JP2813790B2 - Method for cleaning and drying compound semiconductor single crystal substrate - Google Patents

Method for cleaning and drying compound semiconductor single crystal substrate

Info

Publication number
JP2813790B2
JP2813790B2 JP5075608A JP7560893A JP2813790B2 JP 2813790 B2 JP2813790 B2 JP 2813790B2 JP 5075608 A JP5075608 A JP 5075608A JP 7560893 A JP7560893 A JP 7560893A JP 2813790 B2 JP2813790 B2 JP 2813790B2
Authority
JP
Japan
Prior art keywords
drying
substrate
cleaning
ultrapure water
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5075608A
Other languages
Japanese (ja)
Other versions
JPH06291105A (en
Inventor
滋男 桂
健二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP5075608A priority Critical patent/JP2813790B2/en
Publication of JPH06291105A publication Critical patent/JPH06291105A/en
Application granted granted Critical
Publication of JP2813790B2 publication Critical patent/JP2813790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の洗浄、乾
燥技術、特にGaAs単結晶基板を鏡面研磨した後に行
なう洗浄、乾燥に利用して好適な技術に関し、洗浄後の
基板表面の乾燥むらおよび重金属汚染を防止するのに有
効な技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for cleaning and drying a semiconductor substrate, and more particularly to a technique suitable for use in cleaning and drying performed after mirror polishing a GaAs single crystal substrate. It is an effective technique for preventing heavy metal contamination.

【0002】[0002]

【従来の技術】従来、鏡面研磨を施したGaAs単結晶
基板(ウェハ)は、研磨加工時に基板の固定に用いたワ
ックスの残渣や基板表面に付着している塵埃を除去する
ため、ワックスの溶解性を考慮してトリクレン、アセト
ン、メタノール等の有機溶剤の中から適当な有機溶剤を
選択しあるいはそれらを組み合わせた溶剤を用いて基板
を洗浄した後、超純水により有機溶剤並びに水溶性の汚
染物質を洗い落してからスピン乾燥あるいは窒素ガスの
吹き付けによるブロー乾燥で基板表面を乾燥させるよう
にしていた。なお、スピン乾燥は、スピナー等を用い単
結晶基板を高速回転し、表面の水切りを行うものであ
る。
2. Description of the Related Art Conventionally, a GaAs single crystal substrate (wafer) that has been subjected to mirror polishing is melted to remove wax residues used for fixing the substrate during polishing and dust adhering to the substrate surface. After selecting a suitable organic solvent from among the organic solvents such as trichlene, acetone, methanol, etc. in consideration of the properties, or washing the substrate with a solvent combining them, the organic solvent and water-soluble contamination with ultrapure water After washing off the substance, the substrate surface is dried by spin drying or blow drying by blowing nitrogen gas. In the spin drying, the single crystal substrate is rotated at a high speed using a spinner or the like to drain the surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来方法にあっては、乾燥後の基板表面にいわゆる乾燥む
らと呼ばれる斑紋状の汚れが生じ、基板表面の品質を低
下させることがあった。このような乾燥むらは、サブミ
クロン〜10ミクロン程度の微粒子の集合体であり、基
板表面に強固に付着しているので、窒素ガスの吹き付け
や超純水による再度の洗浄を行なっても取ることができ
ないという欠点があった。
However, in the above-mentioned conventional method, mottled stains called so-called uneven drying may occur on the substrate surface after drying, and the quality of the substrate surface may be degraded. Such drying unevenness is an aggregate of fine particles of submicron to about 10 micron, and is firmly attached to the substrate surface. Therefore, it is necessary to remove the unevenness even after spraying with nitrogen gas or washing again with ultrapure water. There was a disadvantage that it could not be done.

【0004】また、上記従来方法にあっては、研磨後の
超純水による洗浄の過程で基板が酸化されて表面に比較
的厚くかつ面内バラツキの大きな酸化膜が形成されると
いう欠点があった。そのため、従来は、上記エピタキシ
ャル成長の直前に、硫酸系のエッチング液を用いてエッ
チングを行なうようにしていた。ところが、このエッチ
ング方法は、しばしばエッチング量のバラツキを生じ、
基板表面の平坦度を損なうとともに、エッチング後に再
び酸化膜が生成されてしまうため、基板の表面酸化膜を
完全に除去することができない。しかも、表面酸化膜が
厚いとそれだけ汚染物質としての重金属の表面濃度が高
くなるという問題点を有していることが明らかになっ
た。
Further, the conventional method has a disadvantage that the substrate is oxidized in the course of cleaning with ultrapure water after polishing, and an oxide film having a relatively large thickness and a large in-plane variation is formed on the surface. Was. For this reason, conventionally, etching was performed using a sulfuric acid-based etchant immediately before the epitaxial growth. However, this etching method often causes variations in the amount of etching,
Since the flatness of the substrate surface is impaired and an oxide film is formed again after the etching, the surface oxide film of the substrate cannot be completely removed. In addition, it has been found that the thicker the surface oxide film, the higher the surface concentration of heavy metal as a contaminant.

【0005】なお、上記残留酸化膜は、エピタキシャル
成長の直前に基板を熱処理(熱エッチング)すること
で、ある程度除去することも可能であるが、このような
熱処理では、時として酸化膜の一部が残ってしまった
り、基板の表面欠陥を発生させる原因となるので好まし
くないことが分かった。また、表面酸化膜を熱エッチン
グしても重金属までは除去できないため、重金属の汚染
が多いと、基板表面にエピタキシャル層を成長させたと
きに基板との界面に重金属がシート状に残ってしまい、
電子デバイスを作成したときにトラップとして作用して
動作速度を遅くするという欠点がある。
[0005] The residual oxide film can be removed to some extent by heat-treating (thermal etching) the substrate immediately before the epitaxial growth. However, in such a heat treatment, a part of the oxide film is sometimes removed. It has been found that this is not preferable because it remains or causes a surface defect of the substrate. In addition, even if the surface oxide film is thermally etched, even the heavy metal cannot be removed, so if there is a lot of heavy metal contamination, the heavy metal remains in a sheet form at the interface with the substrate when the epitaxial layer is grown on the substrate surface,
There is a drawback that when an electronic device is created, it acts as a trap to slow down the operation speed.

【0006】一方、本出願人は先に、上記乾燥むらを防
止するためイソプロピルアルコール等を用いて基板表面
の水をアルコールで置換して蒸発させる蒸気乾燥法を提
案した(特願平3−150893号)。ところが、上記
蒸気乾燥法は、乾燥むらを無くすには有効であるが、イ
ソプロピルアルコール等の溶剤中に水分や不純物が蓄積
されるためかなりの頻度で溶剤を交換する必要がありコ
ストが高くなるとともに、Fe,Cu,Ni等の重金属
の汚染が基板表面全体に拡がることがあるので好ましく
ないことが分かった。
On the other hand, the applicant of the present invention has previously proposed a steam drying method in which water on the substrate surface is replaced with alcohol using isopropyl alcohol or the like to prevent the drying unevenness described above (Japanese Patent Application No. 3-150893). issue). However, the above-mentioned steam drying method is effective for eliminating drying unevenness, but since water and impurities are accumulated in a solvent such as isopropyl alcohol, it is necessary to exchange the solvent at a considerable frequency, which increases the cost and increases the cost. , Fe, Cu, Ni, and other heavy metals may spread over the entire surface of the substrate.

【0007】本発明は上記のような問題点に着目してな
されたもので、その目的とするところは、蒸気乾燥法を
使わずにスピン乾燥またはブロー乾燥のみで乾燥むらの
でない簡易な基板洗浄方法を提供することにある。本発
明の他の目的は、基板表面の酸化膜の厚さが薄くかつ均
一となるような基板洗浄方法を提供することにある。さ
らに、本発明の他の目的は、基板表面の重金属汚染の少
ない基板洗浄方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a simple substrate cleaning method using only spin drying or blow drying without using a steam drying method and having no drying unevenness. It is to provide a method. Another object of the present invention is to provide a substrate cleaning method in which the thickness of an oxide film on a substrate surface is small and uniform. Still another object of the present invention is to provide a method of cleaning a substrate with less heavy metal contamination on the substrate surface.

【0008】[0008]

【課題を解決するための手段】本発明者らは、超純水に
よる洗浄の過程で基板が酸化されてバラツキの大きな表
面酸化膜が形成されるのは、超純水中の溶存酸素濃度が
関係するのではないかと考えて、上記エッチング後の洗
浄に使用する超純水の条件について検討を行なった。図
1には、実験により得られた超純水中の溶存酸素濃度と
基板表面に残る酸化膜の厚さとの関係を示す。同図よ
り、超純水中の溶存酸素濃度を1.0ppm以下とする
ことによって、酸化膜の厚さを2nm以下にできるこ
と、およびそのときの酸化膜の厚さのバラツキを測定誤
差範囲の0.5nm以下にできることが分かる。ただ
し、洗浄中に超純水中に溶解する酸素があることを考慮
すると、溶存酸素濃度が0.5ppm以下の超純水を使
用するのが望ましい。
Means for Solving the Problems The inventors of the present invention have found that, during the cleaning process using ultrapure water, the substrate is oxidized to form a highly scattered surface oxide film because the dissolved oxygen concentration in the ultrapure water is low. Considering that it may be related, the condition of ultrapure water used for cleaning after the etching was examined. FIG. 1 shows the relationship between the concentration of dissolved oxygen in ultrapure water and the thickness of the oxide film remaining on the substrate surface obtained by the experiment. As shown in the figure, by setting the concentration of dissolved oxygen in ultrapure water to 1.0 ppm or less, the thickness of the oxide film can be reduced to 2 nm or less. It can be seen that the thickness can be reduced to 0.5 nm or less. However, considering that there is oxygen dissolved in ultrapure water during washing, it is preferable to use ultrapure water having a dissolved oxygen concentration of 0.5 ppm or less.

【0009】さらに、基板表面の酸化膜の厚みの面内分
布をエリプソメータを用いて、また基板表面の重金属の
面内分布を全反射蛍光X線分析でそれぞれ調べたとこ
ろ、酸化膜の厚みの面内分布と重金属の面内分布が対応
していることが分かった。これより、重金属は表面酸化
膜の中に局在しており、酸化膜を洗浄中に除去できれば
重金属濃度を低減することができ、それには脱酸素水を
使用すれば良いと考え、溶存酸素濃度を低くした超純水
による洗浄実験を行なった。その結果、溶存酸素濃度が
0.5ppm以下好ましくは0.1ppm以下の超純水
を使用すれば、重金属濃度を1×1010原子/cm2
下にすることができることを見つけた。
Further, the in-plane distribution of the oxide film thickness on the substrate surface was examined using an ellipsometer, and the in-plane distribution of heavy metals on the substrate surface was examined by total reflection X-ray fluorescence analysis. It was found that the in-plane distribution and the in-plane distribution of heavy metal corresponded. From this, the heavy metal is localized in the surface oxide film, and if the oxide film can be removed during cleaning, the concentration of the heavy metal can be reduced. A cleaning experiment was performed with ultrapure water having a reduced water content. As a result, it has been found that the use of ultrapure water having a dissolved oxygen concentration of 0.5 ppm or less, preferably 0.1 ppm or less can reduce the heavy metal concentration to 1 × 10 10 atoms / cm 2 or less.

【0010】一方、基板表面の酸化膜をXPS(X線光
電子分光法)で調べた結果、乾燥むらと酸化膜中に含ま
れるAsの比率が高い部分とが対応しており、これより
乾燥むらはおそらく基板表面に残った水滴中の溶存酸素
がGaAsと反応してAsが生じ、このAs
が乾燥中に濃縮して析出したものであると考えられ
る。因みに、前述した特願平3−150893号におい
ても、乾燥むらはAs微粒子であるとしている。
On the other hand, as a result of examining the oxide film on the substrate surface by XPS (X-ray photoelectron spectroscopy), the unevenness of drying corresponds to the portion where the ratio of As contained in the oxide film is high. Probably, dissolved oxygen in water droplets remaining on the substrate surface reacts with GaAs to produce As 2 O 3 , and this As 2 O 3
It is considered that No. 3 was concentrated and precipitated during drying. Incidentally, in the above-mentioned Japanese Patent Application No. 3-150893, dry unevenness is also assumed to be As 2 O 3 fine particles.

【0011】従って、上述した溶存酸素濃度を低くした
超純水による洗浄を行なえば、水滴中の溶存酸素がGa
Asと反応してAs23が生じ乾燥むらとして残るのを
防止できると考え、上記実験結果の再検討を行なった。
その結果、超純水の溶存酸素濃度が0.5ppmより高
いときに乾燥むらが発生しており、溶存酸素濃度が0.
5ppm〜0.1ppmのときには乾燥むらが発生して
いないこと、また溶存酸素濃度が0.1ppm未満のと
きは場合によって乾燥むらが発生することがあることを
見い出した。溶存酸素濃度が0.1ppm未満で乾燥む
らが発生するのは、そのような超純水は基板との濡れ性
が良すぎるのでたまたま水切れが悪かった場合にスピン
乾燥では吹き飛ばされず、もっぱら蒸発に依存するため
乾燥に時間がかかってしまうのが原因であると考えられ
る。従って、溶存酸素濃度が0.1ppm未満の場合に
も、超純水による洗浄時間を長くして表面酸化膜をより
均一に生成させたり、スピン乾燥の仕方、例えばスピン
乾燥時の単結晶を回転する速度ならびに回転する時間等
の条件を工夫して水切れを良くすることで乾燥むらを無
くすことが可能である。なお、超純水は、水中に溶存す
る金属イオン等の不純物を除去したものであり、その品
質は電気抵抗率が少なくとも5MΩ・cm以上、通常は
10MΩ・cm以上となるように管理されている。溶存
酸素濃度が低い超純水は、上記の不純物を含まない超純
水に窒素ガスを吹き込む方法等により得ることができ
る。なお、窒素ガスは、前記の目的に沿うように高純度
のものを用いる。
Therefore, if the above-described cleaning with ultrapure water having a reduced dissolved oxygen concentration is performed, the dissolved oxygen in the water droplets becomes Ga
The above experimental results were reexamined on the assumption that it was possible to prevent As 2 O 3 from reacting with As and remaining as drying unevenness.
As a result, when the dissolved oxygen concentration of the ultrapure water was higher than 0.5 ppm, drying unevenness occurred, and the dissolved oxygen concentration was reduced to 0.1 ppm.
It has been found that when 5 ppm to 0.1 ppm, uneven drying does not occur, and when the dissolved oxygen concentration is less than 0.1 ppm, uneven drying may occur depending on the case. When the concentration of dissolved oxygen is less than 0.1 ppm, uneven drying occurs because such ultrapure water has too good wettability with the substrate. This is considered to be because drying takes a long time. Therefore, even when the dissolved oxygen concentration is less than 0.1 ppm, the cleaning time with ultrapure water is lengthened to form a surface oxide film more uniformly, or a method of spin drying, for example, rotating a single crystal during spin drying. It is possible to eliminate uneven drying by improving the drainage by devising conditions such as the speed of rotation and the time for rotation. The ultrapure water is obtained by removing impurities such as metal ions dissolved in water, and the quality thereof is controlled so that the electric resistivity is at least 5 MΩ · cm, usually 10 MΩ · cm or more. . Ultrapure water having a low dissolved oxygen concentration can be obtained by, for example, blowing nitrogen gas into the ultrapure water containing no impurities. Note that a high-purity nitrogen gas is used so as to meet the above purpose.

【0012】この発明は、上記知見に基づいてなされた
もので、鏡面研磨され、有機溶剤で洗浄された化合物半
導体単結晶基板を超純水で洗浄するにあたり、溶存酸素
濃度が0.5ppm以下の超純水を用いて洗浄を行ない
スピン乾燥またはブロー乾燥させるものである。更に、
上記の発明の別な態様として、以下の発明を提供する。
すなわち、鏡面研磨され、有機溶剤で洗浄された化合物
半導体単結晶基板を超純水で洗浄するにあたり、まず溶
存酸素濃度が0.1ppm以下の超純水を用いて洗浄を
行い、引き続いて溶存酸素濃度が0.1ppm以上0.
5ppm以下の超純水を用いて洗浄を行なった後、スピ
ン乾燥またはブロー乾燥させるものである。前記発明
は、最初に溶存酸素濃度が0.1ppm以下の超純水を
用いて洗浄を行なうことで、主に基板表面に残留する重
金属の除去を図り、引き続いて溶存酸素濃度が0.1p
pm以上0.5ppm以下の超純水を用いて洗浄を行な
うことで、超純水による洗浄終了後表面に残る酸化膜の
低減を図るとともに、乾燥むらの発生を抑えるものであ
る。
The present invention has been made on the basis of the above-described findings. In cleaning a mirror-polished compound semiconductor single crystal substrate washed with an organic solvent with ultrapure water, the dissolved oxygen concentration is 0.5 ppm or less. Washing is performed using ultrapure water and spin drying or blow drying is performed. Furthermore,
As another embodiment of the above invention, the following invention is provided.
That is, when the compound semiconductor single crystal substrate that has been mirror-polished and washed with an organic solvent is washed with ultrapure water, first, washing is performed using ultrapure water having a dissolved oxygen concentration of 0.1 ppm or less, and then dissolved oxygen is used. The concentration is 0.1 ppm or more.
After washing using ultrapure water of 5 ppm or less, spin drying or blow drying is performed. In the invention, first, cleaning is performed using ultrapure water having a dissolved oxygen concentration of 0.1 ppm or less, thereby mainly removing heavy metals remaining on the substrate surface.
By performing the cleaning using ultrapure water of not less than pm and not more than 0.5 ppm, the oxide film remaining on the surface after the completion of the cleaning with the ultrapure water is reduced, and the occurrence of uneven drying is suppressed.

【0013】[0013]

【作用】上記した手段によれば、蒸気乾燥法を使わずに
スピン乾燥またはブロー乾燥のみで乾燥むらの生じない
基板洗浄を簡易に行なうことができる。また、上記した
手段によれば、基板の表面酸化膜の厚さが2nm以下と
非常に薄くかつ均一となるとともに、洗浄後の重金属の
表面濃度が1×1010原子/cm2以下である極めて重
金属の汚染が少ない基板を得ることができる。
According to the above-described means, it is possible to easily carry out substrate cleaning without uneven drying by only spin drying or blow drying without using a steam drying method. According to the above-mentioned means, the thickness of the surface oxide film on the substrate is very thin and uniform, 2 nm or less, and the surface concentration of the heavy metal after cleaning is 1 × 10 10 atoms / cm 2 or less. A substrate with less heavy metal contamination can be obtained.

【0014】[0014]

【実施例】【Example】

(実施例1)LEC法により育成されたGaAs単結晶
を(100)面に沿って厚さ1mmの薄板状に切断した
後、粗研磨、鏡面研磨加工を行なった。それから、基板
の固定に用いたワックスの残渣や基板表面に付着してい
る塵埃を除去するため、トリクレン、アセトン、メタノ
ールによる有機洗浄を施した。次に、溶存酸素濃度を
0.5ppmとした超純水による最終洗浄を5分間行な
って有機溶剤を洗い落してからスピン乾燥装置により基
板表面を乾燥させた。
(Example 1) A GaAs single crystal grown by the LEC method was cut into a thin plate having a thickness of 1 mm along the (100) plane, and then subjected to rough polishing and mirror polishing. Then, in order to remove wax residues used for fixing the substrate and dust adhering to the substrate surface, organic cleaning with trichlene, acetone, and methanol was performed. Next, a final cleaning with ultrapure water having a dissolved oxygen concentration of 0.5 ppm was performed for 5 minutes to wash off the organic solvent, and then the substrate surface was dried by a spin dryer.

【0015】100枚のGaAs単結晶基板を上記方法
で洗浄、乾燥した。乾燥後、基板表面の状態を目視検査
したところ、表面に乾燥むらの発生している基板は皆無
であった。また、レーザ光照射式パーティクルカウンタ
により、基板表面に付着している微粒子数を測定した結
果、直径0.2μm以上の微粒子の数は平均1cm2
たり1個であった。
[0015] 100 GaAs single crystal substrates were washed and dried by the above method. After drying, the condition of the surface of the substrate was visually inspected. As a result, there was no substrate having uneven drying on the surface. The number of fine particles adhering to the substrate surface was measured by a laser beam irradiation type particle counter. As a result, the average number of fine particles having a diameter of 0.2 μm or more was 1 per 1 cm 2 .

【0016】(実施例2)上記と同様の工程で有機洗浄
まで行なった100枚のGaAs単結晶基板を、溶存酸
素濃度を測定下限である0.05ppmとした超純水に
より洗浄してから、引き続き溶存酸素濃度を0.3pp
mとした超純水により洗浄した後、スピン乾燥した。第
1と第2の洗浄時間の合計は実施例1と同一の5分間と
した。乾燥後、基板表面の状態を目視検査したところ、
基板の表面に乾燥むらの発生している基板は皆無であっ
た。また、乾燥むらの発生していた基板も基板の外苑部
に僅かに存在するのみであった。また、レーザ光照射式
パーティクルカウンタにより、基板表面に付着している
微粒子数を測定した結果、直径0.2μm以上の微粒子
の数は実施例1と同様平均1cm2当たり1個であっ
た。
(Example 2) 100 GaAs single crystal substrates which had been subjected to organic cleaning in the same process as above were washed with ultrapure water having a dissolved oxygen concentration of 0.05 ppm, which is the lower limit of measurement, and then washed. Continue to increase dissolved oxygen concentration by 0.3pp
After washing with ultrapure water having a diameter of m, spin drying was performed. The total of the first and second cleaning times was 5 minutes, the same as in Example 1. After drying, the condition of the substrate surface was visually inspected.
None of the substrates had uneven drying on the surface of the substrate. Further, the substrate on which uneven drying occurred was only slightly present in the outer garden of the substrate. The number of fine particles adhering to the substrate surface was measured by a laser beam irradiation type particle counter. As a result, the number of fine particles having a diameter of 0.2 μm or more was 1 per 1 cm 2 as in Example 1.

【0017】(実施例3)上記と同様の工程で有機洗浄
まで行なった100枚のGaAs単結晶基板を、溶存酸
素濃度を測定下限である0.05ppmとした超純水に
よる最終洗浄を5分間行なって、スピン乾燥した。乾燥
後、基板表面の状態を目視検査したところ、80枚の基
板の表面には乾燥むらが発生していなかった。また、乾
燥むらの発生していた20枚の基板も基板外縁部に僅か
に乾燥むらが存在するのみであった。さらに、乾燥むら
のない基板について、レーザ光照射式パーティクルカウ
ンタにより、基板表面に付着している微粒子数を測定し
た結果、直径0.2μm以上の微粒子の数は実施例1と
同様平均1cm2当たり1個であった。
(Example 3) The 100 GaAs single crystal substrates which had been subjected to the organic cleaning in the same process as described above were subjected to final cleaning with ultrapure water having a dissolved oxygen concentration of 0.05 ppm, which is the lower limit of measurement, for 5 minutes. Run and spin dry. After the drying, the surface of the substrate was visually inspected, and as a result, no drying unevenness occurred on the surface of the 80 substrates. In addition, even in the case of the 20 substrates on which uneven drying occurred, only slight unevenness was present on the outer edge of the substrate. Further, the number of fine particles adhering to the substrate surface was measured by a laser beam irradiation type particle counter on a substrate without drying unevenness. As a result, the number of fine particles having a diameter of 0.2 μm or more per 1 cm 2 on average was the same as in Example 1. There was one.

【0018】(比較例)上記と同様の工程で有機洗浄ま
で行なった100枚のGaAs単結晶基板を、溶存酸素
濃度が8ppmの超純水による最終洗浄を5分間行なっ
て、スピン乾燥した。乾燥後、基板表面の状態を目視検
査したところ、100枚すべての基板の表面に乾燥むら
が発生していた。また、レーザ光照射式パーティクルカ
ウンタにより、基板表面に付着している微粒子数を測定
した結果、直径0.2μm以上の微粒子の数は実施例
1,2,3よりも多かった。
COMPARATIVE EXAMPLE 100 GaAs single-crystal substrates that had been subjected to organic cleaning in the same steps as described above were subjected to final cleaning with ultrapure water having a dissolved oxygen concentration of 8 ppm for 5 minutes and spin-dried. After the drying, the condition of the substrate surface was visually inspected. As a result, drying unevenness occurred on the surface of all 100 substrates. Further, as a result of measuring the number of fine particles adhering to the substrate surface using a laser beam irradiation type particle counter, the number of fine particles having a diameter of 0.2 μm or more was larger than in Examples 1, 2, and 3.

【0019】次に、上記実施例1,2,3および比較例
の洗浄、乾燥を行なった基板について、全反射蛍光X線
分析装置で表面の重金属の濃度それぞれを測定した。そ
のうち、代表的な重金属であるFe、Ni、Cuおよび
Znの表面濃度の測定値の平均値を、表1に示す。実施
例1,実施例2および実施例3の基板では、Fe、N
i、Cuの濃度は、測定下限の1×1010原子/cm2
以下であった。表1では区別できないが、実施例2では
最初に、より溶存酸素濃度が低い超純水を用いて洗浄し
ているので、重金属濃度は実施例1よりも低くなってい
ると予想される。
Next, with respect to the washed and dried substrates of Examples 1, 2 and 3 and Comparative Example, the respective concentrations of heavy metals on the surface were measured by a total reflection X-ray fluorescence analyzer. Table 1 shows the average of the measured values of the surface concentrations of Fe, Ni, Cu, and Zn, which are representative heavy metals. In the substrates of Example 1, Example 2 and Example 3, Fe, N
The concentration of i and Cu is 1 × 10 10 atoms / cm 2 which is the lower limit of measurement.
It was below. Although it cannot be distinguished in Table 1, in Example 2, since the cleaning was performed using ultrapure water having a lower dissolved oxygen concentration at first, the heavy metal concentration is expected to be lower than that in Example 1.

【0020】[0020]

【表1】 [Table 1]

【0021】さらに、上記実施例1,2,3および比較
例の洗浄、乾燥を行なった基板について、表面酸化膜の
厚さを測定したところ、実施例1,実施例2および実施
例3では1〜2nmであり、比較例では5〜10nmで
あった。なお、上記実施例では、GaAs単結晶基板の
洗浄方法について説明したが、この発明はそれに限定さ
れるものでなく、InP単結晶基板その他化合物半導体
単結晶基板の洗浄に利用することができる。また、上記
実施例では、スピン乾燥によりGaAs単結晶基板の乾
燥を行なったが、不活性ガスの吹き付けによるブロー乾
燥を使用することが可能である。
Further, the thicknesses of the surface oxide films of the cleaned and dried substrates of Examples 1, 2 and 3 and Comparative Example were measured. In Examples 1, 2 and 3, 22 nm, and 5-10 nm in the comparative example. In the above embodiment, a method for cleaning a GaAs single crystal substrate has been described. However, the present invention is not limited to this, and can be used for cleaning an InP single crystal substrate and other compound semiconductor single crystal substrates. In the above embodiment, the GaAs single crystal substrate is dried by spin drying, but blow drying by blowing an inert gas can be used.

【0022】[0022]

【発明の効果】以上説明したように、この発明は、鏡面
研磨され、有機溶剤で洗浄された化合物半導体単結晶基
板を超純水で洗浄するにあたり、溶存酸素濃度が0.5
ppm以下の超純水を用いて洗浄を行ないスピン乾燥ま
たはブロー乾燥させるようにしたので、蒸気乾燥法を使
わずにスピン乾燥またはブロー乾燥のみで乾燥むらので
ない基板洗浄を簡易に行なうことができ、これによって
コストが高くなるのを回避できるという効果がある。特
に、半導体基板は大口径化が望まれており、基板が大口
径になると多量の乾燥用溶剤を必要とするため、本発明
は蒸気乾燥法に比べて今後ますます有用性が高くなる。
また、本発明を適用した基板は、表面酸化膜の厚さが2
nm以下と非常に薄くかつ均一であるため、直前のエッ
チングを行なうことなくエピタキシャル成長させること
ができるので、エピタキシャル成長用に好適な化合物半
導体単結晶基板を得ることができる。さらに、本発明方
法を適用した基板は洗浄後の重金属の表面濃度が1×1
10原子/cm2以下であり、重金属の汚染が少ないの
で基板表面にエピタキシャル層を成長させたときに基板
との界面に重金属が残ることがなく、これを基板とする
電子デバイスの特性を向上させることができる。
As described above, according to the present invention, when a compound semiconductor single crystal substrate which has been mirror-polished and washed with an organic solvent is washed with ultrapure water, the dissolved oxygen concentration is 0.5%.
Since cleaning is performed using ultrapure water of less than ppm and spin drying or blow drying is performed, substrate cleaning without drying unevenness can be easily performed only by spin drying or blow drying without using a steam drying method. This has the effect of avoiding an increase in cost. In particular, a semiconductor substrate is desired to have a large diameter, and a large diameter substrate requires a large amount of a solvent for drying. Therefore, the present invention will be more and more useful as compared with a steam drying method.
The substrate to which the present invention is applied has a surface oxide film having a thickness of 2 mm.
Since it is extremely thin and uniform, ie, nm or less, it is possible to perform epitaxial growth without performing immediately preceding etching, so that a compound semiconductor single crystal substrate suitable for epitaxial growth can be obtained. Further, the substrate to which the method of the present invention is applied has a heavy metal surface concentration of 1 × 1 after cleaning.
0 10 atoms / cm 2 or less, and there is little contamination of heavy metals, so that when an epitaxial layer is grown on the substrate surface, no heavy metals remain at the interface with the substrate, improving the characteristics of electronic devices using this as a substrate. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】洗浄に使用する超純水中の溶存酸素濃度と基板
表面に残る酸化膜の厚さとの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the concentration of dissolved oxygen in ultrapure water used for cleaning and the thickness of an oxide film remaining on a substrate surface.

フロントページの続き (56)参考文献 特開 平4−40270(JP,A) 特開 平3−157927(JP,A) 特開 平5−291233(JP,A) 特開 平5−291231(JP,A) 特開 平4−350934(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/304Continuation of the front page (56) References JP-A-4-40270 (JP, A) JP-A-3-157927 (JP, A) JP-A-5-291233 (JP, A) JP-A-5-291231 (JP) , A) JP-A-4-350934 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/304

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鏡面研磨され、有機溶剤で洗浄された化
合物半導体単結晶基板を超純水で洗浄するにあたり、溶
存酸素濃度が0.5ppm以下の超純水を用いて洗浄を
行ないスピン乾燥またはブロー乾燥させることを特徴と
する化合物半導体単結晶基板の洗浄、乾燥方法。
When a compound semiconductor single crystal substrate that has been mirror-polished and washed with an organic solvent is washed with ultrapure water, washing is performed using ultrapure water having a dissolved oxygen concentration of 0.5 ppm or less, and spin drying or A method for cleaning and drying a compound semiconductor single crystal substrate, comprising performing blow drying.
【請求項2】 鏡面研磨され、有機溶剤で洗浄された化
合物半導体単結晶基板を超純水で洗浄するにあたり、ま
ず溶存酸素濃度が0.1ppm以下の超純水を用いて洗
浄を行ない、引き続いて溶存酸素濃度が0.1ppm以
上0.5ppm以下の超純水を用いて洗浄を行なった
後、スピン乾燥またはブロー乾燥させることを特徴とす
る化合物半導体単結晶基板の洗浄、乾燥方法。
2. When a compound semiconductor single crystal substrate which has been mirror-polished and washed with an organic solvent is washed with ultrapure water, the compound semiconductor single crystal substrate is first washed with ultrapure water having a dissolved oxygen concentration of 0.1 ppm or less, and then washed. Washing and drying using ultrapure water having a dissolved oxygen concentration of 0.1 ppm or more and 0.5 ppm or less, followed by spin drying or blow drying.
JP5075608A 1993-04-01 1993-04-01 Method for cleaning and drying compound semiconductor single crystal substrate Expired - Fee Related JP2813790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5075608A JP2813790B2 (en) 1993-04-01 1993-04-01 Method for cleaning and drying compound semiconductor single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5075608A JP2813790B2 (en) 1993-04-01 1993-04-01 Method for cleaning and drying compound semiconductor single crystal substrate

Publications (2)

Publication Number Publication Date
JPH06291105A JPH06291105A (en) 1994-10-18
JP2813790B2 true JP2813790B2 (en) 1998-10-22

Family

ID=13581099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5075608A Expired - Fee Related JP2813790B2 (en) 1993-04-01 1993-04-01 Method for cleaning and drying compound semiconductor single crystal substrate

Country Status (1)

Country Link
JP (1) JP2813790B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670376A (en) * 1994-12-14 1997-09-23 Lucent Technologies Inc. Methodology for monitoring solvent quality

Also Published As

Publication number Publication date
JPH06291105A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
JP2857042B2 (en) Cleaning liquid for silicon semiconductor and silicon oxide
KR100220926B1 (en) A cleaning method for hydrophobic silicon wafers
US6348157B1 (en) Cleaning method
US20080292877A1 (en) Method of Cleaning Gaas Substrate, Method of Producing Gaas Substrate, Method of Fabricating Epitaxial Susbstrate, and Gaas Wafer
KR20010052400A (en) Post-etching alkaline treatment process
KR100558164B1 (en) Etchant for etching nitride and method for removing nitride film of semiconductor device using the same
CN113690128A (en) Method for cleaning indium phosphide wafer
US6066571A (en) Method of preparing semiconductor surface
JP2813790B2 (en) Method for cleaning and drying compound semiconductor single crystal substrate
JP2776583B2 (en) Semiconductor substrate processing solution and processing method
JP3450683B2 (en) Preparation method of semiconductor processing surface
JPH0786220A (en) Method of cleaning semiconductor wafer
JPH07211688A (en) Production of compound semiconductor substrate
JP3046807B1 (en) Recycling method of silicon wafer with metal film
JPH04298038A (en) Method for cleaning wafer
JP3202508B2 (en) Semiconductor wafer cleaning method
JP7279753B2 (en) Silicon wafer cleaning method and manufacturing method
JP2845329B2 (en) Method for removing protrusions on semiconductor substrate
JP4947393B2 (en) Manufacturing method of semiconductor substrate
JP3411999B2 (en) Method for removing metal film on silicon wafer surface, acidic aqueous solution used therefor, and method for regenerating silicon wafer
JPH05291231A (en) Manufacture of compound semiconductor wafer
JPH06287779A (en) Production of compound semiconeuctor single crystal substrate
JPH0327525A (en) Etching method
JP2548357Y2 (en) Mounting jig for wafer heat treatment
JP2004134600A (en) Cleaning liquid for silicon wafer and cleaning method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110814

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees