electromagnetic force in the vertical direction of the coil."

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による荷電粒子装置用偏向
電磁石の要部を示す断面図、第2図はこの発明の他の実
施例による荷電粒子装置用間内室・磁石の要部を示す断
面図、第3図はさらに池の実施例を示す平面図、第4図
は第3図のIV−IV線断面図、第5図はこの発明のさ
らに他の実施例による荷電粒子装置用偏向電磁石を示す
平面図、第6図は@5図のVl −VI線断面図、第7
図は他の実施例に係り、コイルとリターンヨーク間の距
離に対する1M、磁力を示すグラフ、第8図はその説明
図、第9図は従来の荷電粒子装置用偏向電磁石を示す平
面図、第10図は第9図のX−X線断面図、第11図は
従来の荷電粒子装置用偏向電磁石の他の例を示す平面図
、第12図は@11図のトI線断面図、第13図は従来
の電磁石にかかる力を示す説明図である。 図中、(1)はリターンヨーク、(2)は内径側コイル
巻線、(3)は外径側コイル巻線、(4)はアパーチャ
ーである。 なお、図中、同一符号は同一、又は相当部分を示す。 第8図 ■ 第4図 第1図 2 内?仝僧リすづルA七線 3゛77トンフィル4線 4 :7ハ0−+マー 第2図 第5図 VJ 第6図 第8図 第11図 −xII 第12図 第9図 X 第10図 第13図
FIG. 1 is a sectional view showing the main parts of a deflection electromagnet for a charged particle device according to an embodiment of the present invention, and FIG. 3 is a plan view showing an embodiment of the pond, FIG. 4 is a sectional view taken along the line IV-IV of FIG. 3, and FIG. 5 is a diagram showing a charged particle device according to still another embodiment of the present invention. A plan view showing the bending electromagnet, Fig. 6 is a sectional view taken along the line Vl-VI of Fig. @5, and Fig. 7
The figures relate to another embodiment, a graph showing 1M and magnetic force versus the distance between the coil and the return yoke, Fig. 8 is an explanatory diagram thereof, Fig. 9 is a plan view showing a conventional deflection electromagnet for a charged particle device, and Fig. 10 is a sectional view taken along the line X-X in FIG. 9, FIG. 11 is a plan view showing another example of a conventional deflection electromagnet for a charged particle device, and FIG. FIG. 13 is an explanatory diagram showing the force applied to a conventional electromagnet. In the figure, (1) is a return yoke, (2) is a coil winding on the inner diameter side, (3) is a coil winding on the outer diameter side, and (4) is an aperture. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Figure 8■ Figure 4 Figure 1 Figure 2 Inside? 7th line A 7th line 3 77th fill 4th line 4 :7 h0-+mer Figure 2 Figure 5 VJ Figure 6 Figure 8 Figure 11-xII Figure 12 Figure 9 X Figure 10 Figure 13

Claims (2)

【特許請求の範囲】[Claims] (1)内径側コイル巻線と外径側コイル巻線からなるコ
イル、及びこのコイルを取り囲むリターンヨークを備え
る荷電粒子装置用偏向電磁石において、上記内径側コイ
ルと内側の上記リターンヨーク間の距離を、上記外径側
コイルと外側の上記リターンヨーク間の距離より小さく
構成したことを特徴とする荷電粒子装置用偏向電磁石。
(1) In a deflecting electromagnet for a charged particle device that includes a coil consisting of an inner diameter coil winding and an outer diameter coil winding, and a return yoke surrounding this coil, the distance between the inner diameter side coil and the inner return yoke is A deflecting electromagnet for a charged particle device, characterized in that the distance is smaller than the distance between the outer diameter side coil and the outer return yoke.
(2)内径側コイル巻線と外径側コイル巻線からなり、
このコイル巻線のそれぞれがアパーチャーを介在して対
称に対向するように配置したコイル、及びこのコイルを
取り囲むリターンタークを備える荷電粒子装置用偏向電
磁石において、上記コイル巻線と上記リターンヨークと
の間の距離と、上記コイル巻線と上記コイルの対称面と
の間の距離を実質的に同一にしたことを特徴とする荷電
粒子装置用偏向電磁石。
(2) Consists of an inner coil winding and an outer coil winding,
In this deflecting electromagnet for a charged particle device, the deflection electromagnet for a charged particle device includes a coil arranged so that each of the coil windings faces symmetrically with an aperture interposed therebetween, and a return turret surrounding the coil, between the coil winding and the return yoke. A deflecting electromagnet for a charged particle device, characterized in that a distance between the coil winding and a plane of symmetry of the coil is substantially the same.
JP1004381A 1989-01-10 1989-01-10 Bending magnets for charged particle devices Expired - Lifetime JP2819579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1004381A JP2819579B2 (en) 1989-01-10 1989-01-10 Bending magnets for charged particle devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1004381A JP2819579B2 (en) 1989-01-10 1989-01-10 Bending magnets for charged particle devices

Publications (2)

Publication Number Publication Date
JPH02183956A true JPH02183956A (en) 1990-07-18
JP2819579B2 JP2819579B2 (en) 1998-10-30

Family

ID=11582781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1004381A Expired - Lifetime JP2819579B2 (en) 1989-01-10 1989-01-10 Bending magnets for charged particle devices

Country Status (1)

Country Link
JP (1) JP2819579B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543248A (en) * 2010-11-22 2013-11-28 マサチューセッツ インスティテュート オブ テクノロジー Compact low temperature weakly focused superconducting cyclotron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543248A (en) * 2010-11-22 2013-11-28 マサチューセッツ インスティテュート オブ テクノロジー Compact low temperature weakly focused superconducting cyclotron

Also Published As

Publication number Publication date
JP2819579B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
US5117212A (en) Electromagnet for charged-particle apparatus
US5483129A (en) Synchrotron radiation light-source apparatus and method of manufacturing same
JPH04253149A (en) Ion radiating device with two-dimensional magnetic scanning and related device
JPH06501334A (en) synchrotron radiation source
EP0870316B1 (en) Composite concentric-gap magnetic lens and deflector with conical pole pieces
US4564763A (en) Process and apparatus for varying the deflection of the path of a charged particle beam
JPH02183956A (en) Deflecting electromagnet for charged particle device
US3394217A (en) Method and apparatus for controlling plural electron beams
JP7416377B2 (en) Multipolar electromagnets and accelerators using them
US3396299A (en) Magnetic flux leakage guide for magnetic electron lenses
CA1193305A (en) Uniform field solenoid magnet with openings
JP5800286B2 (en) Ion implanter
GB1210210A (en) Electron beam apparatus
US3708772A (en) Magnetic lens arrangement
US3324433A (en) Electron lens system excited by at least one permanent magnet
NL2034496B1 (en) Electro-magnetic lens for charged particle apparatus.
JP7249906B2 (en) Superconducting coil and superconducting magnet device
JPH11144900A (en) Electromagnet device for charged particle
JP3306877B2 (en) Mass spectrometer
JP4571548B2 (en) Electron beam evaporator
JP2004206995A (en) Deflection electromagnet, electrically-charged particles transportation path and circular accelerator
JPH02226699A (en) Deflecting electromagnet for charged particle accelerator
TW548664B (en) Split magnetic lens for controlling a charged particle beam
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
JP2658491B2 (en) Deflection magnet for charged particle devices

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11