JP2817285B2 - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JP2817285B2
JP2817285B2 JP30955189A JP30955189A JP2817285B2 JP 2817285 B2 JP2817285 B2 JP 2817285B2 JP 30955189 A JP30955189 A JP 30955189A JP 30955189 A JP30955189 A JP 30955189A JP 2817285 B2 JP2817285 B2 JP 2817285B2
Authority
JP
Japan
Prior art keywords
source
drain
concentration
conductivity type
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30955189A
Other languages
Japanese (ja)
Other versions
JPH03169080A (en
Inventor
宏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30955189A priority Critical patent/JP2817285B2/en
Publication of JPH03169080A publication Critical patent/JPH03169080A/en
Application granted granted Critical
Publication of JP2817285B2 publication Critical patent/JP2817285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電界効果型トランジスタに関し、特に高集積
度、高速動作に適したMOS型電界効果トランジスタに関
する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor, and more particularly, to a MOS field effect transistor suitable for high integration and high speed operation.

[従来の技術] 従来のMOS型電界効果トランジスタは、第3図(a)
に示すように、第1導電型単結晶シリコン基板301の一
主面にゲート酸化膜302、ゲート電極303および第2導電
型の高濃度不純物領域(ソースおよびドレイン)304が
形成された構造となっている。
[Prior Art] A conventional MOS field effect transistor is shown in FIG.
As shown in FIG. 1, a gate oxide film 302, a gate electrode 303, and a high-concentration impurity region (source and drain) 304 of the second conductivity type are formed on one main surface of a first conductivity type single crystal silicon substrate 301. ing.

集積回路の高集積化および高速度化を達成するために
は、MOS型トランジスタの寸法が縮少されなければなら
ず、その結果、ゲート長の微細なMOS型トランジスタで
は、その動作特性に悪影響を及ぼす短チャンネル効果が
顕著になってきた。そこでこの短チャンネル効果を抑制
するため、第3図(b)に示すように基板と同じ導電型
の不純物から成り、基板に比べ不純物濃度の高い領域30
5を形成した構造が多く用いられている。
In order to achieve high integration and high speed of an integrated circuit, the size of the MOS transistor must be reduced, and as a result, the operation characteristics of a MOS transistor with a small gate length will be adversely affected. The short channel effect exerted has become significant. Therefore, in order to suppress this short channel effect, as shown in FIG. 3B, a region 30 having the same conductivity type as the substrate and having a higher impurity concentration than the substrate is used.
The structure in which 5 is formed is often used.

[発明が解決しようとする問題点] 上述した従来のMOS型トランジスタでは、パンチスル
ーを抑制するため半導体基板内部に半導体基板と同一導
電型の比較的高濃度の不純物領域が活性領域下全体に形
成されている。従って、この領域と逆の導電型で高濃度
ソースおよびドレイン領域との間に形成されるPN接合の
接合容量が大きくなり、トランジスタのスイッチング速
度が向上しにくいという欠点がある。
[Problems to be Solved by the Invention] In the conventional MOS transistor described above, a relatively high-concentration impurity region of the same conductivity type as the semiconductor substrate is formed inside the semiconductor substrate entirely under the active region to suppress punch-through. Have been. Therefore, there is a disadvantage that the junction capacitance of the PN junction formed between the region and the high-concentration source and drain regions having the conductivity type opposite to that of this region is increased, and the switching speed of the transistor is hardly improved.

[発明の従来技術に対する相違点] 上述した従来のMOS型トランジスタでは、パンチスル
ーを抑制するためにシリコン基板の不純物濃度を高くす
るか、比較的濃度の高い不純物領域が活性領域下全体に
存在しているのに対し、本発明ではソースおよびドレイ
ンを形成した溝内面に絶縁膜が存在しており、基板の不
純物濃度を高くしたり、比較的濃度の高い不純物領域を
形成する必要がないという相違点を有する。
[Differences from the Prior Art of the Invention] In the above-described conventional MOS transistor, the impurity concentration of the silicon substrate is increased to suppress punch-through, or an impurity region having a relatively high concentration is present under the entire active region. On the other hand, in the present invention, the insulating film is present on the inner surface of the groove in which the source and the drain are formed, so that it is not necessary to increase the impurity concentration of the substrate or to form a relatively high impurity region. Have a point.

[課題を解決するための手段] 本発明の要旨は、低不純物濃度の第1導電型の半導体
基板と、該半導体基板上に設けられた高不純物濃度の第
1導電型の不純物層と、該不純物層上に互いに離隔して
設けられた第2導電型のソース・ドレイン領域と、ソー
ス・ドレイン領域間の上方に設けられるソース・ドレイ
ン領域間のチャンネルを制御するゲート構造体とを備え
た電界効果トランジスタにおいて、上記ソース・ドレイ
ン領域下方の不純物層に溝をそれぞれ設け該溝の少なく
とも一方の表面を絶縁膜で被い、これら溝内に上記ソー
ス・ドレイン領域が延在することである。
Means for Solving the Problems The gist of the present invention is to provide a semiconductor substrate of a first conductivity type having a low impurity concentration, an impurity layer of a first conductivity type having a high impurity concentration provided on the semiconductor substrate, An electric field comprising a source / drain region of the second conductivity type provided apart from each other on the impurity layer and a gate structure for controlling a channel between the source / drain regions provided above and between the source / drain regions. In the effect transistor, a groove is provided in the impurity layer below the source / drain region, and at least one surface of the groove is covered with an insulating film, and the source / drain region extends in the groove.

[発明の作用] 溝内の絶縁膜はソース・ドレイン領域と高濃度不純物
との間に空乏層が発生することを防止する。従って、寄
生容量は減少し、電界効果トランジスタのスイッチング
速度は向上する。
[Operation of the Invention] The insulating film in the trench prevents the generation of a depletion layer between the source / drain region and the high concentration impurity. Therefore, the parasitic capacitance is reduced and the switching speed of the field effect transistor is improved.

[実施例] 次に本発明の実施例について図面を参照して説明す
る。
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例を示す断面図である。第
1図実施例はPチャンネル型MOSトランジスタである。
FIG. 1 is a sectional view showing a first embodiment of the present invention. FIG. 1 shows a P-channel type MOS transistor.

101は単結晶N型シリコン基板、102はゲート酸化膜、
103はリンを1020cm-3程度の濃度ドープした多結晶シリ
コンからなるゲート電極、104は高濃度のP型不純物が
拡散された多結晶シリコンであり、ソースおよびドレイ
ンとして機能する。105は低濃度P型不純物領域、106は
シリコン基板101にゲート電極103をはさんで分離して形
成された溝、107は酸化膜、108は窒化膜、109は絶縁膜
で形成されたサイドウォール、110は基板と同じ導電型
で基板に比べ不純物濃度の高い領域である。酸化膜107
の膜圧を1000Åとすると、これの単位面積当りの容量は
3.45×10-8F/cm2となる。N型不純物領域110の不純物濃
度が5×1016cm-3以上であれば、ソース及びドレイン底
面の酸化膜107の容量と、この酸化膜の下部のN型半導
体領域に広がる空乏層容量の直列容量は、酸化膜108が
ない場合にソース及びドレインと基板の間に形成される
PN接合の容量7〜10×10-8F/cm2よりも小さくすること
ができる。
101 is a single crystal N-type silicon substrate, 102 is a gate oxide film,
Reference numeral 103 denotes a gate electrode made of polycrystalline silicon doped with phosphorus at a concentration of about 10 20 cm −3 , and 104 denotes polycrystalline silicon in which a high-concentration P-type impurity is diffused, and functions as a source and a drain. 105 is a low-concentration P-type impurity region, 106 is a groove formed by separating the gate electrode 103 from the silicon substrate 101, 107 is an oxide film, 108 is a nitride film, and 109 is a sidewall formed of an insulating film. And 110 are regions of the same conductivity type as the substrate and having a higher impurity concentration than the substrate. Oxide film 107
Assuming that the film pressure is 1000Å, the capacity per unit area is
3.45 × 10 −8 F / cm 2 . If the impurity concentration of the N-type impurity region 110 is 5 × 10 16 cm −3 or more, the capacitance of the oxide film 107 on the bottom surface of the source and drain and the depletion layer capacitance extending to the N-type semiconductor region below the oxide film are connected in series. The capacitance is formed between the source and the drain and the substrate in the absence of the oxide film 108
The capacitance of the PN junction can be smaller than 7 to 10 × 10 −8 F / cm 2 .

このように同じウェル構造でもソース・ドレインの下
部に酸化膜を設ければ拡散層容量の底面成分を低減でき
る。また酸化膜により高い不純物濃度のソース・ドレイ
ンからの拡散を抑えることができるため、拡散層深さを
浅くでき短チャンネル効果を抑制できる。
As described above, even if the well structure is the same, if an oxide film is provided below the source / drain, the bottom component of the diffusion layer capacitance can be reduced. In addition, since the diffusion from the source / drain having a high impurity concentration can be suppressed by the oxide film, the depth of the diffusion layer can be reduced and the short channel effect can be suppressed.

第2図は本発明の第2実施例を示す縦断面図である。
LDDの寄生抵抗はソース側の低濃度P型領域で決まるた
め、ドレイン型だけにサイドウォールを形成し、ソース
側は横方向濃度勾配を急峻にする。この構造により、パ
ンチスルー耐性向上、低寄生抵抗、ホットキャリア耐性
向上の3つを満足させてMOSトランジスタを構成でき
る。
FIG. 2 is a longitudinal sectional view showing a second embodiment of the present invention.
Since the parasitic resistance of the LDD is determined by the low-concentration P-type region on the source side, a sidewall is formed only on the drain type, and the lateral concentration gradient is steep on the source side. With this structure, a MOS transistor can be configured by satisfying three of the enhancements of punch-through resistance, low parasitic resistance, and hot carrier resistance.

[発明の効果] 以上説明したように本発明は、ソースまたはドレイン
を形成した溝の内面に絶縁膜を設けることによりソース
及びドレインと基板間の容量を低減することができる。
[Effects of the Invention] As described above, according to the present invention, the capacitance between the source and the drain and the substrate can be reduced by providing the insulating film on the inner surface of the groove in which the source or the drain is formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示す縦断面図、第2図は
本発明の第2実施例を示す縦断面図、第3図(a)
(b)は従来のMOSトランジスタをそれぞれ示す縦断面
図である。 101,201,301……単結晶N型シリコン基板、 102,202,302……ゲート絶縁膜、 103,203……P型不純物領域、 104,204,303……ゲート電極、 105,205……高濃度P型導電膜、 305……第1導電型の不純物領域、 106,206……低濃度P型不純物領域、 107,207……溝、 108,109,208,209……絶縁膜、 110,210……サイドウォール。
1 is a longitudinal sectional view showing a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing a second embodiment of the present invention, and FIG.
FIG. 2B is a longitudinal sectional view showing a conventional MOS transistor. 101, 201, 301 ... single crystal N-type silicon substrate, 102, 202, 302 ... gate insulating film, 103, 203 ... P-type impurity region, 104, 204, 303 ... gate electrode, 105, 205 ... high concentration P-type conductive film, 305 ... 1st conductivity type impurity Region, 106,206... Low-concentration P-type impurity region, 107,207... Groove, 108,109,208,209... Insulating film, 110,210.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低不純物濃度の第1導電型の半導体基板
と、該半導体基板上に設けられた高不純物濃度の第1導
電型の不純物層と、該不純物層上に互いに離隔して設け
られた第2導電型のソース・ドレイン領域と、ソース・
ドレイン領域間の上方に設けられソース・ドレイン領域
間のチャンネルを制御するゲート構造体とを備えた電界
効果トランジスタにおいて、 上記ソース・ドレイン領域下方の不純物層に溝をそれぞ
れ設け該溝の少なくとも一方の表面を絶縁膜で被い、こ
れら溝内に上記ソース・ドレイン領域が延在することを
特徴とする電界効果型トランジスタ。
A first conductivity type semiconductor substrate having a low impurity concentration; a high impurity concentration first conductivity type impurity layer provided on the semiconductor substrate; and a first impurity layer provided on the impurity layer so as to be separated from each other. A source / drain region of the second conductivity type,
A gate structure provided above the drain region and controlling a channel between the source and drain regions, wherein a groove is provided in the impurity layer below the source / drain region, and at least one of the grooves is provided. A field effect transistor wherein the surface is covered with an insulating film, and the source / drain regions extend in these trenches.
JP30955189A 1989-11-29 1989-11-29 Field-effect transistor Expired - Lifetime JP2817285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30955189A JP2817285B2 (en) 1989-11-29 1989-11-29 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30955189A JP2817285B2 (en) 1989-11-29 1989-11-29 Field-effect transistor

Publications (2)

Publication Number Publication Date
JPH03169080A JPH03169080A (en) 1991-07-22
JP2817285B2 true JP2817285B2 (en) 1998-10-30

Family

ID=17994376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30955189A Expired - Lifetime JP2817285B2 (en) 1989-11-29 1989-11-29 Field-effect transistor

Country Status (1)

Country Link
JP (1) JP2817285B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858505B2 (en) * 2002-10-08 2005-02-22 Samsung Electronics Co. Ltd. Methods of forming transistor structures including separate anti-punchthrough layers
US7078722B2 (en) * 2004-09-20 2006-07-18 International Business Machines Corporation NFET and PFET devices and methods of fabricating same
US7271453B2 (en) * 2004-09-20 2007-09-18 International Business Machines Corporation Buried biasing wells in FETS

Also Published As

Publication number Publication date
JPH03169080A (en) 1991-07-22

Similar Documents

Publication Publication Date Title
US5760440A (en) Back-source MOSFET
JP3043367B2 (en) Mixed technology integrated device comprising complementary LDMOS power transistors, CMOS and vertical PNP integrated structures with outstanding ability to withstand relatively high supply voltages
JP2002033484A (en) Semiconductor device
US4729001A (en) Short-channel field effect transistor
KR910002037B1 (en) Semiconductor device and manufacture thereof
JPH0336311B2 (en)
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
JP2009164460A (en) Semiconductor device
EP0071335B1 (en) Field effect transistor
JPH08130308A (en) Semiconductor device
US4713681A (en) Structure for high breakdown PN diode with relatively high surface doping
JP2817285B2 (en) Field-effect transistor
JPH0738447B2 (en) MOS semiconductor device
US7119435B2 (en) Semiconductor device with source/drain extension layer
US6236084B1 (en) Semiconductor integrated circuit device having double diffusion insulated gate field effect transistor
JP2000068372A (en) Semiconductor device and manufacture thereof
JP2825038B2 (en) Semiconductor device
US4794436A (en) High voltage drifted-drain MOS transistor
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JPS5944784B2 (en) Complementary MOS semiconductor device
JPS6046547B2 (en) Complementary MOS semiconductor device
JPH067556B2 (en) MIS type semiconductor device
JP7334638B2 (en) semiconductor equipment
JP4692455B2 (en) Semiconductor device and manufacturing method thereof
JPH0491481A (en) Mis field effect transistor