JP2814417B2 - Method and apparatus for sedimentation and separation of suspension - Google Patents

Method and apparatus for sedimentation and separation of suspension

Info

Publication number
JP2814417B2
JP2814417B2 JP22643492A JP22643492A JP2814417B2 JP 2814417 B2 JP2814417 B2 JP 2814417B2 JP 22643492 A JP22643492 A JP 22643492A JP 22643492 A JP22643492 A JP 22643492A JP 2814417 B2 JP2814417 B2 JP 2814417B2
Authority
JP
Japan
Prior art keywords
suspension
circuit
tank
liquid
sedimentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22643492A
Other languages
Japanese (ja)
Other versions
JPH0655007A (en
Inventor
伸夫 古野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Clay Co Ltd
Original Assignee
Fine Clay Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Clay Co Ltd filed Critical Fine Clay Co Ltd
Priority to JP22643492A priority Critical patent/JP2814417B2/en
Publication of JPH0655007A publication Critical patent/JPH0655007A/en
Application granted granted Critical
Publication of JP2814417B2 publication Critical patent/JP2814417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、沈降槽を用いて、懸濁
液を懸濁質(懸濁粒子)濃度の高い重液(沈降濃縮液)
と懸濁質濃度の低い軽液に分離する懸濁液の沈降分離方
法及び沈降分離装置に関し、さらに詳しくは、懸濁粒子
を沈降槽の底部に堆積させることなく、連続的に懸濁液
の分離・分級ができる懸濁液の沈降分離方法及び沈降分
離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heavy liquid (sedimentation concentrate) having a high concentration of suspended solids (suspended particles) by using a sedimentation tank.
More specifically, the present invention relates to a method and apparatus for sedimentation and separation of a suspension which is separated into a light liquid having a low concentration of suspended solids, and more particularly to a method for continuously suspending particles without depositing suspended particles on the bottom of a sedimentation tank. The present invention relates to a method and apparatus for sedimentation and separation of a suspension that can be separated and classified.

【0002】[0002]

【従来の技術】従来、懸濁液に含まれる懸濁粒子(懸濁
質)を分離する手段として、例えば、沈降槽(沈降池等
を含む)、ドラグベルト分級機、シックナー濃縮装置、
遠心分離機、湿式サイクロン分離装置などが知られてい
る。ところが、従来の懸濁液の分離手段は、例えば、懸
濁粒子が沈降槽の底部に堆積し易い、微粒子領域の分離
・分級が困難である、大型化に適さない、あるいは運転
コストが高い等の欠点を持っており、改善が求められて
いる。
2. Description of the Related Art Conventionally, means for separating suspended particles (suspension) contained in a suspension include, for example, a sedimentation tank (including a sedimentation pond), a drag belt classifier, a thickener concentrator, and the like.
A centrifuge, a wet cyclone separator, and the like are known. However, conventional suspension separation means include, for example, that suspended particles are easily deposited on the bottom of a settling tank, separation and classification of a fine particle region are difficult, unsuitable for upsizing, or operation costs are high. Therefore, there is a need for improvement.

【0003】これに対して、本発明者は、沈降槽を用い
て懸濁液を沈降分離するに際し、液面からの短絡流を起
こさずに安定した旋回流を生じさせる方法により求心力
場を加え、懸濁液に重力場が同時に加わることにより、
懸濁粒子を沈降槽の底部に堆積させることなく、懸濁液
を懸濁質濃度の高い重液と懸濁質濃度の低い軽液に連続
的に分離・分級できることを見いだし、先に特許出願を
行った(特願平3−149749号、特願平4−204
46号)。
On the other hand, the inventor of the present invention applied a centripetal force field by a method of generating a stable swirling flow without causing a short-circuit flow from the liquid surface when the suspension was settled and separated using a settling tank. , By the simultaneous addition of a gravitational field to the suspension,
It was discovered that the suspension could be continuously separated and classified into a heavy liquid with a high concentration of suspended matter and a light liquid with a low concentration of the suspended substance without depositing suspended particles on the bottom of the sedimentation tank. (Japanese Patent Application No. 3-149747, Japanese Patent Application No. 4-204)
No. 46).

【0004】即ち、本発明者が先に提案した懸濁液の沈
降分離装置では、沈降槽に懸濁液を導入して、重力によ
り懸濁質を沈降させると共に、沈降槽の下部で採取した
液を元の沈降槽の下部に還流して層流状の旋回流を発生
させることにより、懸濁質を底部に堆積させることな
く、分離・分級をより効果的に行うように構成されてい
る。ところが、この沈降分離装置は、粗大粒子を含む懸
濁液を被処理液として長期運転した場合に、懸濁液を還
流させる配管(回路、導管)の分岐点において、分岐点
より低い配管中に懸濁粒子の沈降堆積が起こる場合があ
り、そのため、雑多な粒度組成を有する懸濁液(例え
ば、産業廃液等)を被処理液とした場合に、装置の回路
が閉塞して、長期的に安定した処理が困難であるという
問題があった。
That is, in the suspension sedimentation / separation apparatus proposed by the present inventor, the suspension is introduced into the sedimentation tank, the suspended matter is sedimented by gravity, and the suspension is collected at the lower part of the sedimentation tank. The liquid is returned to the lower part of the original settling tank to generate a laminar swirling flow, so that separation and classification can be performed more effectively without depositing suspended matter on the bottom. . However, when the sedimentation separation device is operated for a long time using a suspension containing coarse particles as a liquid to be treated, the sedimentation separation device is installed at a branch point of a pipe (circuit, conduit) for refluxing the suspension at a branch point lower than the branch point. The sedimentation and deposition of suspended particles may occur. Therefore, when a suspension having a miscellaneous particle size composition (for example, industrial waste liquid) is used as the liquid to be treated, the circuit of the device is blocked, and the There is a problem that stable processing is difficult.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、重力
場と求心力場を併用した沈降分離装置において、粒径2
00μmから2mmに至る粗い粒子の沈降に起因する装
置の閉塞を防止し、長期にわたって安定稼動する沈降分
離装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sedimentation separation apparatus using both a gravitational field and a centripetal force field.
An object of the present invention is to provide a sedimentation / separation device that prevents the clogging of the device due to sedimentation of coarse particles ranging from 00 μm to 2 mm, and operates stably for a long period of time.

【0006】本発明者は、鋭意研究した結果、重力場と
求心力場を併用した沈降分離装置において、沈降槽に、
液面と短絡しない旋回流を発生・維持させるに当たり、
ポンプ手段で採取した沈降濃縮液(底部の懸濁液)を上
方向回路と下方向回路に分岐し、この上方向回路液を元
の沈降分離層に戻して旋回流の駆動力とし、下方向回路
からは沈降濃縮液を採取するように構成することによ
り、回路の閉塞を防止しながら、懸濁液を連続的に分離
・分級できることを見いだし、その知見に基づいて本発
明を完成するに至った。
As a result of intensive studies, the present inventor has found that in a sedimentation separation apparatus using both a gravitational field and a centripetal force field,
In generating and maintaining a swirling flow that does not short-circuit with the liquid surface,
The sediment concentrate (suspension at the bottom) collected by the pump means is branched into an upward circuit and a downward circuit, and the upward circuit liquid is returned to the original sedimentation separation layer to be the driving force of the swirling flow. It has been found that the suspension can be continuously separated and classified by preventing the clogging of the circuit by configuring to collect the sedimentation concentrate from the circuit, and based on the knowledge, the present invention has been completed. Was.

【0007】[0007]

【課題を解決するための手段】かくして、本発明によれ
ば、懸濁液の沈降槽の底中心部からポンプ手段により採
取した懸濁液を上方向回路と下方向回路に分岐し、上方
向回路に分岐した懸濁液を沈降槽の底部に還流して、槽
内懸濁液の液面から底部への短絡流が起こらない旋回流
を発生・維持せしめ、下方向回路からは懸濁質濃度の高
い重液を採取することを特徴とする懸濁液の沈降分離方
法が提供される。
Thus, according to the present invention, the suspension collected by the pump means from the center of the bottom of the suspension settling tank is branched into an upward circuit and a downward circuit, and The suspension branched into the circuit is returned to the bottom of the sedimentation tank to generate and maintain a swirling flow that does not cause a short-circuit flow from the liquid level to the bottom of the suspension in the tank. A method for settling and separating a suspension is provided, wherein a heavy solution having a high concentration is collected.

【0008】また、本発明によれば、懸濁液を導入し
て、懸濁質濃度の高い重液と懸濁質濃度の低い軽液に分
離するための沈降槽に、(a)沈降槽の底中心部から懸
濁液を採取するためのポンプ手段、(b)前記ポンプ手
段で採取した懸濁液を分岐装置に導くための導管、
(c)前記導管から流入した懸濁液を上方向回路と下方
向回路に分岐するための分岐装置、(d)上方向回路に
分岐した懸濁液を沈降槽に還流するための戻し回路、及
び(e)沈降槽の底周辺部に戻し回路の吐出口を設け、
戻し回路の吐出口から吐出される懸濁液の流れを駆動力
として、槽内懸濁液の液面から底部への短絡流が起こら
ない旋回流を発生・維持せしめ、下方向回路からは重液
を採取するように構成してなることを特徴とする懸濁液
の沈降分離装置が提供される。
Further, according to the present invention, there is provided a sedimentation tank for introducing a suspension and separating the suspension into a heavy liquid having a high concentration of suspended matter and a light liquid having a low concentration of suspended matter. Pump means for collecting the suspension from the center of the bottom of (b), (b) a conduit for guiding the suspension collected by the pump means to a branching device,
(C) a branching device for branching the suspension flowing from the conduit into an upward circuit and a downward circuit, (d) a return circuit for refluxing the suspension branched into the upward circuit to a settling tank, And (e) providing an outlet for a return circuit around the bottom of the settling tank,
Using the flow of the suspension discharged from the discharge port of the return circuit as a driving force, a swirling flow that does not cause a short-circuit flow from the liquid level of the suspension in the tank to the bottom is generated and maintained. An apparatus for settling and separating a suspension is provided, which is configured to collect a liquid.

【0009】以下、本発明について詳述する。 (懸濁液)本発明における被処理液である懸濁液は、通
常、水を媒体とし、粒子が媒質として懸濁している液で
ある。媒体としては、アルコール等の水と相溶性のある
溶剤を加えて比重を調整した水性液を使用してもよい。
また、油を懸濁媒体とし、その中に水が分散しているよ
うな懸濁液も処理対象とすることができる。
Hereinafter, the present invention will be described in detail. (Suspension) The suspension which is the liquid to be treated in the present invention is usually a liquid in which water is used as a medium and particles are suspended as a medium. As the medium, an aqueous liquid whose specific gravity is adjusted by adding a solvent compatible with water such as alcohol may be used.
Further, a suspension in which oil is used as a suspension medium and water is dispersed therein can also be treated.

【0010】本発明が対象とする懸濁粒子の大きさは、
ポンプで移送可能な粒径2mm程度を上限とする全ての
粒子である。2mmを越える粒子は、礫と呼ばれ、網状
の篩いで濾過することにより容易に分別できるので、特
に本発明の方法及び装置を適用する必要がない。
[0010] The size of the suspended particles targeted by the present invention is:
All particles having an upper limit of about 2 mm which can be transferred by a pump. Particles exceeding 2 mm are called gravels and can be easily separated by filtration through a mesh sieve, so that there is no need to apply the method and apparatus of the present invention.

【0011】本発明が対象とする懸濁粒子は、任意の形
状を有するものであって、有機物、無機物、天然物、合
成物、化学組成等を問わない。例えば、産業廃棄物や粉
塵中に含まれる微粒子、カオリン、パイロフィライト、
タルク等の粘土鉱物、イオン交換樹脂粉末等の有機高分
子微粒子、酵母等の微生物、ポリマー等の化学反応生成
物など、各種粒子を対象とする。
[0011] The suspended particles targeted by the present invention may have any shape, and may be any of organic, inorganic, natural, synthetic and chemical compositions. For example, fine particles in industrial waste and dust, kaolin, pyrophyllite,
Various types of particles such as clay minerals such as talc, organic polymer fine particles such as ion-exchange resin powder, microorganisms such as yeast, and chemical reaction products such as polymers.

【0012】(沈降槽)本発明で使用する沈降槽として
は、通常の懸濁液の沈降槽の他、化学反応槽、洗浄槽、
中継・貯蔵槽など各種の槽が使用できる。化学反応とし
ては、固体−液体などの不均一系での化学反応、有機高
分子の懸濁重合、懸濁液を発生する電気分解、懸濁液を
用いる電着塗装等の電解反応、醗酵や培養等の生物化学
反応などを挙げることができる。また、広義の反応槽と
しては、懸濁を防止したい魚類の飼育槽、養魚槽、鑑賞
槽等も適用することができる。
(Sedimentation tank) As the sedimentation tank used in the present invention, in addition to the ordinary suspension sedimentation tank, a chemical reaction tank, a washing tank,
Various tanks such as relay and storage tanks can be used. Chemical reactions include heterogeneous chemical reactions such as solids and liquids, suspension polymerization of organic polymers, electrolysis to generate a suspension, electrolytic reactions such as electrodeposition coating using a suspension, and fermentation. Biochemical reactions such as culture can be mentioned. In addition, as a reaction tank in a broad sense, a breeding tank, a fish tank, an appreciation tank, and the like for fish whose suspension is to be prevented can be applied.

【0013】洗浄槽としては、金属鉱石、石炭、石灰
石、珪石、石材、陶石等の鉱産物の洗浄排水処理槽;粉
砕して得た粉体の懸濁液の処理槽;イオン交換樹脂、粉
体塗料、トナーに用いる合成高分子樹脂粒子の懸濁液の
精製処理槽;金属片、プラスチック片、コンクリートが
ら、砕石粉、石炭灰、各種の灰、土砂、粉塵等の各種混
合粉の懸濁液の処理槽;金属表面の化学的エッチング処
理槽、金属表面処理槽、浴槽等の各種物体の表面洗浄を
目的とする洗浄槽;等が挙げられる。
[0013] As the washing tank, washing and drainage treatment tanks for mineral products such as metal ore, coal, limestone, silica stone, stone materials, pottery stones, etc .; treatment tanks for powder suspensions obtained by grinding; ion exchange resins; Purification tank for suspension of synthetic polymer resin particles used in powder coatings and toners; suspension of various mixed powders such as metal pieces, plastic pieces, concrete pieces, crushed stone powder, coal ash, various ash, earth and sand, and dust Suspension treatment tank; cleaning tank for cleaning surfaces of various objects such as chemical etching treatment tank for metal surface, metal surface treatment tank, bathtub, etc .;

【0014】中継・貯蔵槽としては、貯水槽、給水槽、
貯液槽、給液槽等が挙げられる。例えば、化学工業分野
では、反応工程を中継し、原料、製品を貯蔵する槽が各
所に設けられているが、貯蔵中に沈降堆積物が生じない
ように攪拌したり、生じた堆積物を除去したりする必要
がある。本発明の方法及び装置は、このような沈降堆積
を防止したい分野に適する。さらに、ダム、湖沼、池等
においても、堆積物の除去等のために本発明の方法及び
装置を使用することができる。
The relay / storage tank includes a water storage tank, a water supply tank,
A liquid storage tank, a liquid supply tank, and the like are included. For example, in the chemical industry field, tanks for relaying the reaction process and storing raw materials and products are provided at various places, but stirring is performed so that sedimentary sediment does not occur during storage, and the generated sediment is removed. Or need to. The method and apparatus of the present invention are suitable for those fields where it is desired to prevent such sedimentation. Further, the method and apparatus of the present invention can be used for dams, lakes, ponds, and the like for removing sediment and the like.

【0015】(懸濁液の沈降分離方法及び沈降分離装
置)以下、本発明の方法及び装置について、具体例を挙
げて説明する。図1は、本発明で使用する沈降分離装置
の1例を示す断面略図である。図1の装置において、被
処理懸濁液(12)は、給液吐出口(23)から沈降槽
(1)内に導入される。懸濁液は、沈降槽の中で懸濁粒
子を沈降させ、懸濁質濃度の高い重液(沈降濃縮液)と
懸濁質濃度の低い軽液に分離する。軽液は、沈降槽の上
部に設けた越流堰(24)等の越流手段によって、オー
バーフローさせることにより採取されるが、懸濁質が十
分に除去された軽液の場合には、清水として採取するこ
とが可能である。本発明の方法及び装置では、ストーク
スの沈降式に基づいて、懸濁粒子を沈降・分級すること
ができる。例えば、粘土粒子を含有する懸濁液を沈降槽
に導入し、所定時間処理した後の軽液をオーバーフロー
させて採取すれば、軽液中に含まれる所定粒度の粒子を
得ることができる。
(Method and Apparatus for Sedimentation and Separation of Suspension) Hereinafter, the method and apparatus of the present invention will be described with reference to specific examples. FIG. 1 is a schematic sectional view showing an example of a sedimentation separation device used in the present invention. In the apparatus of FIG. 1, the suspension to be treated (12) is introduced into the settling tank (1) from the liquid supply discharge port (23). The suspension sediments suspended particles in a settling tank and separates the suspension into a heavy liquid with a high concentration of suspended solids (sedimentation concentrate) and a light liquid with a low concentration of suspended solids. The light liquid is collected by overflowing by an overflow means such as an overflow weir (24) provided in the upper part of the sedimentation tank. In the case of the light liquid from which suspended matter has been sufficiently removed, fresh water is used. It is possible to collect as. In the method and apparatus of the present invention, suspended particles can be settled and classified based on the Stokes settling equation. For example, if a suspension containing clay particles is introduced into a sedimentation tank and treated for a predetermined time, the light liquid is overflowed and collected, whereby particles having a predetermined particle size contained in the light liquid can be obtained.

【0016】沈降槽(1)の底形状は、平面でも構わな
いが、実用的には、傾斜が緩やかにせよコーン型が好ま
しい。在来の化学反応槽、貯蔵槽、中継槽等を利用して
も構わない。不定形の池、湖沼、ダム等の貯水槽の一部
を利用してもよい。沈降槽(1)の底部の中心位置に、
上方向からの直接流入を防止した構造の水中ポンプ
(2)を設置する。ポンプの吐出液を導管(3)から分
岐装置(4)に導いて、上方向回路(5)と下方向回路
(6)に分岐させる。上方向回路(5)と下方向回路
(6)は、垂直管を使用することができる。導管(3)
は、通常、図1に示すように、垂直管に水平方向に流入
するように配置する。分岐装置(4)には、チーズ(三
方管継手)を使用することができるが、三方の径が等し
いチーズより、垂直方向が大きな径の異形チーズの採用
が好ましい。上方向回路(5)に使用する配管は、長
く、高い程好ましい。また、分岐装置(4)として、サ
イクロン分級機や遠心分離機を使用することができる。
The bottom shape of the sedimentation tank (1) may be flat, but in practice, a cone shape is preferable even if the inclination is gentle. A conventional chemical reaction tank, storage tank, relay tank, or the like may be used. A part of a water tank such as an irregular pond, lake, or dam may be used. At the center of the bottom of the settling tank (1),
A submersible pump (2) with a structure that prevents direct inflow from above is installed. The liquid discharged from the pump is led from the conduit (3) to the branching device (4), and is branched into an upward circuit (5) and a downward circuit (6). The upward circuit (5) and the downward circuit (6) can use vertical tubes. Conduit (3)
Are usually arranged to flow horizontally into a vertical tube, as shown in FIG. Although a cheese (three-way pipe joint) can be used for the branching device (4), it is preferable to use a deformed cheese having a larger diameter in the vertical direction than a cheese having the same diameter in three directions. The pipe used for the upward circuit (5) is preferably long and high. Further, a cyclone classifier or a centrifugal separator can be used as the branching device (4).

【0017】ポンプ手段による懸濁液の採取位置を沈降
槽の底中心部としたのは、沈降濃縮液(重液)を採取す
るためであり、また、懸濁液の採取に当たり、上方向か
らの短絡流入を防止するようにしているのは、沈降槽の
液面からの短絡流が発生して、懸濁粒子の分離・分級が
できなくなるのを防ぐためである。図1に示す水中ポン
プ(2)では、ポンプの下方部側面に吸込口があるの
で、短絡流の発生を防いでいる。
The reason why the suspension was collected by the pump means at the center of the bottom of the sedimentation tank is to collect the sediment concentrate (heavy liquid). The purpose of preventing the inflow of short-circuit is to prevent the occurrence of short-circuit flow from the liquid level in the sedimentation tank and the inability to separate and classify suspended particles. In the submersible pump (2) shown in FIG. 1, the suction port is provided on the lower side surface of the pump, thereby preventing the occurrence of a short-circuit flow.

【0018】分岐装置(4)では、懸濁液中の沈降し易
い粗粒が上方向回路(5)よりも下方向回路(6)の方
に、わずかづつではあるが、より多く分配される。特
に、分岐装置(4)として、サイクロン分級機を使用す
れば、より効率的に粗粒を下方向回路(6)の方に分配
することができる。上方向回路と下方向回路とに懸濁液
を分岐させることにより、特に、粒径75μm以上の粗
粒が下方向回路から分離でき、配管の閉塞を防ぐことが
できる。
In the branching device (4), the sedimentable coarse particles in the suspension are distributed more but less in the lower circuit (6) than in the upper circuit (5). In particular, if a cyclone classifier is used as the branching device (4), the coarse particles can be more efficiently distributed to the downward circuit (6). By branching the suspension into the upper circuit and the lower circuit, coarse particles having a particle size of 75 μm or more can be separated from the lower circuit, and the clogging of the piping can be prevented.

【0019】上方向回路(5)には、流量調節弁(7)
を備えて流量を調節しながら、戻し回路(10)に懸濁
液を流入させる。戻し回路(10)の先端部は、沈降槽
(1)内の底周辺部に導いて吐出口(11)とし、懸濁
液を吐出させて旋回流を形成させる。吐出口(11)の
吐出方向は、通常、沈降槽(1)の内壁に沿って懸濁液
が吐出するように配置する。このように、沈降槽の底中
心部より採取した懸濁液(沈降濃縮液)を還流させ、底
周辺部から槽内に吐出させることにより、沈降槽内の懸
濁液に旋回流を発生させ、維持させる。この旋回流によ
って沈降槽内の液面から竜巻状の短絡流が生じないよう
に、水中ポンプによる採取液量を調節したり、流量調節
弁(7)及び(8)で還流量を調節したりする。懸濁粒
子が大きい場合は旋回流を強く設定し、微粒子の場合は
旋回流を弱く設定するように還流量を調整する。また、
沈降槽が大きい場合などには、吐出口(11)を複数個
設けて、旋回流が円滑に発生・維持されるようにするこ
とが好ましい。
The upward circuit (5) includes a flow control valve (7)
The suspension is allowed to flow into the return circuit (10) while adjusting the flow rate with the provision of (1). The leading end of the return circuit (10) is guided to the periphery of the bottom in the settling tank (1) to form a discharge port (11), and discharges the suspension to form a swirling flow. The discharge direction of the discharge port (11) is usually arranged such that the suspension is discharged along the inner wall of the settling tank (1). In this way, the suspension (sedimentation concentrated liquid) collected from the center of the bottom of the settling tank is refluxed, and discharged from the periphery of the bottom into the tank, thereby generating a swirling flow in the suspension in the settling tank. , Let me maintain. In order to prevent a tornado-like short-circuit flow from the liquid level in the sedimentation tank due to this swirling flow, the amount of liquid collected by the submersible pump is adjusted, and the amount of reflux is adjusted by the flow control valves (7) and (8). I do. When the suspended particles are large, the recirculation amount is adjusted so that the swirling flow is set strong, and when the suspended particles are fine, the swirling flow is set weakly. Also,
When the sedimentation tank is large, it is preferable to provide a plurality of discharge ports (11) so that the swirling flow can be smoothly generated and maintained.

【0020】旋回流が発生・維持されると、重力場に求
心加速度が重なって、懸濁粒子を沈降槽の底中心部に選
択的かつ連続的に沈降させて濃縮することができる。即
ち、懸濁粒子は、沈降しつつ求心力場の中心に集合し濃
縮する。懸濁粒子の沈降加速度は、ストークスの沈降式
に従う。懸濁液を還流して旋回流を発生・維持させる
と、懸濁粒子が底部に濃縮されても、流動状態を保って
いるため堆積しない。また、清水の場合、旋回流は順次
緩やかに液上面に波及するが、懸濁液の場合その粘度と
比重が水より大きいので、懸濁液の旋回流は液面に波及
し難い。
When the swirling flow is generated and maintained, the centripetal acceleration overlaps with the gravitational field, and the suspended particles can be selectively and continuously settled at the bottom center of the settling tank and concentrated. That is, the suspended particles gather and concentrate at the center of the centripetal force field while settling. The settling acceleration of the suspended particles follows the Stokes settling equation. When the suspension is refluxed to generate and maintain a swirling flow, even if the suspended particles are concentrated at the bottom, they do not accumulate because they remain in a fluid state. In the case of fresh water, the swirling flow gradually and gradually spreads to the liquid surface, but in the case of a suspension, the viscosity and specific gravity of the suspension are larger than that of water, so that the swirling flow of the suspension hardly spreads to the liquid surface.

【0021】沈降濃縮液は、水中ポンプにより採取され
て、その少なくとも1部が元の槽内に還流され、また、
1部が下方向回路(6)から採取される。下方向回路
(6)は、流量調節弁(8)を備え、沈降濃縮液の採取
流量を調節する。採取した沈降濃縮液は、脱液装置等の
後処理装置(9)に導く。
The sediment concentrate is collected by a submersible pump, at least a part of which is returned to the original tank, and
A portion is taken from the down circuit (6). The downward circuit (6) includes a flow control valve (8), and controls the collection flow rate of the sedimentation concentrate. The collected sedimentation concentrate is led to a post-processing device (9) such as a dewatering device.

【0022】被処理懸濁液は、直接沈降槽に導入しても
よいが、予め前処理をしたり、粗大粒子を分離しておく
ことができる。例えば、図1に示すように、被処理懸濁
液(12)を前処理装置(13)に導き、濾過、透析ま
たはイオン交換処理を行う。次いで、懸濁液を分岐装置
(14)に導き、上方向回路(19)と下方向回路(1
5)に分岐する。上方向回路には流量調節弁(18)を
備えて流量を調整しながら、沈降槽(1)の略中間位置
で、吐出口(23)から旋回流を形成する方向に吐出す
る。下方向回路(15)には流量調節弁(16)を備え
て流量を調整しながら、元に戻す回路を経て元に戻す。
下方向回路(15)は、沈降槽(1)に給液する被処理
懸濁液の流量を調整するバイパス回路となる。
The suspension to be treated may be directly introduced into the settling tank, but may be pretreated or coarse particles may be separated in advance. For example, as shown in FIG. 1, the suspension to be treated (12) is guided to a pretreatment device (13), and filtration, dialysis or ion exchange treatment is performed. The suspension is then led to a branching device (14), where an upward circuit (19) and a downward circuit (1) are provided.
Branch to 5). The upward circuit is provided with a flow control valve (18) to adjust the flow rate, and discharges from a discharge port (23) in a direction forming a swirling flow at a substantially intermediate position of the settling tank (1). The downward circuit (15) is provided with a flow control valve (16) to adjust the flow rate, and is returned to the original state through a restoration circuit.
The downward circuit (15) serves as a bypass circuit for adjusting the flow rate of the suspension to be supplied to the settling tank (1).

【0023】沈降槽(1)において、洗浄、化学反応等
を行う場合には、必要な展開液、希釈液、反応液、ガス
などは、注入液槽(27)から、吐出口(28)を通し
て吐出する。あるいは、吐出口(23)に至る管の途中
に、別途注入液の導入回路(20)を設ける。吐出口
(28)は、沈降槽の略中間位置に配置し、旋回流の形
成に寄与する方向に注入液等を吐出させることが好まし
い。
When washing, chemical reaction, etc. are performed in the settling tank (1), necessary developing liquid, diluting liquid, reaction liquid, gas, etc. are supplied from the injection liquid tank (27) through the discharge port (28). Discharge. Alternatively, an injection liquid introduction circuit (20) is separately provided in the middle of the pipe reaching the discharge port (23). The discharge port (28) is preferably disposed at a substantially intermediate position of the settling tank, and discharges the injection liquid or the like in a direction contributing to the formation of the swirling flow.

【0024】沈降槽(1)の有効床面積と、被処理液の
注入量と、下方向回路(6)からの採取量を調整し、過
剰の液(軽液)が越流堰(24)より排出されるように
設計する。越流手段は、円形堰、越流管、越流口と導管
を設けたフロートなど任意である。越流堰(24)から
の採取液は、イオン交換処理、限外濾過等の処理装置と
連結することができる。
The effective floor area of the settling tank (1), the injection amount of the liquid to be treated, and the collection amount from the downward circuit (6) are adjusted so that an excess liquid (light liquid) overflows the overflow weir (24). Designed to be more discharged. The overflow means is arbitrary such as a circular weir, an overflow pipe, a float provided with an overflow port and a conduit. The collected liquid from the overflow weir (24) can be connected to a processing device such as an ion exchange process and an ultrafiltration.

【0025】図2は、本発明の別の装置の1例を示す断
面略図である。図2では、図1における水中ポンプの代
わりに、邪魔板(29)を底部に配置して、外部ポンプ
(31)により沈降濃縮液を採取し、分岐装置(4)に
注入するようにしてある。邪魔板を配置することによ
り、液面からの短絡的流入を防ぐ。なお、前記水中ポン
プや邪魔板の代わりに、下方に開口した採液口を有する
配管を底部の中心位置に配置し、外部ポンプで吸引する
ようにしてもよい。
FIG. 2 is a schematic sectional view showing an example of another apparatus of the present invention. In FIG. 2, instead of the submersible pump in FIG. 1, a baffle plate (29) is arranged at the bottom, and the sediment concentrate is collected by an external pump (31) and injected into the branching device (4). . By disposing the baffle, short-circuit inflow from the liquid level is prevented. Instead of the submersible pump or the baffle plate, a pipe having a downwardly opened sampling port may be arranged at the center of the bottom, and suction may be performed by an external pump.

【0026】なお、上方向回路と下方向回路には、通
常、各々流量調節弁を配置するが、ポンプ手段の吐出量
の調節、あるいは各回路(管路)の大きさの調節などに
より、各回路の流量を制御してもよく、その場合には、
流量調節弁は、必ずしも必要ではない。また、一方の回
路にのみ流量調節弁を配置してもよい。
A flow control valve is usually arranged in each of the upper circuit and the lower circuit. Each flow control valve is adjusted by adjusting the discharge amount of the pump means or the size of each circuit (pipe). The flow rate of the circuit may be controlled, in which case
The flow control valve is not always necessary. Further, the flow control valve may be provided only in one of the circuits.

【0027】本発明の装置は、図3ないし図5に示すよ
うに、複数個を直列に配列して使用することができる。 図3(懸濁液から懸濁媒体液の採取例) 図3に、図2に示す基本構成の沈降分離装置を組み合わ
せた例を示す。沈降槽(301)の越流を越流手段(3
45)により沈降槽(302)に注入し、同様に、沈降
槽(302)の越流を沈降槽(303)に、沈降槽(3
03)の越流を沈降槽(304)に、それぞれ注入す
る。沈降槽(304)の越流手段(346)からは、清
浄な媒体液が採取でき、沈降槽(301)の底部からは
濃縮された懸濁液が採取できる。各槽の底部からポンプ
手段で懸濁液を汲み上げ、各分岐装置(312、31
3、314)により上方向回路と下方向回路に分岐する
こと、及び、上方向回路液を元の槽の底部に吐出して旋
回流の駆動力とし、下方向回路液を前段の槽の底部に供
給し、好ましくは旋回流の駆動力の1つとすることが、
懸濁質と懸濁媒体液との分離効率を高める。分岐の上下
を逆にすると、分離効率が低下するだけではなく、長期
運転において、各槽の底に比較的大きな粒径の粒子の堆
積が起こる。
The device of the present invention can be used by arranging a plurality of devices in series as shown in FIGS. FIG. 3 (Example of collection of suspension medium liquid from suspension) FIG. 3 shows an example in which the sedimentation / separation device having the basic configuration shown in FIG. 2 is combined. Overflow of the settling tank (301)
45) into the settling tank (302), and similarly, the overflow of the settling tank (302) is set in the settling tank (303) and the settling tank (3).
The overflow of 03) is injected into the settling tank (304), respectively. From the overflow means (346) of the settling tank (304), a clean medium liquid can be collected, and from the bottom of the settling tank (301), a concentrated suspension can be collected. The suspension is pumped from the bottom of each tank by a pump means, and each branching device (312, 31)
(3, 314) to branch into an upward circuit and a downward circuit, and discharge the upward circuit liquid to the bottom of the original tank to generate a driving force for the swirling flow, and the downward circuit liquid to the bottom of the previous tank. And preferably one of the driving forces of the swirling flow,
Increase the efficiency of separation between suspension and suspension medium. Reversing the branching not only reduces the separation efficiency, but also results in the deposition of relatively large particles at the bottom of each vessel during long term operation.

【0028】図3に示す装置は、都市上水道用水の製造
プラントに使用できる。都市上水道用水の製造におい
て、急速攪拌池で硫酸バンドを投入し、緩速攪拌池、沈
殿池を経て、清水を採取する。装置の左端の注水口(3
20)から原水を注入し、左上の注水口(330)から
硫酸バンド水を注入する。沈降槽(301)は、原水中
の微小な懸濁質やコロイド粒子と硫酸バンドとの化学反
応槽に相当する。沈降槽(304)は、濾過槽として機
能し、かつ、貯水槽としての役割を果たす。沈降槽(3
04)の越流手段(346)からは清水が採取される。
直列に接続する装置(沈降槽など)の数は、被処理液の
水質等に応じて適宜定めることができる。また、越流手
段(346)からの清水を、分岐装置を備えた別の中継
槽や貯水槽に導き、分岐装置の下方向回路液を放流し
て、錆び等の微量の懸濁質を排出するようにしてもよ
い。この場合、分岐装置として湿式サイクロンを用い
て、放流水量を調節することが好ましい。なお、薬液を
添加せずに自然条件だけの沈降分離操作を行うこともで
きる。
The apparatus shown in FIG. 3 can be used in an urban water supply water production plant. In the production of city water supply water, a sulfuric acid band is introduced into a rapid stirring pond, and fresh water is collected through a slow stirring pond and a sedimentation pond. Injection port (3
Raw water is injected from 20), and sulfuric acid band water is injected from the upper left injection port (330). The sedimentation tank (301) corresponds to a chemical reaction tank between the fine suspended matter and colloid particles in the raw water and the sulfate band. The settling tank (304) functions as a filtration tank and also serves as a water storage tank. Settling tank (3
04) Fresh water is collected from the overflow means (346).
The number of devices (sedimentation tanks and the like) connected in series can be appropriately determined according to the quality of the liquid to be treated. In addition, the fresh water from the overflow means (346) is guided to another relay tank or a water storage tank having a branching device, and the downward circuit liquid of the branching device is discharged to discharge a small amount of suspended matter such as rust. You may make it. In this case, it is preferable to use a wet cyclone as a branching device to adjust the amount of discharged water. In addition, the sedimentation / separation operation only under natural conditions can be performed without adding a chemical solution.

【0029】一方、各沈降槽の沈降泥液(重液)は、前
段の沈降槽に送られ、濃厚な泥液が沈降槽(301)の
底部からポンプにより採取できる。この濃厚な泥液は、
フィルタープレスで脱水処理してケーキとする。この装
置は、長期の運転でも、各槽の底に懸濁質の堆積は生じ
ない。
On the other hand, the settling mud (heavy liquid) in each settling tank is sent to the preceding settling tank, and thick mud can be collected from the bottom of the settling tank (301) by a pump. This thick mud,
The cake is dehydrated with a filter press. This device does not cause suspended solids to accumulate at the bottom of each tank even during long-term operation.

【0030】図4(懸濁液からの懸濁質の採取) 図4は、図2に示す基本構成の沈降分離装置を組み合わ
せたものである。沈降槽(401)の濃縮液(重液)を
分岐装置(411)及び下方向回路(452)を経て沈
降槽(402)に注入する。さらに、必要に応じて、別
の基本装置を、適宜数、直列に結合し、濃縮を繰り返す
ように構成してもよい。沈降槽(402)の濃縮液は、
分岐装置(412)の下方向回路から脱液装置(42
0)に注ぎ、媒体液の吐出口(421)から沈降槽(4
02)に戻し、濃縮された懸濁質を採取口(422)か
ら取り出す。
FIG. 4 (Collection of Suspended Matter from Suspension) FIG. 4 shows a combination of the sedimentation / separation apparatus having the basic structure shown in FIG. The concentrated liquid (heavy liquid) in the settling tank (401) is injected into the settling tank (402) via the branching device (411) and the downward circuit (452). Further, if necessary, another basic device may be connected in series in an appropriate number, and the concentration may be repeated. The concentrated liquid in the settling tank (402)
From the downward circuit of the branching device (412), the drainage device (42)
0) and settled tank (4) from the medium liquid outlet (421).
02), and the concentrated suspension is removed from the collection port (422).

【0031】図4に示す装置は、懸濁液から懸濁質を採
取するのに好適であり、以下に、海水からの資源の採取
例を示す。図4の左端の注入口(430)から海水を注
入し、注入口(440)から石灰乳を注入する。海水に
石灰乳を加えてアルカリ性にすると、水酸化マグネシウ
ムが析出するので、懸濁液となる。この懸濁液を吐出口
(450)から沈降槽(401)に吐出して旋回流を発
生させる。懸濁質を沈降分離した清浄な海水は、越流口
(460)から海に戻す。沈降槽(401)の濃縮液
は、分岐装置(411)と下方向回路(452)を経て
沈降槽(402)に注入し、沈降槽(402)の越流は
沈降槽(401)に戻す。採取口(422)から採取さ
れた水酸化マグネシウム懸濁液は、さらに洗浄・濃縮
し、脱水、乾燥して最終製品とする。
The apparatus shown in FIG. 4 is suitable for collecting suspended solids from a suspension. An example of collecting resources from seawater will be described below. Seawater is injected from the inlet (430) at the left end of FIG. 4, and milk of lime is injected from the inlet (440). When lime milk is added to seawater to make it alkaline, magnesium hydroxide precipitates and becomes a suspension. The suspension is discharged from the discharge port (450) to the settling tank (401) to generate a swirling flow. The clean seawater from which the suspended solids have settled is returned to the sea from the overflow (460). The concentrate in the settling tank (401) is injected into the settling tank (402) through the branching device (411) and the downward circuit (452), and the overflow of the settling tank (402) is returned to the settling tank (401). The magnesium hydroxide suspension collected from the collection port (422) is further washed and concentrated, dehydrated, and dried to obtain a final product.

【0032】従来、海水中に1%以下の含有率しかない
マグネシウムを濃縮するために、掻き寄せ機械を備えた
広大なシックナー装置を用いていたが、水酸化マグネシ
ウムの沈降を促進するために、石灰の使用が過剰になり
がちで、製品にカルシウムが混在していた。これに対し
て、本発明の装置では、沈降槽(402)で沈降分離操
作を繰り返し、沈降濃縮液を貯蔵することが可能である
ため、水酸化マグネシウムの析出反応を適正に調整する
ことができ、さらに、旋回流の強さや温度等を制御する
ことにより、粒径を揃えることもできる。このように、
本発明の装置は、化学反応装置としても使用可能であ
る。また、水酸化カルシウム以外の海水中に含まれる資
源の回収にも利用できる。
Conventionally, in order to concentrate magnesium having a content of 1% or less in seawater, a vast thickener device equipped with a scraping machine has been used. However, in order to promote the precipitation of magnesium hydroxide, The use of lime tended to be excessive and calcium was mixed in the product. On the other hand, in the apparatus of the present invention, the sedimentation separation operation is repeated in the sedimentation tank (402), and the sedimentation concentrate can be stored, so that the precipitation reaction of magnesium hydroxide can be appropriately adjusted. Further, by controlling the strength and temperature of the swirling flow, the particle diameter can be made uniform. in this way,
The device of the present invention can also be used as a chemical reaction device. It can also be used to recover resources contained in seawater other than calcium hydroxide.

【0033】図5(懸濁質粒子の分級例) 図5は、図2に示される基本構成の沈降分離装置を組み
合わせたものである。沈降槽(501)の越流を沈降槽
(502)の中程に注入し、沈降槽(502)の越流を
沈降槽(503)の中程に注入する。必要により、さら
なる沈降槽を、適宜数、直列に接続して、この操作を繰
り返す。
FIG. 5 (Example of Classification of Suspended Particles) FIG. 5 shows a combination of the sedimentation / separation apparatus having the basic structure shown in FIG. The overflow of the settling tank (501) is injected into the middle of the settling tank (502), and the overflow of the settling tank (502) is injected into the middle of the settling tank (503). If necessary, an appropriate number of additional settling tanks are connected in series, and this operation is repeated.

【0034】沈降槽(501)の濃縮液を分岐装置(5
11)及び下方向回路(537)を経て、縦型遠心分離
機等の脱液装置(521)に注入し、懸濁質を採取口
(531)から製品として取り出し、その濾過液は、粉
体溶解槽(540)にて回収する。粉体を懸濁した液
を、中継槽(550)に導き、沈降槽(501)に注入
する。注入流量と沈降槽の床面積を制御すると、沈降槽
(501)に所定粒度以上の粒子が沈降補足される。こ
の補足された粒子は、分岐装置(511)、脱液装置
(521)を経て、採取口(531)から製品として採
取できる。沈降槽(501)の越流を、それより床面積
の大きな沈降槽(502)の中程に注入し、沈降分離処
理すると、粒度の揃った粒子が製品(532)として採
取できる。同様の操作を沈降槽(502)と(503)
との間で行うことにより、さらに小さい粒子が採取口
(533)から製品として得られる。沈降槽(503)
の越流口(560)から清水が越流する。なお、沈降槽
の数を増やせば、順次、粒度の小さな粒子が得られる。
分岐装置(511、512、513)による懸濁液の分
配によって、懸濁質粒子の濃縮分離効率が向上する。分
岐の上下が逆であると、長期運転後に、各沈降槽に比較
的大きな粒子の堆積が生じる。
The concentrated liquid in the settling tank (501) is separated from the branching device (5).
11) and through the downward circuit (537), it is poured into a dewatering device (521) such as a vertical centrifuge, and the suspended solid is taken out as a product from the sampling port (531). Collect in the dissolution tank (540). The liquid in which the powder is suspended is guided to the relay tank (550) and injected into the settling tank (501). When the injection flow rate and the floor area of the sedimentation tank are controlled, particles having a predetermined particle size or more are settled and captured in the sedimentation tank (501). The supplemented particles can be collected as a product from the collection port (531) via the branching device (511) and the liquid removing device (521). The overflow of the sedimentation tank (501) is injected into the middle of the sedimentation tank (502) having a larger floor area, and the sedimentation and separation treatment allows particles having a uniform particle size to be collected as a product (532). The same operation is performed in the settling tanks (502) and (503).
The smaller particles are obtained as a product from the sampling port (533). Settling tank (503)
Shimizu overflows from the overflow outlet (560). In addition, if the number of sedimentation tanks is increased, particles having a small particle size are sequentially obtained.
The distribution of the suspension by the branching devices (511, 512, 513) improves the efficiency of concentration and separation of suspended particles. If the branch is upside down, after long-term operation, a relatively large accumulation of particles will occur in each settling tank.

【0035】図5の装置を採石及び採石粉の処理に用い
た例を示す。篩い操作による洗浄装置(561)によ
り、礫、粗砂の大きさの粒子(562)を清水(56
0)で洗浄し、洗浄した礫(563)を取り出す。排水
を中継槽(550)に導いて、洗浄した粗砂(551)
を取り出す。前記したように懸濁液の処理を行うことに
より、沈降槽(501)の濃縮液からは、粒度の揃った
砂を採取口(531)を経て採取し、さらに細かい砂を
沈降槽(502)の濃縮液から採取口(532)を経て
採取し、シルト粘土微粒子の脱水ケーキを沈降槽(50
3)の濃縮液から採取口(533)を経て採取する。図
5に示す装置は、鉱物粒子の分級、洗浄排水の処理、粉
体・粉塵の処理など多くの分野で使用できる。
An example in which the apparatus of FIG. 5 is used for quarrying and processing of quarry powder is shown. The particles (562) of the size of the gravels and coarse sand are removed from the washing device (561) by the sieving operation (561).
Washing is performed in step 0), and the washed gravels (563) are taken out. The drainage is led to the relay tank (550), and the washed coarse sand (551)
Take out. By treating the suspension as described above, sand having a uniform particle size is collected from the concentrated liquid in the settling tank (501) through the collection port (531), and finer sand is further collected in the settling tank (502). Of the dehydrated cake of silt clay fine particles was collected from the concentrated solution of
The sample is collected from the concentrated solution of 3) through the sampling port (533). The apparatus shown in FIG. 5 can be used in many fields such as classification of mineral particles, treatment of washing wastewater, treatment of powder and dust.

【0036】本発明においては、沈降分離槽内に粒径5
μm以下の粘土粒子を5重量%の範囲内の一定濃度を含
有せしめて、沈降分離槽の越流口から所定粒度の懸濁液
を採取することができる。5μm以下の微粒子は、比表
面積が大きく、表面活性が高いため、水に懸濁すると水
との親和力により、その懸濁液に粘性が発生し、懸濁液
の比重が大きくなる。したがって、粘土微粒子を含有す
る懸濁液では、粗粒子が浮遊し易くなり、懸濁液の安定
が増大する。本発明の方法及び装置では、粗粒子を含む
懸濁液を移送する場合、清水より粘土微粒子を残した回
収水を利用する閉鎖系の処理が可能である。
In the present invention, a particle size of 5
A suspension having a predetermined particle size can be collected from the overflow port of the sedimentation separation tank by containing clay particles having a particle size of μm or less at a certain concentration in the range of 5% by weight. Fine particles having a particle size of 5 μm or less have a large specific surface area and a high surface activity. Therefore, when suspended in water, the suspension has viscosity due to affinity with water, and the specific gravity of the suspension increases. Therefore, in the suspension containing the clay fine particles, the coarse particles are easily suspended, and the stability of the suspension is increased. In the method and apparatus of the present invention, when transferring a suspension containing coarse particles, it is possible to perform a closed system treatment using recovered water in which clay fine particles are left from fresh water.

【0037】[0037]

【実施例】以下、本発明について、実施例を挙げて具体
的に説明するが、本発明は、これらの実施例のみに限定
されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

【0038】[実施例1]懸濁液の分級処理 カオリン鉱石を水ガラス水溶液中で粉砕して懸濁液を調
製し、本発明の方法及び装置を利用して、粗砂及び微砂
成分を沈降分離し、粘土鉱物微粒子を含む懸濁液を採取
した。なお、粘土鉱物微粒子を含む懸濁液は、酸性にす
ると微粒子が凝集するので、脱水してケーキを得、さら
にケーキを粉砕して粉末とすることができる。
Example 1 Classification of Suspension Kaolin ore was pulverized in an aqueous solution of water glass to prepare a suspension, and the coarse sand and fine sand components were removed using the method and apparatus of the present invention. Separation by settling was performed, and a suspension containing clay mineral fine particles was collected. When the suspension containing the clay mineral fine particles is made acidic, the fine particles aggregate, so that the cake is dehydrated to obtain a cake, and the cake can be further pulverized to a powder.

【0039】鉱石を水ガラス水溶液中で粉砕して得た懸
濁液を、図2に示す装置の吐出口(23)から沈降槽
(1)内に導入した。ポンプ(31)を駆動させて、じ
ゃま板(29)の隙間から懸濁液を導管(30)、次い
で導管(32)に導き、分岐装置(4)に水平方向に注
入した。注入した懸濁液は、上方向回路(5)と下方向
回路(6)に分岐され、この上方向回路の懸濁液を戻し
回路(10)を経て吐出口(11)から周辺方向に吐出
し、旋回流を発生、維持させた。
A suspension obtained by crushing ore in a water glass aqueous solution was introduced into the settling tank (1) from the discharge port (23) of the apparatus shown in FIG. By driving the pump (31), the suspension was led through the gap of the baffle (29) to the conduit (30) and then to the conduit (32), and was injected horizontally into the branching device (4). The injected suspension is branched into an upward circuit (5) and a downward circuit (6), and the suspension in the upward circuit is discharged from a discharge port (11) to a peripheral direction through a return circuit (10). Then, a swirling flow was generated and maintained.

【0040】流量調節弁(7)と(8)を調節すること
により、旋回流を沈降槽の底部帯域を中心に生じさせ、
液面からの短絡流が発生しないようにした。沈降槽
(1)内の懸濁液は、液面が殆ど流動しないので、重力
による懸濁粒子の沈降が支障なく起こり、底部に濃縮液
が集まる。分岐装置の下にある下方向回路には、沈降速
度の速い、粒径と比重の大きい微砂成分を含む沈降濃縮
液が、流量調節弁(8)、後処理装置(9)を経て抜き
出された。
By adjusting the flow regulating valves (7) and (8), a swirling flow is created around the bottom zone of the settling tank,
The short circuit flow from the liquid surface was prevented from occurring. Since the surface of the suspension in the settling tank (1) hardly flows, sedimentation of suspended particles due to gravity occurs without any trouble, and the concentrated liquid collects at the bottom. In the downward circuit below the branching device, a sedimentation concentrate having a high sedimentation velocity and containing fine sand components having a large particle diameter and a large specific gravity is extracted through a flow control valve (8) and a post-treatment device (9). Was done.

【0041】新たな懸濁液を給液吐出口(23)から導
入すると、越流堰(24)から、粘土鉱物微粒子を含有
する懸濁液が連続的に採取できた。新たな懸濁液の給液
量と流量調節弁(7)と(8)を調節することにより、
越流量を調節すると、微砂成分が越流することなく、し
かも沈降槽の底部に微砂成分が堆積することなく、運転
することができた。
When a new suspension was introduced from the liquid supply discharge port (23), a suspension containing clay mineral fine particles could be continuously collected from the overflow weir (24). By adjusting the flow rate of the new suspension and the flow control valves (7) and (8),
When the overflow was adjusted, the operation could be performed without causing the fine sand component to overflow and without accumulating the fine sand component at the bottom of the settling tank.

【0042】新たに沈降槽に供給する懸濁液に粗砂成分
が含まれている場合には、濾過装置(13)で濾過して
取り除き、次いで懸濁液を分岐装置(14)に導いて、
上方向回路(19)と下方向回路(15)に分岐させ、
この上方向回路(19)からの懸濁液を沈降槽に導入す
れば、より効果的に粗砂や微砂を分離することができ
る。
When a coarse sand component is contained in the suspension to be newly supplied to the settling tank, the coarse sand component is removed by filtration with a filtration device (13), and then the suspension is guided to a branching device (14). ,
Branch into an upper circuit (19) and a lower circuit (15),
If the suspension from the upward circuit (19) is introduced into the settling tank, coarse sand and fine sand can be separated more effectively.

【0043】この実施例において、分岐装置(4)及び
(14)としては、垂直のパイプに水平方向からパイプ
を接続するチーズとよばれる配管材料を使用した。太い
垂直パイプに細い水平パイプを接線方向に接続して分岐
装置とした。
In this embodiment, as the branching devices (4) and (14), a piping material called cheese for connecting a pipe to a vertical pipe from a horizontal direction was used. A thin horizontal pipe was tangentially connected to a thick vertical pipe to form a branching device.

【0044】[実施例2]懸濁質の濃縮分離 実施例1の越流堰(24)から採取した粘土鉱物微粒子
を含有する懸濁液を使用して、懸濁質を分離した。この
懸濁液を酸性にすると、微粒子が凝集して、濃縮懸濁液
と清浄水に分離する。したがって、この分離操作は、p
H調整という化学反応と沈降分離に関連する。
Example 2 Concentration and Separation of Suspended Substance A suspension containing clay mineral fine particles collected from the overflow weir (24) of Example 1 was used to separate suspended matter. When the suspension is made acidic, the fine particles aggregate and separate into a concentrated suspension and clean water. Therefore, this separation operation is p
It is related to the chemical reaction of H adjustment and sedimentation.

【0045】幅5m四方、深さ4mの真四角の沈降池を
図1における沈降槽(1)として使用した。この沈降池
の略中心の底に、吐出量が4m2/時間の水中ポンプ
(2)を配置した。水中ポンプからの導管(3)を真上
に導き、途中で水平方向に曲げて、分岐装置(4)に接
続した。分岐装置の上方向回路(5)に接続する戻し回
路(10)は、図1の場合とは異なり、沈降池のコーナ
ー部分から底に導いて、さらに吐出口(11)を四角形
の一辺の中央に導き、約45°の方向で懸濁液を吐出さ
せるようにした。水中ポンプを駆動すると、吐出口(1
1)から懸濁液が槽内に還流して旋回流が発生したが、
この旋回流は液面にまで達せず、したがって、重力によ
る懸濁質の沈降が支障なく起こり、懸濁液は清水と濃縮
懸濁液に分離した。沈降池の底部分は、常に旋回流動し
ているため、懸濁質(粒子)が堆積して固まることはな
い。
A square settling pond having a width of 5 m and a depth of 4 m was used as the settling tank (1) in FIG. A submersible pump (2) having a discharge rate of 4 m 2 / hour was disposed substantially at the bottom of the settling pond. The conduit (3) from the submersible pump was led directly above, bent partway in the middle and connected to the branching device (4). Unlike the case of FIG. 1, the return circuit (10) connected to the upward circuit (5) of the branching device leads from the corner of the settling pond to the bottom, and further connects the discharge port (11) to the center of one side of the square. To discharge the suspension in a direction of about 45 °. When the submersible pump is driven, the discharge port (1
From 1), the suspension refluxed into the tank and a swirling flow occurred.
This swirling flow did not reach the liquid level, so that the suspended matter settled by gravity without any trouble, and the suspension separated into fresh water and concentrated suspension. Since the bottom of the settling basin is constantly swirling, suspended solids (particles) do not accumulate and harden.

【0046】下方向回路(6)からは、流量調節弁
(8)を経て、濃縮懸濁液がいつでも採取できた。新た
な懸濁液を供液吐出口(23)から導入すると、越流堰
(24)から清水が連続的に採取できた。流量調節弁
(7)及び(8)を調節して、越流量を調節し、濁り液
が越流しないようにし、かつ、沈降池の底部に粒子が堆
積しないように運転することができた。なお、新たな懸
濁液の導入に際し、バルブ(21)を経て化学薬液を注
入した。酸性粘土鉱物の場合には、化学薬液として塩
酸、硫酸、燐酸、次亜塩素酸などの酸または酸性水溶液
を使用して、懸濁質が沈降するようにする。
From the downward circuit (6), a concentrated suspension could be collected at any time via the flow control valve (8). When a new suspension was introduced from the liquid discharge port (23), fresh water could be continuously collected from the overflow weir (24). The flow control valves (7) and (8) were adjusted to control the overflow, to prevent turbidity from overflowing, and to operate so that particles did not accumulate at the bottom of the settling basin. When introducing a new suspension, a chemical solution was injected through a valve (21). In the case of an acidic clay mineral, an acid such as hydrochloric acid, sulfuric acid, phosphoric acid, or hypochlorous acid or an acidic aqueous solution is used as a chemical liquid so that the suspended solids settle.

【0047】[実施例3]懸濁質の水洗 実施例2において、下方向回路(6)から採取した濃縮
懸濁液を洗浄した例を示す。水洗のため、洗浄液で希薄
した希薄な懸濁液を沈降濃縮するには、シックナー濃縮
装置を使用する方法があるが、この装置は高価であるた
め、安価で、かつ、効率的な方法及び装置が望まれてい
る。
Example 3 Rinsing of Suspended Water An example of Example 2 in which the concentrated suspension collected from the downward circuit (6) was washed. There is a method using a thickener concentrator to settle and concentrate a dilute suspension diluted with a washing solution for washing with water. However, since this apparatus is expensive, it is inexpensive and efficient. Is desired.

【0048】直径3m、深さ6mのタンクを図2におけ
る沈降槽(1)として使用した。タンク底部のコーン型
の排出口に、液面からの直接吸入を防止する邪魔板(2
9)を配置し、吐出量4m2/時間のポンプ(31)を
用いて、タンク内の懸濁液を分岐装置(4)に注入し、
上方向回路(5)と下方向回路(6)とに分岐させた。
上方向回路から戻し回路(10)を経て、懸濁液をタン
ク底部に還流するようにし、吐出口(11)から接線方
向に懸濁液を吐出させた。吐出口(11)は、複数個設
けることが好ましい。
A tank having a diameter of 3 m and a depth of 6 m was used as a settling tank (1) in FIG. A baffle plate (2) is provided at the cone-shaped outlet at the bottom of the tank to prevent direct suction from the liquid level.
9) is arranged, and the suspension in the tank is injected into the branching device (4) by using a pump (31) having a discharge rate of 4 m 2 / hour,
The circuit is branched into an upward circuit (5) and a downward circuit (6).
The suspension was returned to the tank bottom through the return circuit (10) from the upward circuit, and the suspension was discharged tangentially from the discharge port (11). It is preferable to provide a plurality of discharge ports (11).

【0049】かくして、沈降槽(1)の底部分にのみ旋
回流が形成される。液面は、殆ど流動しないので重力に
よる懸濁粒子の沈降が支障なく起こり、懸濁液は沈降濃
縮液と清水とに分離する。タンクの底部は、旋回流によ
り懸濁液が流動しているため、粒子が堆積して固まるこ
とはない。
Thus, the swirling flow is formed only at the bottom of the settling tank (1). Since the liquid surface hardly flows, sedimentation of suspended particles due to gravity occurs without any trouble, and the suspension is separated into a sedimentation concentrate and fresh water. At the bottom of the tank, the suspension is flowing by the swirling flow, so that the particles do not accumulate and harden.

【0050】下方向回路(6)から、流量調節弁(8)
を経て濃縮懸濁液がいつでも採取できた。濃縮懸濁液
は、フィルタープレス、連続遠心分離機で、脱水処理で
きる程度にまで濃縮されており、しかも連続運転するこ
とにより大量に採取できた。
From the downward circuit (6), the flow control valve (8)
, A concentrated suspension could be collected at any time. The concentrated suspension was concentrated by a filter press and a continuous centrifuge to such an extent that dehydration treatment was possible, and a large amount could be collected by continuous operation.

【0051】新しい懸濁液を給液吐出口(23)から注
入すると、越流堰(24)から清水が連続的に採取でき
た。流量調節弁(7)及び(8)を調節して、越流量を
調節し、濁り液が越流しないようにし、かつ、タンクの
底部に粒子が堆積しないように運転することができた。
新たな懸濁液の注入に際して、バルブ(21)を経て洗
浄液を注入して希釈しても、濁り水が越流堰から漏洩し
ない。洗浄液として脱イオン水を注入すると、懸濁質ま
たは懸濁液を高度に精製することができる。
When a new suspension was injected from the liquid supply outlet (23), fresh water could be continuously collected from the overflow weir (24). The flow control valves (7) and (8) were adjusted to control the overflow, to prevent turbidity from overflowing, and to operate so that particles did not accumulate at the bottom of the tank.
When a new suspension is injected, the turbid water does not leak from the overflow weir even if the washing liquid is injected and diluted via the valve (21). Injection of deionized water as a washing liquid allows the suspension or suspension to be highly purified.

【0052】[実施例4]金属表面処理 自動車、電化製品の塗装前処理として燐酸塩皮膜処理を
行う。金属表面を燐酸でエッチングして、燐酸塩の結晶
を金属表面に析出させる。この際、各種スラッジが発生
して、処理液は懸濁し、塗膜の性能を損なう。従ってこ
のスラッジを除去しなくてはならない。
Example 4 Metal Surface Treatment A phosphate film treatment is performed as a pre-coating treatment for automobiles and electric appliances. The metal surface is etched with phosphoric acid to deposit phosphate crystals on the metal surface. At this time, various sludges are generated, and the processing liquid is suspended, thereby impairing the performance of the coating film. Therefore, this sludge must be removed.

【0053】このスラッジを除去するために、図2に示
す沈降分離装置を使用した。スラッジを含む懸濁処理液
(12)を、濾過装置(13)を経由して分岐装置(1
4)に導く。分岐した下方向回路(15)の液は、元の
処理槽に戻す。分岐した上方向回路(19)の液は、流
量調節弁(18)を経て、吐出口(23)より床面積2
2の沈降槽(1)に導いて、旋回流の駆動力とする。
この流量と沈降槽の床面積の商の値を、除去したいスラ
ッジの沈降速度、例えば、0.5m/時間に設定する。
この値は、スラッジの大きさと分離すべき粒子径で決め
る。即ち、流量は1m3/時間になる。邪魔板(29)
を迂回して沈降槽の底周辺から懸濁液を採取し、導管
(30)を経由して外部ポンプ(31)により分岐装置
(4)に導く。分岐した上方向回路(5)の液は、流量
調節弁(7)を経て、沈降槽内の吐出口(11)より吐
出して、沈降槽の底部分に旋回流を与える。懸濁粒子
は、求心力と重力により沈降槽の底中心部分に集まっ
て、濃縮した懸濁液の旋回流が形成された。分岐した下
方向回路(6)の流量調節弁(8)を開けると、濃厚な
懸濁液が採取できた。これを縦型連続遠心分離機(9)
で脱液処理してスラッジを分離した。重金属元素の含有
量が多く、比重の大きなスラッジが選択的に採取でき、
濾過液は処理槽に戻した。越流管(24)からの越流液
は、より大型の沈降分離装置に導いて、沈降速度の小さ
いスラッジを回収した。軽金属元素の含有量が多く、比
重の小さなスラッジが選択的に採取できた。
In order to remove the sludge, a settling apparatus shown in FIG. 2 was used. The suspension treatment liquid (12) containing sludge is passed through a filtration device (13) to a branching device (1).
Lead to 4). The liquid in the branched downward circuit (15) is returned to the original processing tank. The liquid of the branched upward circuit (19) passes through the flow control valve (18) and is discharged from the discharge port (23) through the floor area 2
It is led to a settling tank (1) of m 2 and used as a driving force for the swirling flow.
The value of the quotient of the flow rate and the floor area of the settling tank is set to the settling speed of the sludge to be removed, for example, 0.5 m / hour.
This value is determined by the size of the sludge and the particle size to be separated. That is, the flow rate is 1 m 3 / hour. Baffle board (29)
The suspension is collected from around the bottom of the sedimentation tank by bypassing, and guided to the branching device (4) by the external pump (31) via the conduit (30). The liquid of the branched upward circuit (5) is discharged from the discharge port (11) in the settling tank through the flow control valve (7), and gives a swirling flow to the bottom part of the settling tank. The suspended particles gathered at the center of the bottom of the settling tank due to centripetal force and gravity, and a swirling flow of the concentrated suspension was formed. When the flow control valve (8) of the branched downward circuit (6) was opened, a thick suspension could be collected. This is a vertical continuous centrifuge (9)
To remove sludge. Sludge with a large specific metal content and large specific gravity can be selectively collected,
The filtrate was returned to the treatment tank. The overflow liquid from the overflow pipe (24) was led to a larger sedimentation separation device, and sludge having a low sedimentation speed was recovered. Sludge with a large content of light metal elements and low specific gravity was selectively collected.

【0054】スラッジを除去しても、鋼表面のエッチン
グ処理で発生した2価の鉄イオンが処理液に溶解して蓄
積し、エッチング作用を妨害する。そこで、酸化剤を添
加して2価の鉄イオンを酸化し、水に溶解しない3価の
鉄イオンのスラッジを形成せしめて、これを除去する。
この場合、酸化剤の酸化力が強すぎると、金属表面に酸
化皮膜が形成されてエッチング作用を妨害するため、酸
化剤として亜硝酸ソーダが用いられることが多い。しか
し、亜硝酸ソーダは、酸化処理に際し、ナトリウムイオ
ンが生成して蓄積するため、金属表面処理が不可能にな
る。亜硝酸を直接吹き込むとナトリウムイオンは生成し
ないけれども、亜硝酸が金属表面に直接作用して、まだ
ら模様の酸化皮膜を形成し、良好な燐酸塩皮膜形成を損
なう。
Even if sludge is removed, divalent iron ions generated in the etching treatment of the steel surface dissolve and accumulate in the treatment liquid, and hinder the etching action. Therefore, an oxidizing agent is added to oxidize divalent iron ions to form trivalent iron ion sludge which is not dissolved in water, and removes the sludge.
In this case, if the oxidizing power of the oxidizing agent is too strong, an oxide film is formed on the metal surface to hinder the etching action. Therefore, sodium nitrite is often used as the oxidizing agent. However, sodium nitrite generates and accumulates sodium ions during the oxidation treatment, so that metal surface treatment becomes impossible. Although direct injection of nitrous acid does not produce sodium ions, nitrous acid acts directly on the metal surface to form a mottled oxide film, impairing good phosphate film formation.

【0055】本発明の装置では、流量調節弁(21)を
経て注入管(20)から、ナトリウムイオンを含まない
亜硝酸水もしくは酸化性ガスを必要量のみ注入すると、
透明な2価の鉄イオンが酸化され、水に不溶の3価の鉄
イオンのスラッジとなって沈降分離槽内で析出し、これ
が速やかに分離除去された。その結果、清浄な処理液が
処理槽に維持できて、良好な燐酸塩皮膜が継続して形成
できた。処理槽からの蒸発水を補給する脱イオン水を使
用して、スラッジを洗浄し、洗浄液を処理層に戻すこと
により、スラッジを封鎖系で洗浄できた。こうして洗浄
処理、精製したスラッジは、別途資源としてリサイクル
できる。
In the apparatus of the present invention, when only a required amount of nitrite or oxidizing gas containing no sodium ions is injected from the injection pipe (20) through the flow control valve (21),
The transparent divalent iron ions were oxidized and turned into sludge of water-insoluble trivalent iron ions, which precipitated out in the sedimentation tank, and were quickly separated and removed. As a result, a clean processing liquid could be maintained in the processing tank, and a good phosphate film could be continuously formed. The sludge was washed using the deionized water that replenishes the evaporating water from the treatment tank, and the sludge was washed in the closed system by returning the washing liquid to the treatment layer. The sludge thus washed and purified can be separately recycled as a resource.

【0056】ナトリウムイオンの残留した燐酸塩皮膜上
に塗装すると、塗膜に傷が付いた場合、塗膜下がアルカ
リ性になって塗膜が剥離し易くなる。従来、ナトリウム
イオンの残留を防止するため、大量の脱イオン水で洗浄
しなければならなかったが、膨大な量の水が必要なた
め、必ずしも徹底的に洗浄することができなかった。例
えば、自動車車体の鋼板合わせ目部位は、洗浄不足にな
り易く、塗装後も錆が発生し易い。特に高性能のカチオ
ン型電着塗装を行う場合、合わせ目部位に残留し、電解
で濃縮されたナトリウムイオンが原因となって、醜いス
キャブ錆が発生する。塗装後も防錆のシールが必要であ
った。
When the coating is applied on a phosphate film in which sodium ions remain, if the coating film is damaged, the undercoat film becomes alkaline and the coating film is easily peeled off. Conventionally, it was necessary to wash with a large amount of deionized water in order to prevent sodium ions from remaining. However, since an enormous amount of water was required, it was not always possible to thoroughly wash. For example, a joint portion of a steel plate of an automobile body is likely to be insufficiently cleaned, and rust is likely to occur even after painting. Particularly when performing high-performance cationic electrodeposition coating, ugly scab rust is generated due to sodium ions remaining at the seam and concentrated by electrolysis. Even after painting, a rustproof seal was required.

【0057】本発明の装置を採用した燐酸塩皮膜処理で
は、処理液にナトリウムイオンが混入しないから、燐酸
塩皮膜にもナトリウムイオンが含まれない。脱イオン水
で洗浄し、その洗浄液を処理液に戻す封鎖系の処理が採
用できる。その結果、塗装工程、特にカチオン型電着塗
装浴にナトリウムイオンを持ち込むことが無くなり、カ
チオン電着膜の防錆性能の向上が図れる。
In the phosphate coating treatment using the apparatus of the present invention, no sodium ions are contained in the phosphate coating because no sodium ions are mixed in the treatment solution. A sealing treatment may be employed in which the substrate is washed with deionized water and the washing solution is returned to the treatment solution. As a result, sodium ions are not brought into the coating step, particularly the cationic electrodeposition coating bath, and the rust prevention performance of the cationic electrodeposition film can be improved.

【0058】[実施例5]仕上りの良い電着塗装 つきまわり性に優れた電着塗装は、被塗装物の隅々まで
均一に塗装できる理想的な塗装方法である。しかし、複
合懸濁液である電着塗装液の管理が困難なため、大規模
用途にしか使われていない。塗装仕上りを損なう原因の
第一は、塗料の凝集ブツ、特に鉛系顔料のスラッジ、ゴ
ミなどの粗粒子であり、第二は電気分解反応の異常を引
き起こす1価のイオンの蓄積である。電着塗装における
イオン濃度の制御と管理には、イオン交換、限外濾過等
の高度の処理が採用されている。各種の粗粒子がこれら
の装置の寿命を短くし、ランニングコストを押し上げて
いる。電着塗装液中の粗粒子を効率よく除去する分離処
理が望まれる。
Example 5 Electrodeposition Coating with Good Finish Electrodeposition coating with excellent throwing power is an ideal coating method capable of uniformly coating every corner of an object to be coated. However, since it is difficult to control the electrodeposition coating solution as a composite suspension, it is used only for large-scale applications. The first cause of impairing the finish of coating is agglomeration of paint, especially coarse particles such as sludge and dust of lead-based pigments, and the second is the accumulation of monovalent ions that cause abnormal electrolysis reactions. Advanced processes such as ion exchange and ultrafiltration are employed for controlling and managing the ion concentration in the electrodeposition coating. Various types of grit shorten the life of these devices and increase running costs. A separation treatment for efficiently removing coarse particles in an electrodeposition coating solution is desired.

【0059】粗粒子の分離除去に適した図2に示す沈降
分離装置を、この分離処理に採用した。電着塗装液(1
2)を濾過装置(13)から分岐装置(14)に導く。
分岐した下方向回路(15)液を元の電着塗装槽に戻
す。ごみのない電着塗装液を上方向回路(19)から、
流量調節弁(18)を経て、吐出口(23)より沈降槽
(1)に導いて旋回流を与える。邪魔板(29)を迂回
して外部ポンプ(31)から汲み上げた液を、分岐装置
(4)から上方向回路(5)に導き、流量調節弁(7)
を経て吐出口(11)より沈降槽(1)内に吐出して、
沈降槽の底部分に旋回流を与える。
A sedimentation / separation apparatus shown in FIG. 2 suitable for separating and removing coarse particles was employed for this separation treatment. Electrodeposition coating liquid (1
2) from the filtration device (13) to the branching device (14).
The branched downward circuit (15) liquid is returned to the original electrodeposition coating tank. The dust-free electrodeposition coating liquid is supplied from the upper circuit (19)
After passing through the flow control valve (18), the discharge port (23) guides the sedimentation tank (1) to give a swirling flow. The liquid drawn from the external pump (31) bypassing the baffle plate (29) is guided from the branching device (4) to the upward circuit (5), and the flow control valve (7)
Through the outlet (11) into the settling tank (1),
A swirling flow is applied to the bottom of the settling tank.

【0060】電着塗装工程で発生した凝集物粒子は、求
心力と重力により沈降槽の底中心部に集まって、濃縮し
た懸濁液の旋回流が形成された。分岐した下方向回路
(6)の流量調節弁(8)を開けると、凝集物粒子の多
い懸濁液が採取できた。これを横型連続遠心分離装置
(9)で処理すると、塗装液中に発生した凝集物を濃縮
除去できた。電着塗装液は、希薄で直接遠心分離できな
かったが、本発明装置によれば、小型機種で効果的に実
施できた。
The agglomerated particles generated in the electrodeposition coating process gathered at the center of the bottom of the sedimentation tank by centripetal force and gravity to form a swirling flow of the concentrated suspension. When the flow control valve (8) of the branched downward circuit (6) was opened, a suspension containing a large amount of aggregated particles could be collected. When this was treated with the horizontal continuous centrifugal separator (9), the aggregates generated in the coating liquid could be concentrated and removed. The electrodeposition coating solution was diluted and could not be directly centrifuged, but according to the apparatus of the present invention, it could be carried out effectively on a small model.

【0061】濾過液と越流管(24)からの越流液は、
電着塗装槽に戻され、電着塗装液は常に精製され、電着
塗装膜の仕上りが良好に維持された。越流管(24)の
越流液は、凝集物粒子が除去されており、限外濾過、イ
オン交換樹脂等による処理が円滑にできる。具体的に
は、濾過カートリッジの寿命、イオン交換樹脂の寿命が
向上する。その結果、塗装製品の仕上りとともに防錆性
が向上する。特に、懸濁液を直接処理することが困難で
あったイオン交換処理が、本発明の分離装置の採用で可
能になった。
The filtrate and the overflow from the overflow pipe (24)
It was returned to the electrodeposition coating tank, and the electrodeposition coating solution was constantly purified, and the finish of the electrodeposition coating film was well maintained. The overflow liquid in the overflow pipe (24) is free of agglomerated particles, and can be easily treated by ultrafiltration, ion exchange resin or the like. Specifically, the life of the filtration cartridge and the life of the ion exchange resin are improved. As a result, the rust prevention is improved with the finish of the coated product. In particular, the ion exchange treatment, which was difficult to directly process the suspension, has become possible by employing the separation apparatus of the present invention.

【0062】本発明の装置によれば、凝集物を効果的に
除去することができる。意匠性に優れた雲母状の粒子を
用いる電着塗装では、塗料粒子の凝集で起こる塗膜異常
が特に目立つため厳重な管理が必要であるが、本発明の
装置によりこれを防止でき、絹光沢、真珠光沢、艶消し
等風合いの、各種意匠性の高い電着塗装が可能になっ
た。
According to the apparatus of the present invention, aggregates can be effectively removed. In electrodeposition coating using mica-like particles having excellent design properties, it is necessary to strictly control the coating film abnormality caused by agglomeration of the coating particles because it is particularly conspicuous. Electrodeposition coating with various design properties, such as texture, pearl luster, matte, etc., has become possible.

【0063】[実施例6]有機高分子粒子の分級精製 懸濁重合により、イオン交換樹脂、粉体塗料、接着剤、
フィラー等に使用される各種有機高分子粒子が生産され
ているが、その粒度を揃えること、あるいは重合触媒、
未反応モノマー等を効率的に除去精製することが望まれ
る。塗料、接着剤に用いる高分子粒子の合成液から、水
可溶性成分を除去する精製工程を例示する。分離装置と
して図2に示す沈降分離装置を採用した。
[0063] By classifying purified suspension of Example 6 organic polymer particles, ion exchange resins, powder coatings, adhesives,
Various organic polymer particles used for fillers and the like have been produced.
It is desired to remove and purify unreacted monomers and the like efficiently. A purification step for removing water-soluble components from a synthetic solution of polymer particles used for paints and adhesives will be exemplified. The sedimentation separation device shown in FIG. 2 was employed as the separation device.

【0064】試料懸濁液(12)を篩い装置(13)を
経由して分岐装置(14)に導く。分岐した下方向回路
(15)液は、元に戻し篩い装置(13)を循環する。
この上方向回路(19)液を流量調節弁(18)を経
て、吐出口(23)より沈降槽(1)内に旋回流を形成
するように導く。沈降槽内の懸濁液を邪魔板(29)を
迂回して外部ポンプ(31)により汲み出して、分岐装
置(4)から上方向回路(5)に導き、流量調節弁
(7)を経て吐出口(11)より沈降槽内に吐出して旋
回流を形成する。懸濁粒子は、底中心部に集合し濃縮さ
れる。注入管(20)から流量調節弁(21)を経て、
脱イオン水を沈降槽(1)に注入する。あるいは、脱イ
オン水を薬液注入口(27)から吐出口(28)を経て
注入する。沈降槽の床面積と採取したい粒子の沈降速度
の積で決まる流量で越流管(24)から洗浄水が排出さ
れるように注入流量を調整し、重合触媒、未反応モノマ
ー等の水可溶性成分を除去する。かくして、沈降槽
(1)の底部分のみに、洗浄された所定粒子径以上の粒
子が濃縮される。濃縮懸濁液は、堆積しない旋回流とな
っているので、分岐下方向回路のバルブ(8)を開ける
と、濃縮懸濁液が採取できた。これを濾過型の脱液装置
(9)で処理して、所望の精製粒子を回収できた。本発
明装置を用いずに直接濾過した場合、微粒子が濾過膜を
閉塞するため、濾過膜の寿命が短い。分岐装置の配管の
上下を逆にすると、長期の運転において沈降槽に堆積が
起こる。多数の分離槽を直列または並列に組み合わせる
と、各種粒度の粒子を分級採取できる。薬液注入口(2
7)からアルコールを注入して媒体の密度を低下させる
と、沈降が促進されて、分離効果が高まる。
The sample suspension (12) is led to the branching device (14) via the sieving device (13). The branched downward circuit (15) liquid is returned and circulated through the sieving device (13).
The liquid in the upward circuit (19) is guided through the flow control valve (18) from the discharge port (23) so as to form a swirling flow in the settling tank (1). The suspension in the sedimentation tank is pumped by an external pump (31) bypassing the baffle plate (29), guided to the upward circuit (5) from the branching device (4), and discharged through the flow control valve (7). It is discharged from the outlet (11) into the settling tank to form a swirling flow. Suspended particles collect and concentrate at the center of the bottom. From the injection pipe (20) through the flow control valve (21),
Pour deionized water into the settling tank (1). Alternatively, deionized water is injected from the chemical inlet (27) through the outlet (28). The injection flow rate is adjusted so that the washing water is discharged from the overflow pipe (24) at a flow rate determined by the product of the floor area of the sedimentation tank and the sedimentation velocity of the particles to be collected. Is removed. Thus, the washed particles having a predetermined particle diameter or more are concentrated only in the bottom portion of the settling tank (1). Since the concentrated suspension had a swirling flow that did not accumulate, the concentrated suspension could be collected by opening the valve (8) of the branch downward circuit. This was treated with a filtration-type dewatering device (9) to recover desired purified particles. In the case of direct filtration without using the apparatus of the present invention, the life of the filtration membrane is short because the fine particles block the filtration membrane. When the piping of the branching device is turned upside down, sedimentation occurs in the settling tank in a long-term operation. When a large number of separation tanks are combined in series or in parallel, particles having various particle sizes can be classified and collected. Chemical inlet (2
When the density of the medium is reduced by injecting alcohol from 7), sedimentation is promoted and the separation effect is enhanced.

【0065】本発明の方法及び装置によれば、粒子の堆
積がなく洗浄処理ができ、粉体塗料粒子に含まれるイオ
ン成分を除去精製して、絶縁抵抗が高く、塗装効率の高
い静電塗装用塗料ができる。また、接着剤の耐水性を損
なう未反応モノマーを除去することができる。さらに、
これら使用済粒子、粉塵粒子の処理を含めて、各種の混
合粉から、有用な精製微粒子、フィラーに使える微粒子
を分級回収できる。
According to the method and the apparatus of the present invention, a cleaning treatment can be performed without the accumulation of particles, the ionic components contained in the powder coating particles can be removed and purified, and the electrostatic coating with high insulation resistance and high coating efficiency can be achieved. For paint. In addition, unreacted monomers that impair the water resistance of the adhesive can be removed. further,
Useful refined fine particles and fine particles usable as a filler can be classified and collected from various mixed powders including the treatment of these used particles and dust particles.

【0066】[0066]

【発明の効果】本発明によれば、旋回流の駆動のために
懸濁液を還流する回路と、濃縮懸濁液を採取する回路を
分岐装置により適切に配置することにより、沈降槽の底
部分に濃縮懸濁液を堆積させることなく、懸濁液を希薄
懸濁液と濃縮懸濁液とに分離分級する沈降分離装置及び
沈降分離方法が提供される。本発明の装置は、長期にわ
たって安定に稼働する。
According to the present invention, the circuit for refluxing the suspension for driving the swirling flow and the circuit for collecting the concentrated suspension are appropriately arranged by the branching device, so that the bottom of the sedimentation tank is provided. Provided is a sedimentation separation apparatus and a sedimentation separation method for separating and classifying a suspension into a dilute suspension and a concentrated suspension without depositing a concentrated suspension on a portion. The device of the present invention operates stably for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法及び装置の1具体例を示す断面略
図である。
FIG. 1 is a schematic cross-sectional view illustrating one embodiment of the method and apparatus of the present invention.

【図2】本発明の方法及び装置の1具体例を示す断面略
図である。
FIG. 2 is a schematic cross-sectional view illustrating one embodiment of the method and apparatus of the present invention.

【図3】本発明の装置を直列に連結して、媒体液、清水
の採取する場合の1具体例を示す断面略図である。
FIG. 3 is a schematic cross-sectional view showing one specific example in which the devices of the present invention are connected in series to collect a medium liquid and fresh water.

【図4】本発明の装置を用いて、懸濁液からの懸濁質の
採取、例えば、海水から資源を採取する場合の1具体例
を示す断面略図である。
FIG. 4 is a schematic cross-sectional view showing one specific example of collecting suspended solids from a suspension using the apparatus of the present invention, for example, collecting resources from seawater.

【図5】本発明の装置を用いて、懸濁粒子を分級する場
合の1具体例を示す断面略図である。
FIG. 5 is a schematic cross-sectional view showing one specific example in the case of classifying suspended particles using the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1:沈降槽 2:水中ポンプ 3:導管 4:分岐装置 5:上方向回路 6:下方向回路 7、8:流量調節弁 9:後処理装置 10:戻し回路 11:吐出口 12:被処理懸濁液 13:前処理装置 14:分岐装置 15:下方向回路 16:流量調節弁 17:後処理装置 18:流量調節弁 19:上方向回路 20:薬液注入管 21:流量調節弁 22:導管 23:吐出口 24:越流管 25:導管 26:後処理装置 27:薬液注入口 28:吐出口 29:邪魔板 30:導管 31:外部ポンプ 32:導管 301〜304:沈降槽 311〜314:分岐装置 320:被処理懸濁液導入口 330:薬液注入口 340:邪魔板 341:外部ポンプへの導管 342:上方向回路 343:下方向回路 344:吐出口 345〜346:越流手段 401〜402:沈降槽 410〜412:分岐装置 420:後処理装置 421:吐出口 430:被処理懸濁液導入口 440:薬液注入口 450:吐出口 450:外部ポンプへの導管 451:上方向回路 452:下方向回路 453:吐出口 454:越流手段 456:吐出口 457:邪魔板 460:越流管 501〜503:沈降槽 511〜513:分岐装置 521〜523:後処理装置 531〜533:懸濁粒子採取口 540:溶解槽 541:粉体原料 550:中継槽 560:越流手段(清水の採取) 561:洗浄槽 562:被洗浄物 563:洗浄物 570:水中ポンプ 571:導管 572:上方向回路 573:下方向回路 574:越流手段 1: Sedimentation tank 2: Submersible pump 3: Conduit 4: Branch device 5: Upward circuit 6: Downward circuit 7, 8: Flow control valve 9: Post-processing device 10: Return circuit 11: Discharge port 12: Suspension to be processed Suspended liquid 13: Pretreatment device 14: Branching device 15: Downward circuit 16: Flow control valve 17: Posttreatment device 18: Flow control valve 19: Upward circuit 20: Chemical solution injection pipe 21: Flow control valve 22: Conduit 23 : Discharge port 24: overflow pipe 25: conduit 26: post-processing device 27: chemical liquid inlet 28: discharge port 29: baffle plate 30: conduit 31: external pump 32: conduit 301-304: sedimentation tank 311-314: branch Device 320: Suspension to be treated 330: Chemical solution inlet 340: Baffle plate 341: Conduit to external pump 342: Upper circuit 343: Lower circuit 344: Discharge port 345-346: Overflow means 401- 02: sedimentation tank 410-412: branching device 420: post-processing device 421: discharge port 430: inlet for suspension to be treated 440: chemical liquid inlet 450: discharge port 450: conduit to external pump 451: upward circuit 452 : Downward circuit 453: Discharge port 454: Overflow means 456: Discharge port 457: Baffle plate 460: Overflow pipe 501-503: Sedimentation tank 511-513: Branching device 521-523: Post-processing device 531-533: Suspension Suspended particle collection port 540: dissolution tank 541: powder raw material 550: relay tank 560: overflow means (collection of fresh water) 561: cleaning tank 562: object to be cleaned 563: cleaning object 570: submersible pump 571: conduit 572: top Direction circuit 573: Downward circuit 574: Overflow means

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 懸濁液の沈降槽の底中心部からポンプ手
段により採取した懸濁液を上方向回路と下方向回路に分
岐し、上方向回路に分岐した懸濁液を沈降槽の底部に還
流して、槽内懸濁液の液面から底部への短絡流が起こら
ない旋回流を発生・維持せしめ、下方向回路からは懸濁
質濃度の高い重液を採取することを特徴とする懸濁液の
沈降分離方法。
1. A suspension collected by a pump means from a central part of a bottom of a settling tank for a suspension is branched into an upper circuit and a lower circuit, and the suspension branched into an upper circuit is collected at the bottom of the settling tank. To generate and maintain a swirling flow that does not cause a short-circuit flow from the liquid surface to the bottom of the suspension in the tank, and collect heavy liquid with high suspended solid concentration from the downward circuit. Method of sedimentation of suspension to be performed.
【請求項2】 懸濁液を導入して、懸濁質濃度の高い重
液と懸濁質濃度の低い軽液に分離するための沈降槽に、
(a)沈降槽の底中心部から懸濁液を採取するためのポ
ンプ手段、(b)前記ポンプ手段で採取した懸濁液を分
岐装置に導くための導管、(c)前記導管から流入した
懸濁液を上方向回路と下方向回路に分岐するための分岐
装置、(d)上方向回路に分岐した懸濁液を沈降槽に還
流するための戻し回路、及び(e)沈降槽の底周辺部に
戻し回路の吐出口を設け、戻し回路の吐出口から吐出さ
れる懸濁液の流れを駆動力として、槽内懸濁液の液面か
ら底部への短絡流が起こらない旋回流を発生・維持せし
め、下方向回路からは重液を採取するように構成してな
ることを特徴とする懸濁液の沈降分離装置。
2. A sedimentation tank for introducing a suspension and separating the suspension into a heavy liquid having a high concentration of suspended matter and a light liquid having a low concentration of suspended matter,
(A) pump means for collecting the suspension from the center of the bottom of the settling tank, (b) a conduit for guiding the suspension collected by the pump means to a branching device, and (c) inflow from the conduit. A branching device for branching the suspension into an upward circuit and a downward circuit, (d) a return circuit for returning the suspension branched to the upward circuit to the settling tank, and (e) a bottom of the settling tank A return circuit discharge port is provided in the peripheral part, and the swirling flow that does not cause a short-circuit flow from the liquid level of the suspension in the tank to the bottom is used as the driving force with the flow of the suspension discharged from the return circuit discharge port. A suspension sedimentation / separation apparatus characterized in that the suspension is generated and maintained, and heavy liquid is collected from a downward circuit.
JP22643492A 1992-08-03 1992-08-03 Method and apparatus for sedimentation and separation of suspension Expired - Fee Related JP2814417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22643492A JP2814417B2 (en) 1992-08-03 1992-08-03 Method and apparatus for sedimentation and separation of suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22643492A JP2814417B2 (en) 1992-08-03 1992-08-03 Method and apparatus for sedimentation and separation of suspension

Publications (2)

Publication Number Publication Date
JPH0655007A JPH0655007A (en) 1994-03-01
JP2814417B2 true JP2814417B2 (en) 1998-10-22

Family

ID=16845055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22643492A Expired - Fee Related JP2814417B2 (en) 1992-08-03 1992-08-03 Method and apparatus for sedimentation and separation of suspension

Country Status (1)

Country Link
JP (1) JP2814417B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218377B4 (en) * 2002-04-25 2004-03-11 Rea Gesellschaft Für Recycling Von Energie Und Abfall Mbh Method and device for separating heavy substances from slurries
MX2012009872A (en) * 2010-02-25 2012-09-12 Veolia Water Solutions & Tech Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor.
CN111744353A (en) * 2020-07-15 2020-10-09 佛山市三水新明珠建陶工业有限公司 Lime mud filtering device of kiln desulfurizing tower and desulfurizing process using same
CN114534314B (en) * 2022-03-22 2024-08-02 濮阳市盛源能源科技股份有限公司 Water decanter series connection device

Also Published As

Publication number Publication date
JPH0655007A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
EP3130385B1 (en) Sedimentation tank and water treatment apparatus including the same
US7820053B2 (en) Magnetic separation and seeding to improve ballasted clarification of water
RU2499629C1 (en) High-rate filter with porous filtering medium and method of its blowback
KR100639266B1 (en) Device of twice continual deposition treating and its method
CN105836932A (en) Method for treating wastewater containing sediment
CN207748958U (en) A kind of industrial wastewater treatment system
CN1128649C (en) Condensing precipitator
JP5499185B2 (en) Ballast flocculation and precipitation water treatment system and water treatment process with simplified sludge recirculation device
CN107445369A (en) A kind of blue-green algae pasture and water processing ship and blue-green algae pasture and water processing method
CN108854174A (en) Mudpan
CN103880131A (en) Micro-vortex high-efficiency clarification reactor and operation method for same
JP2001020318A (en) Waters purifying method and waters purifying system and dam soil discharging system
KR101976216B1 (en) Water clarification method and device
AU2006222735B8 (en) Multi-media clarifier or thickener
JP2814417B2 (en) Method and apparatus for sedimentation and separation of suspension
US4330407A (en) Process for clarifying algae-laden waste water stream
JPH0463142A (en) Apparatus for treating suspension by ion exchange
WO1999033541A1 (en) Coagulation precipitator
CN205803170U (en) A kind of Waste Water Treatment in coal
JP2002136977A (en) Sewage treatment apparatus of waste household electric appliance recycling treatment apparatus
KR100251344B1 (en) Method and system for purifying rivers
JP2007083179A (en) Treatment method and apparatus for copper particle-containing water
CN205867667U (en) Mud slag blanket filter tank
CN207608441U (en) A kind of cyanobacteria water plant processing ship
JP3387696B2 (en) Suspension clarification equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees