JP2812326B2 - Manufacturing method of chip type semiconductor device - Google Patents

Manufacturing method of chip type semiconductor device

Info

Publication number
JP2812326B2
JP2812326B2 JP9125408A JP12540897A JP2812326B2 JP 2812326 B2 JP2812326 B2 JP 2812326B2 JP 9125408 A JP9125408 A JP 9125408A JP 12540897 A JP12540897 A JP 12540897A JP 2812326 B2 JP2812326 B2 JP 2812326B2
Authority
JP
Japan
Prior art keywords
semiconductor
insulating substrate
semiconductor wafer
semiconductor device
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9125408A
Other languages
Japanese (ja)
Other versions
JPH10112468A (en
Inventor
秀樹 水野
一直 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9125408A priority Critical patent/JP2812326B2/en
Priority to US09/020,789 priority patent/US6077757A/en
Priority to CN98100405A priority patent/CN1106036C/en
Publication of JPH10112468A publication Critical patent/JPH10112468A/en
Application granted granted Critical
Publication of JP2812326B2 publication Critical patent/JP2812326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はチップ型半導体装置
の製造方法に係り、特に半導体素子を内蔵したチップ型
半導体装置の製造方法に関する。
The present invention relates to a method for manufacturing a chip-type semiconductor device, and more particularly to a method for manufacturing a chip-type semiconductor device having a built-in semiconductor element.

【0002】[0002]

【従来の技術】従来より、半導体素子を内蔵したチップ
型半導体装置の製造方法として、複数個の素子に一度に
キャップを被せることができるようにしたチップ型半導
体装置の製造方法が知られている(特開平4−1485
53号公報)。この従来の製造方法では、図6に示すよ
うに、複数個分の基板を含む親基板24の上面と下面の
それぞれに複数の上面電極及び下面電極を設け、上面電
極と下面電極をつなげるために貫通孔25を設け、スル
ーホール26により導通させ、更に隣り合うスルーホー
ル26の間の親基板24の上に素子27をそれぞれ搭載
して素子27のそれぞれと上面電極とをワイヤ28によ
り電気的に接続する。
2. Description of the Related Art Conventionally, as a method of manufacturing a chip-type semiconductor device having a built-in semiconductor element, a method of manufacturing a chip-type semiconductor device in which a plurality of elements can be capped at once has been known. (Japanese Patent Laid-Open No. 4-1485
No. 53). In this conventional manufacturing method, as shown in FIG. 6, a plurality of upper and lower electrodes are provided on each of the upper and lower surfaces of a parent substrate 24 including a plurality of substrates, and the upper and lower electrodes are connected. A through-hole 25 is provided, conduction is provided by the through-hole 26, and elements 27 are respectively mounted on the parent substrate 24 between the adjacent through-holes 26, and each of the elements 27 and the upper surface electrode are electrically connected by a wire 28. Connecting.

【0003】次に、図7に示すように、下面に凹所32
が形成された封止用親蓋31を素子27の上から親基板
24の上に固着して各素子27を凹所32内に封入させ
る。この後、図7のC−C線に沿って親基板24及び封
止用親蓋31を各素子27毎にそれぞれ切り離し、図8
に示すようなチップ型部品41を複数個製造する。
[0003] Next, as shown in FIG.
The sealing parent lid 31 formed with is formed on the parent substrate 24 from above the elements 27, and each element 27 is sealed in the recess 32. Thereafter, the parent substrate 24 and the sealing lid 31 are cut off for each element 27 along the line CC in FIG.
A plurality of chip components 41 as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】しかるに、上記の従来
方法では、親基板24上に複数の半導体素子27を搭載
し、凹所32のある封止用親蓋31で半導体素子27を
封止するため、半導体素子27の搭載精度及び半導体素
子27と親基板24との配線材を考慮すると、封止用親
蓋31の凹所32の空間は半導体素子27の大きさに2
00μm程度加えたものとなり、チップ型部品41の外
形の大きさを半導体素子27の大きさに近付けることは
非常に困難である。
However, in the above-mentioned conventional method, a plurality of semiconductor elements 27 are mounted on the parent substrate 24, and the semiconductor elements 27 are sealed with the sealing parent lid 31 having the recess 32. Therefore, in consideration of the mounting accuracy of the semiconductor element 27 and the wiring material between the semiconductor element 27 and the mother board 24, the space of the recess 32 of the sealing lid 31 is 2
This is about 00 μm, and it is very difficult to make the size of the outer shape of the chip type component 41 close to the size of the semiconductor element 27.

【0005】また、素子27を親基板24に搭載する速
度は、速くても0.6秒/個であり、著しい搭載速度の
高速化は望めないため、チップ型部品41の生産性がこ
の素子搭載速度に律速され、著しい生産性向上が望めな
いという問題がある。
The speed at which the element 27 is mounted on the mother board 24 is at most 0.6 seconds / piece, and it is not possible to expect a remarkable increase in the mounting speed. There is a problem that the productivity is limited by the mounting speed, and a remarkable improvement in productivity cannot be expected.

【0006】本発明は以上の点に鑑みなされたもので、
小型なチップ型半導体装置を製造し得るチップ型半導体
装置の製造方法を提供することを目的とする。
[0006] The present invention has been made in view of the above points,
It is an object of the present invention to provide a method of manufacturing a chip-type semiconductor device capable of manufacturing a small chip-type semiconductor device.

【0007】また、本発明の他の目的は、単位時間当り
の生産能力を向上したチップ型半導体装置の製造方法を
提供することにある。
Another object of the present invention is to provide a method of manufacturing a chip-type semiconductor device with improved production capacity per unit time.

【0008】更に、本発明の他の目的は、生産性及び歩
留りを向上させたチップ型半導体装置の製造方法を提供
することにある。
Another object of the present invention is to provide a method of manufacturing a chip-type semiconductor device with improved productivity and yield.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1記載の発明は、表面の既知の位置に複数の
半導体素子が形成された半導体ウェハの半導体素子の電
極にメタルバンプを形成する第1の工程と、表面の既知
の位置に電極パターンが形成された絶縁性基板の電極パ
ターン側と半導体ウェハの半導体素子形成面側とを貼り
合わせて、電極パターンとメタルバンプとを接合する第
2の工程と、第2の工程により貼り合わされた半導体ウ
ェハ及び絶縁性基板のうち、半導体ウェハのみを半導体
素子個々の大きさに切断区分する第3の工程と、半導体
ウェハを切断区分する溝と半導体ウェハ上に液状樹脂を
流し込んで硬化させる第4の工程と、硬化した樹脂と絶
縁性基板を同時に切断し、それぞれ半導体素子を有する
個々の半導体装置に分離する第5の工程とを含むように
したものである。
In order to achieve the above object, according to the present invention, a metal bump is formed on an electrode of a semiconductor element of a semiconductor wafer having a plurality of semiconductor elements formed at known positions on a surface. A first step of forming, bonding the electrode pattern side of the insulating substrate having the electrode pattern formed at a known position on the surface and the semiconductor element forming surface side of the semiconductor wafer, and joining the electrode pattern and the metal bumps A second step of cutting the semiconductor wafer out of the semiconductor wafer and the insulating substrate bonded in the second step, and a third step of cutting and dividing only the semiconductor wafer into individual semiconductor elements. A fourth step of pouring and curing the liquid resin into the grooves and the semiconductor wafer, and simultaneously cutting the cured resin and the insulating substrate to form individual semiconductor devices each having a semiconductor element. It is obtained to include a fifth step of separating.

【0010】本発明では、半導体ウェハの複数の半導体
素子が形成された面を電極パターンが形成されている絶
縁性基板に貼り付け、半導体素子のメタルバンプと絶縁
性基板の電極パターンとを接合しているため、個々の半
導体素子を基板に搭載する工程を不要にできる。
According to the present invention, a surface of a semiconductor wafer on which a plurality of semiconductor elements are formed is attached to an insulating substrate on which an electrode pattern is formed, and a metal bump of the semiconductor element is bonded to the electrode pattern of the insulating substrate. Therefore, a step of mounting individual semiconductor elements on a substrate can be omitted.

【0011】また、本発明では、複数の半導体素子が形
成された半導体ウェハのままで絶縁性基板に貼り合わ
せ、半導体素子のメタルパンプと絶縁性基板の電極パタ
ーンを接合するようにしているため、絶縁性基板上の半
導体素子個々の搭載精度ばらつきもなく、封止樹脂の薄
い均一の層で半導体素子を封止できる。
Further, in the present invention, a semiconductor wafer on which a plurality of semiconductor elements are formed is attached to an insulating substrate as it is, and a metal pump of the semiconductor element and an electrode pattern of the insulating substrate are joined. The semiconductor element can be sealed with a thin and uniform layer of the sealing resin without variation in mounting accuracy of each semiconductor element on the insulating substrate.

【0012】また、絶縁性基板の形状及び大きさは、半
導体ウェハの形状及び大きさと同一であり、絶縁性基板
の電極パターンは、半導体素子の半導体ウェハ上での電
極の位置座標データを用いて決定した位置に形成するよ
うにしたため、半導体素子のメタルパンプと絶縁性基板
の電極パターンとの位置決めが容易にできる。
The shape and size of the insulating substrate are the same as the shape and size of the semiconductor wafer, and the electrode pattern of the insulating substrate is determined by using position coordinate data of the electrodes of the semiconductor element on the semiconductor wafer. Since it is formed at the determined position, the positioning between the metal pump of the semiconductor element and the electrode pattern of the insulating substrate can be facilitated.

【0013】また、上記の目的を達成するため、請求項
6記載の発明は、表面の既知の位置に電極パターンを有
する複数の半導体素子が形成された半導体ウェハの、半
導体素子形成面と反対側の面に第1の樹脂を硬化させる
第1の工程と、硬化した第1の樹脂を有する半導体ウェ
ハの半導体素子形成面に絶縁性基板を貼り合わせる第2
の工程と、絶縁性基板に半導体ウェハの電極パターンの
一部を露出させるバイアホールと切断認識パターンを形
成する第3の工程と、バイアホールを介して電極パター
ンと接続するメタルバンプ形成する第4の工程と、切断
認識パターンを利用して、半導体素子個々の大きさに半
導体ウェハ及び絶縁性基板とを同時に切断除去する第5
の工程と、第5の工程により切断除去された領域に、第
2の樹脂を埋め込み硬化させる第6の工程と、硬化した
第2の樹脂を硬化している第1の樹脂と共に切断し、そ
れぞれ半導体素子を有する個々の半導体装置に分離する
第7の工程とを含むようにしたものである。
According to another aspect of the present invention, there is provided a semiconductor wafer on which a plurality of semiconductor elements having electrode patterns are formed at known positions on a surface of a semiconductor wafer, the side being opposite to a semiconductor element forming surface. A first step of curing the first resin on the surface of the semiconductor wafer, and a second step of bonding an insulating substrate to the semiconductor element forming surface of the semiconductor wafer having the cured first resin.
A third step of forming a via hole exposing a part of the electrode pattern of the semiconductor wafer on the insulating substrate and a cutting recognition pattern; and a fourth step of forming a metal bump connected to the electrode pattern via the via hole. And the fifth step of simultaneously cutting and removing the semiconductor wafer and the insulating substrate to the size of each semiconductor element using the cut recognition pattern.
A step of embedding and curing the second resin in the region cut and removed by the fifth step, and a step of cutting the cured second resin together with the cured first resin. And a seventh step of separating the semiconductor device into individual semiconductor devices having semiconductor elements.

【0014】本発明では、絶縁性基板に切断認識パター
ンを形成し、この切断認識パターンを利用して、半導体
素子個々の大きさに半導体ウェハ及び絶縁性基板の両方
を同時に切断除去する。
In the present invention, a cut recognition pattern is formed on an insulating substrate, and by using the cut recognition pattern, both the semiconductor wafer and the insulating substrate are simultaneously cut and removed to the size of each semiconductor element.

【0015】ここで、本発明で用いる絶縁性基板は、電
極パターンが形成されておらず、また、第7の工程で分
離製造された半導体装置の半導体素子の切断面と絶縁性
基板の切断面とは、第6の工程で硬化した第2の樹脂で
それぞれ保護されている。更に、第1及び第2の樹脂
は、それぞれ同一材料の液状樹脂である。また、本発明
は第7の工程で分離製造された半導体装置のメタルバン
プに、リード電極を接続する第8の工程を更に含んでも
よい。
Here, the insulating substrate used in the present invention has no electrode pattern formed thereon, and the cut surface of the semiconductor element and the cut surface of the insulating substrate of the semiconductor device separated and manufactured in the seventh step. Is protected by the second resin cured in the sixth step. Further, the first and second resins are liquid resins of the same material, respectively. Further, the present invention may further include an eighth step of connecting a lead electrode to the metal bump of the semiconductor device separated and manufactured in the seventh step.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面と共に説明する。図1は本発明になるチップ型半
導体装置の製造方法の一実施の形態の各工程説明用斜視
図、図2は図1の補足説明図を示す。この実施の形態で
は、まず、図1(a)に示すように、表面に多数の半導
体素子2が形成された半導体ウェハ1を用意する。この
半導体素子2には図2(a)に示すように電極3が形成
されている。次に、この半導体素子2の電極3の上に図
1(b)及び図2(b)に示すように、メタルバンプ4
を形成する。メタルバンプ4は、通常は金ワイヤによる
ボールバンプ法や半田バンプを印刷する方法にて形成す
るが、他の方法でメタルバンプを形成してもよい。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view for explaining each step of an embodiment of a method of manufacturing a chip type semiconductor device according to the present invention, and FIG. 2 is a supplementary explanatory view of FIG. In this embodiment, first, as shown in FIG. 1A, a semiconductor wafer 1 having a large number of semiconductor elements 2 formed on a surface is prepared. The electrode 3 is formed on the semiconductor element 2 as shown in FIG. Next, as shown in FIGS. 1B and 2B, the metal bumps 4 are formed on the electrodes 3 of the semiconductor element 2.
To form The metal bump 4 is usually formed by a ball bump method using a gold wire or a method of printing a solder bump, but the metal bump may be formed by another method.

【0017】次に、図1(c)に示すように、電極パタ
ーンが印刷された絶縁性基板5を半導体ウェハ1の表面
に貼り合わせ、半導体素子2のメタルバンプ4と絶縁性
基板5の電極パターンを接合する。図2(c)は絶縁性
基板5の一例の拡大図である。この例の場合、絶縁性基
板5に溝7が形成され、電極パターン6が溝7の側面を
通してメタライズされ、絶縁性基板5の裏面(図示せ
ず)に達するようになされている。なお、電極パターン
6はスルーホールを利用することで形成してもよい。
Next, as shown in FIG. 1C, an insulating substrate 5 on which an electrode pattern is printed is bonded to the surface of the semiconductor wafer 1, and the metal bumps 4 of the semiconductor element 2 and the electrodes of the insulating substrate 5 are formed. Join the patterns. FIG. 2C is an enlarged view of an example of the insulating substrate 5. In the case of this example, a groove 7 is formed in the insulating substrate 5, the electrode pattern 6 is metallized through the side surface of the groove 7, and reaches the back surface (not shown) of the insulating substrate 5. The electrode pattern 6 may be formed by using a through hole.

【0018】ここで、半導体素子2のメタルバンプ4と
絶縁性基板5の電極パターン6とが精度良く重なるよう
にするため、半導体素子2の電極3の半導体ウェハ1上
での位置座標データを基にして、絶縁性基板5の電極パ
ターン6の位置が決定されて電極パターン6が形成され
ている。
Here, in order for the metal bumps 4 of the semiconductor element 2 and the electrode pattern 6 of the insulating substrate 5 to be accurately overlapped, position coordinate data of the electrode 3 of the semiconductor element 2 on the semiconductor wafer 1 is used. Thus, the position of the electrode pattern 6 on the insulating substrate 5 is determined, and the electrode pattern 6 is formed.

【0019】また、絶縁性基板5は半導体ウェハ1と同
じ大きさ、形状をしており、半導体ウェハ1に設けられ
た半導体製造プロセスで位置決めに用いるオリエンテー
ションフラット8と同じオリエンテーションフラット
8’が絶縁性基板5に設けられている。
The insulating substrate 5 has the same size and shape as the semiconductor wafer 1, and the same orientation flat 8 'as the orientation flat 8 used for positioning in the semiconductor manufacturing process provided on the semiconductor wafer 1 is used as the insulating substrate. It is provided on the substrate 5.

【0020】このため、電極パターン6を形成する際、
印刷技術を用いるが、半導体ウェハ1側の電極3と同じ
位置に電極パターン6を形成することができる。従っ
て、半導体ウェハ1と絶縁性基板5を貼り合わせるとき
の位置決めは、オリエンテーションフラット8、8’と
各外周部を一致させるだけでよい。貼り合わせのときの
接着は、メタルバンプ4と電極パターン6以外の数個所
を絶縁性の接着剤で行う。
Therefore, when forming the electrode pattern 6,
Although a printing technique is used, the electrode pattern 6 can be formed at the same position as the electrode 3 on the semiconductor wafer 1 side. Therefore, the positioning when bonding the semiconductor wafer 1 and the insulating substrate 5 only needs to match the orientation flats 8 and 8 'with the respective outer peripheral portions. At the time of bonding, several portions other than the metal bumps 4 and the electrode patterns 6 are bonded with an insulating adhesive.

【0021】図1(d)に示すように、半導体ウェハ1
と絶縁性基板5を上記のように貼り合わせた後、半導体
ウェハ1のみを半導体素子2’の大きさに切断する。す
なわち、オリエンテーションフラット8と外周で位置決
めされた半導体ウェハ1のみを、半導体素子2の位置座
標データを用いて切断位置を決めて切断していく。切断
にはダイシングソーを用いるが、ダイシング溝9の溝幅
(切断幅)は広め(約60μm)にとる。
As shown in FIG. 1D, the semiconductor wafer 1
After bonding the semiconductor substrate 1 and the insulating substrate 5 as described above, only the semiconductor wafer 1 is cut to the size of the semiconductor element 2 ′. That is, only the semiconductor wafer 1 positioned on the orientation flat 8 and the outer periphery is cut by determining the cutting position using the position coordinate data of the semiconductor element 2. A dicing saw is used for the cutting, but the groove width (cutting width) of the dicing groove 9 is made wider (about 60 μm).

【0022】次に、図1(e)に示すように、ダイシン
グ溝9で区分された半導体素子2’を被うように封止用
の液状の樹脂10を流し込んで樹脂10を硬化させる。
この樹脂10には、熱硬化プロセスあるいは光硬化プロ
セスで硬化するものを用いる。
Next, as shown in FIG. 1E, a liquid resin 10 for sealing is poured so as to cover the semiconductor element 2 'divided by the dicing groove 9, and the resin 10 is cured.
As the resin 10, a resin that is cured by a heat curing process or a light curing process is used.

【0023】次に、図1(f)に示すように、樹脂10
を絶縁性基板5と共に個々の部品に分離するように切断
する。このときのダイシング溝9’の溝幅は図1(d)
に示したダイシング溝9の溝幅よりも細く(例えば約2
0μm)なるようにする。
Next, as shown in FIG.
With the insulating substrate 5 so as to be separated into individual components. The groove width of the dicing groove 9 'at this time is shown in FIG.
Is smaller than the groove width of the dicing groove 9 shown in FIG.
0 μm).

【0024】このようにして切断された個々の部品のそ
れぞれは、図3の一部切截斜視図に示すように、樹脂1
0による外側面がダイシング溝9’による切断面11で
あり、切断された絶縁性基板5’上に半導体素子2が搭
載されたチップ型半導体装置12を構成する。また、半
導体素子2の外側面はダイシング溝9により定められ
る。
Each of the individual parts cut in this manner is, as shown in a partially cutaway perspective view in FIG.
0 is the cut surface 11 by the dicing groove 9 ', and constitutes the chip-type semiconductor device 12 in which the semiconductor element 2 is mounted on the cut insulating substrate 5'. The outer surface of the semiconductor element 2 is defined by a dicing groove 9.

【0025】本実施の形態によれば、複数の半導体素子
2が搭載された半導体ウェハ1を、電極パターン6が形
成された絶縁性基板5と貼り合わせることにより、半導
体素子個々の搭載位置バラツキがなくなり、また、薄い
均一の樹脂10で半導体素子を封止してから個々の大き
さに切断するため、チップ型半導体装置12の大きさ
を、図3に示すように半導体素子2の大きさに極めて近
付けることができる。
According to the present embodiment, the semiconductor wafer 1 on which the plurality of semiconductor elements 2 are mounted is bonded to the insulating substrate 5 on which the electrode patterns 6 are formed, so that the mounting positions of the semiconductor elements vary. Further, since the semiconductor element is sealed with a thin uniform resin 10 and then cut into individual pieces, the size of the chip type semiconductor device 12 is reduced to the size of the semiconductor element 2 as shown in FIG. Can be very close.

【0026】また、一括して半導体素子2を半導体ウェ
ハ1上に搭載しているため、半導体素子1個当りの生産
性も著しく向上する。例えば、直径125mmの半導体
ウェハのトランジスタの場合、約70000個の素子が
貼り合わせに5分かかったと仮定しても、0.004秒
/個となり、半導体素子個々を搭載する場合の150倍
も生産性が向上することになる。
Further, since the semiconductor elements 2 are mounted on the semiconductor wafer 1 in a lump, the productivity per semiconductor element is significantly improved. For example, in the case of a transistor on a semiconductor wafer having a diameter of 125 mm, even if it is assumed that about 70,000 elements take 5 minutes to bond, the rate is 0.004 seconds / piece, which is 150 times as large as when individual semiconductor elements are mounted. Performance will be improved.

【0027】ところで、上記の実施の形態では、絶縁性
基板5として、半導体ウェハ1と同一形状、大きさで、
かつ、半導体素子2のメタルバンプ4と重なるように表
面に電極パターンが印刷されたものを使用するために、
汎用性があまりなく量産効果を十分に出しにくい。
In the above embodiment, the insulating substrate 5 has the same shape and size as the semiconductor wafer 1.
In addition, in order to use an electrode pattern printed on the surface so as to overlap the metal bump 4 of the semiconductor element 2,
There is not much versatility and it is difficult to achieve mass production effects sufficiently.

【0028】また、半導体素子2の電極3の半導体ウェ
ハ1上での位置座標データを基にして、絶縁性基板5の
電極パターン6の位置が決定されて切断区分位置が決定
されるが、半導体ウェハ1上の位置座標データを読み取
るには絶縁性基板5を透過させて読み取らねばならず、
透過の際のデータ認識ずれ(屈折率など)により切断位
置を誤る可能性がある。
The position of the electrode pattern 6 on the insulating substrate 5 is determined based on the coordinate data of the position of the electrode 3 of the semiconductor element 2 on the semiconductor wafer 1 to determine the cutting section position. In order to read the position coordinate data on the wafer 1, the position coordinate data must be read through the insulating substrate 5,
There is a possibility that the cutting position may be erroneous due to a data recognition deviation (such as a refractive index) during transmission.

【0029】更に、図1(d)に示した工程で、半導体
ウェハ1と絶縁性基板5を貼り合わせた状態で、半導体
ウェハ1のみを半導体素子2’の大きさに切断するが、
半導体ウェハ1と絶縁性基板5の距離が近接しているた
めに、半導体ウェハ1のチップ欠けなどの切断不良が発
生する可能性がある。
Further, in the step shown in FIG. 1D, only the semiconductor wafer 1 is cut to the size of the semiconductor element 2 'while the semiconductor wafer 1 and the insulating substrate 5 are bonded to each other.
Since the distance between the semiconductor wafer 1 and the insulating substrate 5 is short, there is a possibility that a cutting defect such as chipping of the semiconductor wafer 1 may occur.

【0030】そこで、上記の問題点を解決した本発明の
他の実施の形態について、以下説明する。図4は本発明
になるチップ型半導体装置の製造方法の他の実施の形態
の各工程説明用断面図を示す。
Therefore, another embodiment of the present invention which solves the above problems will be described below. FIG. 4 is a cross-sectional view for explaining each step of another embodiment of the method of manufacturing a chip-type semiconductor device according to the present invention.

【0031】まず、図4(a)に示すように、半導体素
子15が形成された半導体ウェハ14(前記の半導体素
子2が形成された半導体ウェハ1に相当)の裏面に液状
樹脂17を硬化させ、半導体素子15の電極パターン1
6が形成された面(半導体ウェハ14の表面)と絶縁性
基板18を貼り合わせる。この絶縁性基板18は、上記
の実施の形態の絶縁性基板5と異なり、電極パターンは
形成されていない。
First, as shown in FIG. 4A, the liquid resin 17 is cured on the back surface of the semiconductor wafer 14 on which the semiconductor elements 15 are formed (corresponding to the semiconductor wafer 1 on which the semiconductor elements 2 are formed). , Electrode pattern 1 of semiconductor element 15
The surface on which 6 is formed (the surface of the semiconductor wafer 14) and the insulating substrate 18 are bonded. Unlike the insulating substrate 5 of the above embodiment, the insulating substrate 18 has no electrode pattern.

【0032】次に、図4(a)の絶縁性基板18の表面
上にフォトレジストを塗布し、フォトレジストに印刷パ
ターンを形成した後、このフォトレジストをマスクにし
て図4(b)に示すように、絶縁性基板18にバイアホ
ール19及び切断認識パターン20をエッチングにより
形成し、その後フォトレジストを除去する。ここで、バ
イアホール19の形成により、電極パターン16の一部
が露出されることとなる。なお、図4(a)のフォトレ
ジスト13は不具合に形成された場合のフォトレジスト
で、これについては後述する。
Next, a photoresist is applied on the surface of the insulating substrate 18 shown in FIG. 4A, a printing pattern is formed on the photoresist, and this photoresist is used as a mask, as shown in FIG. 4B. As described above, the via holes 19 and the cut recognition patterns 20 are formed in the insulating substrate 18 by etching, and then the photoresist is removed. Here, the formation of the via hole 19 exposes a part of the electrode pattern 16. Incidentally, the photoresist 13 in FIG. 4A is a photoresist in the case of being formed in a defective manner, and will be described later.

【0033】次に、図4(c)に示すように、外部素子
と接続するためのメタルバンプ21を、バイアホール1
9を介して電極パターン16上に形成し、半導体素子1
5と外部素子とが接続できるようにする。
Next, as shown in FIG. 4C, a metal bump 21 for connecting to an external element is formed in the via hole 1.
9 formed on the electrode pattern 16 through the semiconductor element 1
5 and an external element can be connected.

【0034】続いて、図4(d)に示すように、切断認
識パターン20を利用して、半導体素子15個々の大き
さが残るように、半導体ウェハ14及び絶縁性基板18
の両方を同時に切断除去する。これにより、切断領域2
2を介して硬化樹脂17が露出する。この切断時(ダイ
シング時)には、絶縁性基板18に形成されている切断
認識パターン20を直接認識できるので、切断位置を正
確に定めることができ、自動認識切断装置の作業におい
ても誤認識することはない。
Subsequently, as shown in FIG. 4D, the semiconductor wafer 14 and the insulating substrate 18 are cut using the cutting recognition pattern 20 so that the size of each semiconductor element 15 remains.
Are simultaneously cut and removed. Thereby, the cutting area 2
2, the cured resin 17 is exposed. At the time of this cutting (at the time of dicing), the cutting recognition pattern 20 formed on the insulating substrate 18 can be directly recognized, so that the cutting position can be accurately determined, and erroneous recognition is performed even in the operation of the automatic recognition cutting device. Never.

【0035】なお、図4(d)では切断認識パターン2
0は切断領域22に位置しているため、切断により消滅
しているが、切断認識パターン20を半導体素子15の
中の絶縁性基板18に形成して残してもよい。
FIG. 4D shows the cut recognition pattern 2
Although 0 is located in the cutting region 22 and has disappeared by cutting, the cutting recognition pattern 20 may be formed and left on the insulating substrate 18 in the semiconductor element 15.

【0036】次に、図4(e)に示すように、切断領域
22の内部を埋め尽くすように、露出した硬化樹脂17
上及び半導体素子15、絶縁性基板18の側面に液状の
樹脂17’を流し込んだ後硬化させる。この際、樹脂1
7と17’とは密着する。なお、図4(e)に示すよう
に、液状の樹脂17’を流し込んでも、半導体ウェハ1
4と絶縁性基板18の間隙(電極パターン16の高さ相
当)は極めて小であるので、電極パターン16の側面に
まで樹脂17’が到達することはない。
Next, as shown in FIG. 4E, the exposed cured resin 17 is filled so as to fill the inside of the cut region 22.
A liquid resin 17 ′ is poured into the upper surface, the semiconductor element 15, and the side surfaces of the insulating substrate 18 and then cured. At this time, resin 1
7 and 17 'are in close contact. As shown in FIG. 4E, even if the liquid resin 17 'is poured, the semiconductor wafer 1
Since the gap (corresponding to the height of the electrode pattern 16) between the substrate 4 and the insulating substrate 18 is extremely small, the resin 17 ′ does not reach the side surface of the electrode pattern 16.

【0037】最後に、図4(f)に示すように、硬化し
ている樹脂17及び17’を同時に切断し、半導体素子
15を分離し、チップ型半導体装置を得る。従って、こ
の実施の形態のチップ型半導体装置の大きさも、半導体
素子15の大きさに極めて近付けることができる。な
お、図4(f)に示す切断幅は、図4(d)に示した切
断幅よりも狭いこととし、結果として切断領域22の半
導体素子15と絶縁性基板18の側面には、図4(f)
に示すように樹脂17’が形成されて残る。
Finally, as shown in FIG. 4F, the cured resins 17 and 17 'are cut at the same time, and the semiconductor element 15 is separated to obtain a chip-type semiconductor device. Therefore, the size of the chip-type semiconductor device of this embodiment can be very close to the size of the semiconductor element 15. The cutting width shown in FIG. 4F is smaller than the cutting width shown in FIG. 4D, and as a result, the side surfaces of the semiconductor element 15 and the insulating substrate 18 in the cutting region 22 are formed as shown in FIG. (F)
The resin 17 'is formed and remains as shown in FIG.

【0038】この実施の形態では、図4(b)のバイア
ホール19形成の際の電極パターン16との位置合わせ
は、半導体ウェハ14に予め形成された位置合わせ認識
パターンを利用するが、絶縁性基板18を透過して位置
合わせ認識パターンを読み取るには、赤外線透過顕微鏡
を使って目視で合っているかを確認する。このとき、図
4(a)に示すように、バイアホール19形成のための
フォトレジスト13の開口位置が、絶縁性基板18の屈
折率や他の原因により、実際の電極パターン16の位置
に対して矢印Xで示すようにずれることがある。
In this embodiment, the alignment with the electrode pattern 16 at the time of forming the via hole 19 in FIG. 4B utilizes the alignment recognition pattern formed in advance on the semiconductor wafer 14. In order to read the alignment recognition pattern through the substrate 18, it is visually confirmed whether or not the alignment is correct by using an infrared transmission microscope. At this time, as shown in FIG. 4A, the opening position of the photoresist 13 for forming the via hole 19 is different from the actual position of the electrode pattern 16 due to the refractive index of the insulating substrate 18 and other factors. As indicated by arrow X.

【0039】フォトレジスト13の印刷パターンできば
えチェックにより、上記の位置ずれを検出した場合は、
そのフォトレジスト13を有機溶剤、O2プラズマアッ
シャ等により全面除去し、再度パターニングしたフォト
レジストを絶縁性基板18上に形成する。この再処理に
より、バイアホール19形成の際の電極パターン16と
の位置合わせを正確に行える。
When the above-described positional deviation is detected by checking the print pattern of the photoresist 13,
The photoresist 13 is entirely removed by an organic solvent, O 2 plasma asher, or the like, and a photoresist patterned again is formed on the insulating substrate 18. By this reprocessing, the alignment with the electrode pattern 16 at the time of forming the via hole 19 can be accurately performed.

【0040】なお、このようにして製造されたチップ型
半導体装置に対して、例えば図5に示すように、メタル
バンプ21にリード電極23を接続する工程を更に付加
することも可能である。
Note that, for example, as shown in FIG. 5, a step of connecting the lead electrode 23 to the metal bump 21 can be further added to the chip-type semiconductor device manufactured as described above.

【0041】[0041]

【実施例】次に、本発明の実施例について図4を参照し
て説明する。図4(a)に示すように、半導体ウェハ1
4は厚さ100μm程度のGaAsからなり、その裏面
に液状の樹脂18を塗布し硬化させる。絶縁性基板18
は、厚さ100μm程度の高抵抗GaAs基板であり、
半導体ウェハ14との接着にはポリイミドやフォトレジ
ストを使用する。
Next, an embodiment of the present invention will be described with reference to FIG. As shown in FIG.
Numeral 4 is made of GaAs having a thickness of about 100 μm, and a liquid resin 18 is applied to the back surface and cured. Insulating substrate 18
Is a high-resistance GaAs substrate having a thickness of about 100 μm,
For bonding to the semiconductor wafer 14, polyimide or photoresist is used.

【0042】次に、図4(b)に示すように、半導体ウ
ェハ14上の80μm角の電極パターン16の内側に位
置するように、40μm角のバイアホール19を絶縁性
基板18に形成する。バイアホール19の形成において
は、GaAsドライエッチング技術を使用し、そのパタ
ーニングにはフォトレジスト技術を利用する。フォトレ
ジスト技術により絶縁性基板18の上に形成されたバイ
アホールパターンと電極パターン16との位置合わせ
は、双方を透過する赤外線を利用して確認し、位置ずれ
があれば、再処理を行い、不良発生を未然に防ぐことが
できる。このバイアホール形成において同時に切断認識
パターンも形成しておく。
Next, as shown in FIG. 4B, a 40 μm square via hole 19 is formed in the insulating substrate 18 so as to be located inside the 80 μm square electrode pattern 16 on the semiconductor wafer 14. In forming the via hole 19, a GaAs dry etching technique is used, and a photoresist technique is used for the patterning. The alignment between the via hole pattern and the electrode pattern 16 formed on the insulating substrate 18 by the photoresist technique is confirmed using infrared rays transmitted through both, and if there is a misalignment, re-processing is performed. Failure can be prevented from occurring. In forming the via hole, a cut recognition pattern is also formed at the same time.

【0043】次に、図4(c)に示すように、バイアホ
ール19により露出した電極パターン16上にメタルバ
ンプ21を形成し、外部素子と半導体素子15との接続
機能を持たせる。
Next, as shown in FIG. 4C, a metal bump 21 is formed on the electrode pattern 16 exposed by the via hole 19 to have a function of connecting the external element and the semiconductor element 15.

【0044】次に、図4(d)に示すように、切断認識
パターン20を利用して半導体素子15の大きさに15
0μm幅でダイシングにより切断する。次に、図4
(e)に示すように、150μm幅の切断領域22に樹
脂17と同一材料の液状の樹脂17’を流し込み硬化さ
せる。次に、図4(f)に示すように、30μm幅で樹
脂17’の中央を切断し、半導体素子15を分離する。
Next, as shown in FIG. 4D, the size of the semiconductor element 15 is reduced to 15
Cut by dicing with a width of 0 μm. Next, FIG.
As shown in (e), a liquid resin 17 ′ of the same material as the resin 17 is poured into the cut region 22 having a width of 150 μm and hardened. Next, as shown in FIG. 4F, the center of the resin 17 ′ is cut at a width of 30 μm to separate the semiconductor element 15.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
複数の半導体素子が形成された半導体ウェハのままで絶
縁性基板に貼り合わせ、半導体素子のメタルパンプと絶
縁性基板の電極パターンを接合することにより、絶縁性
基板上の半導体素子個々の搭載精度ばらつきもなく、封
止樹脂の薄い均一の層で半導体素子を封止できるため、
チップ型半導体装置の大きさを半導体素子の大きさに極
めて近い大きさにまで小型化できる。
As described above, according to the present invention,
The semiconductor wafer on which a plurality of semiconductor elements are formed is attached to an insulating substrate, and the metal pump of the semiconductor element and the electrode pattern of the insulating substrate are bonded to each other, whereby the mounting accuracy of each semiconductor element on the insulating substrate varies. No, because the semiconductor element can be sealed with a thin uniform layer of sealing resin,
The size of the chip-type semiconductor device can be reduced to a size very close to the size of the semiconductor element.

【0046】また、本発明によれば、半導体ウェハの複
数の半導体素子が形成された面を電極パターンが形成さ
れている絶縁性基板に貼り付け、半導体素子のメタルバ
ンプと絶縁性基板の電極パターンとを接合することによ
り、個々の半導体素子を基板に搭載する工程を不要にで
きるため、半導体素子搭載の生産性を著しく向上でき、
このことからチップ型半導体装置の生産性も著しく向上
することができる。
According to the present invention, the surface of the semiconductor wafer on which the plurality of semiconductor elements are formed is attached to the insulating substrate on which the electrode pattern is formed, and the metal bumps of the semiconductor element and the electrode pattern of the insulating substrate are bonded. Can eliminate the need for the step of mounting individual semiconductor elements on a substrate, thereby significantly improving the productivity of mounting semiconductor elements.
Thus, the productivity of the chip-type semiconductor device can be significantly improved.

【0047】また、本発明によれば、絶縁性基板の形状
及び大きさは、半導体ウェハの形状及び大きさと同一で
あり、絶縁性基板の電極パターンは、半導体素子の半導
体ウェハ上での電極の位置座標データを用いて決定した
位置に形成することで、半導体素子のメタルパンプと絶
縁性基板の電極パターンとの位置決めを容易にできるよ
うにしたため、チップ型半導体装置の生産性や信頼性を
向上することができる。
Further, according to the present invention, the shape and size of the insulating substrate are the same as the shape and size of the semiconductor wafer, and the electrode pattern of the insulating substrate corresponds to the electrode pattern of the semiconductor device on the semiconductor wafer. Improving the productivity and reliability of chip-type semiconductor devices by making it easier to position the metal pump of the semiconductor element and the electrode pattern of the insulating substrate by forming it at the position determined using the position coordinate data can do.

【0048】更に、本発明によれば、絶縁性基板に切断
認識パターンを形成し、この切断認識パターンを利用し
て、半導体素子個々の大きさに半導体ウェハ及び絶縁性
基板の両方を同時に切断除去することにより、切断認識
パターンを直接認識できるため、ダイシング時の切断位
置を正確にでき、これにより歩留りを向上できる。ま
た、半導体ウェハと絶縁性基板とを同時に切断している
ため、ダイシング時にチップ欠け等の不良が発生しない
ようにできる。
Further, according to the present invention, a cut recognition pattern is formed on an insulating substrate, and by using the cut recognition pattern, both the semiconductor wafer and the insulating substrate are simultaneously cut and removed to the size of each semiconductor element. By doing so, it is possible to directly recognize the cutting recognition pattern, so that the cutting position at the time of dicing can be accurately determined, thereby improving the yield. In addition, since the semiconductor wafer and the insulating substrate are cut at the same time, defects such as chipping during dicing can be prevented.

【0049】更に、本発明で用いる絶縁性基板は、何ら
パターンを有しない絶縁性基板を用いるようにしたた
め、半導体素子の電極パターンの異なる半導体ウェハに
も、同一の絶縁性基板を利用でき、絶縁性基板に汎用性
をもたせることができ、量産効果を得ることができる。
また、更に、第1及び第2の樹脂は、それぞれ同一材料
の液状樹脂であるため、密着性に優れ、半導体素子及び
絶縁性基板を十分に保護できる。
Further, since the insulating substrate used in the present invention has no pattern, the same insulating substrate can be used for semiconductor wafers having different electrode patterns of semiconductor elements. The flexible substrate can be provided with versatility, and a mass production effect can be obtained.
Furthermore, since the first and second resins are liquid resins of the same material, respectively, they have excellent adhesion and can sufficiently protect the semiconductor element and the insulating substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明製造方法の一実施の形態の各工程説明用
斜視図である。
FIG. 1 is a perspective view for explaining each step of an embodiment of the manufacturing method of the present invention.

【図2】図1の補足説明図である。FIG. 2 is a supplementary explanatory diagram of FIG. 1;

【図3】図1の製造方法により製造されたチップ型半導
体装置の一部切截斜視図である。
FIG. 3 is a partially cutaway perspective view of a chip-type semiconductor device manufactured by the manufacturing method of FIG. 1;

【図4】本発明製造方法の他の実施の形態の各工程説明
用断面図である。
FIG. 4 is a cross-sectional view for explaining each step of another embodiment of the manufacturing method of the present invention.

【図5】本発明製造方法により製造されたチップ型半導
体装置の他の例の断面図である。
FIG. 5 is a sectional view of another example of a chip-type semiconductor device manufactured by the manufacturing method of the present invention.

【図6】従来の製造方法の一例の第1の工程の装置断面
図である。
FIG. 6 is an apparatus sectional view of a first step of an example of a conventional manufacturing method.

【図7】従来の製造方法の一例の第2の工程の装置断面
図である。
FIG. 7 is an apparatus cross-sectional view of a second step of an example of a conventional manufacturing method.

【図8】図6及び図7の製造方法で製造されたチップ型
部品の一例の斜視図である。
FIG. 8 is a perspective view of an example of a chip-type component manufactured by the manufacturing method of FIGS. 6 and 7;

【符号の説明】 1、14 半導体ウェハ 2、15 半導体素子 3 電極 4、21 メタルバンプ 5、18 絶縁性基板 5’ 切断後の絶縁性基板 6、16 電極パターン 7 溝 8、8’ オリエンテーションフラット 9、9’ ダイシング溝 10、17、17’ 樹脂 11 切断面 12 チップ型半導体装置 13 フォトレジスト 19 バイアホール 20 切断認識パターン 22 切断領域 23 リード電極[Description of Signs] 1, 14 Semiconductor wafer 2, 15 Semiconductor element 3 Electrode 4, 21 Metal bump 5, 18 Insulating substrate 5 'Insulating substrate 6, 16 After cutting Electrode pattern 7 Groove 8, 8' Orientation flat 9 , 9 'Dicing groove 10, 17, 17' Resin 11 Cutting surface 12 Chip type semiconductor device 13 Photoresist 19 Via hole 20 Cutting recognition pattern 22 Cutting region 23 Lead electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 23/12 H01L 21/56──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01L 23/12 H01L 21/56

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面の既知の位置に複数の半導体素子が
形成された半導体ウェハの該半導体素子の電極にメタル
バンプを形成する第1の工程と、 表面の既知の位置に電極パターンが形成された絶縁性基
板の該電極パターン側と前記半導体ウェハの半導体素子
形成面側とを貼り合わせて、該電極パターンと前記メタ
ルバンプとを接合する第2の工程と、 前記第2の工程により貼り合わされた前記半導体ウェハ
及び絶縁性基板のうち、該半導体ウェハのみを前記半導
体素子個々の大きさに切断区分する第3の工程と、 前記半導体ウェハを切断区分する溝と前記半導体ウェハ
上に液状樹脂を流し込んで硬化させる第4の工程と、 硬化した前記樹脂と前記絶縁性基板を同時に切断し、そ
れぞれ前記半導体素子を有する個々の半導体装置に分離
する第5の工程とを含むことを特徴とするチップ型半導
体装置の製造方法。
A first step of forming a metal bump on an electrode of the semiconductor element on a semiconductor wafer having a plurality of semiconductor elements formed at a known position on the surface; and forming an electrode pattern at a known position on the surface. A second step of bonding the electrode pattern side of the insulated substrate and the semiconductor element forming surface side of the semiconductor wafer, and bonding the electrode pattern and the metal bumps; and A third step of cutting and dividing only the semiconductor wafer out of the semiconductor wafer and the insulating substrate to the size of each of the semiconductor elements; and a step of cutting and dividing the semiconductor wafer with a liquid resin on the semiconductor wafer. A fourth step of pouring and curing; and a step of simultaneously cutting the cured resin and the insulating substrate and separating each into individual semiconductor devices having the semiconductor elements. Method of manufacturing a chip-type semiconductor device which comprises a step.
【請求項2】 前記絶縁性基板の形状及び大きさは、前
記半導体ウェハの形状及び大きさと同一であることを特
徴とする請求項1記載のチップ型半導体装置の製造方
法。
2. The method according to claim 1, wherein the shape and size of the insulating substrate are the same as the shape and size of the semiconductor wafer.
【請求項3】 前記絶縁性基板の電極パターンは、前記
半導体素子の前記半導体ウェハ上での電極の位置座標デ
ータを用いて決定した位置に形成することを特徴とする
請求項1又は2記載のチップ型半導体装置の製造方法。
3. The semiconductor device according to claim 1, wherein the electrode pattern of the insulating substrate is formed at a position determined using position coordinate data of the electrode of the semiconductor element on the semiconductor wafer. A method for manufacturing a chip-type semiconductor device.
【請求項4】 前記第3の工程は、前記半導体素子の前
記半導体ウェハ上での位置座標データを用いて切断区分
位置を決定して前記半導体ウェハのみを切断区分するこ
とを特徴とする請求項1記載のチップ型半導体装置の製
造方法。
4. The semiconductor device according to claim 3, wherein the third step determines a cutting section position by using position coordinate data of the semiconductor element on the semiconductor wafer and cuts only the semiconductor wafer. 2. The method for manufacturing a chip-type semiconductor device according to item 1.
【請求項5】 前記第3の工程における切断区分の切断
溝幅は、前記第5の工程における切断溝幅より広いこと
を特徴とする請求項1記載のチップ型半導体装置の製造
方法。
5. The method of manufacturing a chip-type semiconductor device according to claim 1, wherein the width of the cutting groove in the cutting section in the third step is wider than the width of the cutting groove in the fifth step.
【請求項6】 表面の既知の位置に電極パターンを有す
る複数の半導体素子が形成された半導体ウェハの、該半
導体素子形成面と反対側の面に第1の樹脂を硬化させる
第1の工程と、 硬化した前記第1の樹脂を有する前記半導体ウェハの前
記半導体素子形成面に絶縁性基板を貼り合わせる第2の
工程と、 前記絶縁性基板に前記半導体ウェハの電極パターンの一
部を露出させるバイアホールと切断認識パターンを形成
する第3の工程と、 前記バイアホールを介して前記電極パターンと接続する
メタルバンプ形成する第4の工程と、 前記切断認識パターンを利用して、前記半導体素子個々
の大きさに前記半導体ウェハ及び絶縁性基板とを同時に
切断除去する第5の工程と、 前記第5の工程により切断除去された領域に、第2の樹
脂を埋め込み硬化させる第6の工程と、 硬化した前記第2の樹脂を硬化している前記第1の樹脂
と共に切断し、それぞれ前記半導体素子を有する個々の
半導体装置に分離する第7の工程とを含むことを特徴と
するチップ型半導体装置の製造方法。
6. A first step of curing a first resin on a surface of a semiconductor wafer on which a plurality of semiconductor elements having electrode patterns are formed at known positions on the surface, the surface being opposite to the semiconductor element forming surface. A second step of bonding an insulating substrate to the semiconductor element forming surface of the semiconductor wafer having the cured first resin; and a via exposing a part of the electrode pattern of the semiconductor wafer to the insulating substrate. A third step of forming a hole and a cut recognition pattern; a fourth step of forming a metal bump connected to the electrode pattern via the via hole; and a step of forming each of the semiconductor elements by using the cut recognition pattern. A fifth step of simultaneously cutting and removing the semiconductor wafer and the insulating substrate to a size, and embedding a second resin in a region cut and removed by the fifth step. A sixth step of cutting the hardened second resin together with the hardened first resin, and separating the hardened second resin into individual semiconductor devices each having the semiconductor element. A method for manufacturing a chip-type semiconductor device.
【請求項7】 前記絶縁性基板は、電極パターンが形成
されていないことを特徴とする請求項6記載のチップ型
半導体装置の製造方法。
7. The method according to claim 6, wherein the insulating substrate has no electrode pattern formed thereon.
【請求項8】 前記第7の工程で分離製造された半導体
装置の前記半導体素子の切断面と前記絶縁性基板の切断
面とは、前記第6の工程で硬化した前記第2の樹脂でそ
れぞれ保護されていることを特徴とする請求項6記載の
チップ型半導体装置の製造方法。
8. The cut surface of the semiconductor element and the cut surface of the insulating substrate of the semiconductor device separated and manufactured in the seventh step are respectively formed of the second resin cured in the sixth step. 7. The method for manufacturing a chip-type semiconductor device according to claim 6, wherein the method is protected.
【請求項9】 前記第7の工程で分離製造された半導体
装置の前記メタルバンプに、リード電極を接続する第8
の工程を更に含むことを特徴とする請求項6記載のチッ
プ型半導体装置の製造方法。
9. The semiconductor device according to claim 7, wherein a lead electrode is connected to the metal bump of the semiconductor device separated and manufactured in the seventh step.
7. The method for manufacturing a chip-type semiconductor device according to claim 6, further comprising the step of:
【請求項10】 前記第1及び第2の樹脂は、それぞれ
同一材料の液状樹脂であることを特徴とする請求項6乃
至9のうちいずれか一項記載のチップ型半導体装置の製
造方法。
10. The method according to claim 6, wherein the first and second resins are liquid resins of the same material.
JP9125408A 1996-08-09 1997-05-15 Manufacturing method of chip type semiconductor device Expired - Fee Related JP2812326B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9125408A JP2812326B2 (en) 1996-08-09 1997-05-15 Manufacturing method of chip type semiconductor device
US09/020,789 US6077757A (en) 1997-05-15 1998-02-09 Method of forming chip semiconductor devices
CN98100405A CN1106036C (en) 1997-05-15 1998-02-09 Producing method for chip type semi-conductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-211073 1996-08-09
JP21107396 1996-08-09
JP9125408A JP2812326B2 (en) 1996-08-09 1997-05-15 Manufacturing method of chip type semiconductor device

Publications (2)

Publication Number Publication Date
JPH10112468A JPH10112468A (en) 1998-04-28
JP2812326B2 true JP2812326B2 (en) 1998-10-22

Family

ID=26461855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9125408A Expired - Fee Related JP2812326B2 (en) 1996-08-09 1997-05-15 Manufacturing method of chip type semiconductor device

Country Status (1)

Country Link
JP (1) JP2812326B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508396B2 (en) * 2000-10-30 2010-07-21 パナソニック株式会社 Chip-type semiconductor device and manufacturing method thereof
DE10149689A1 (en) * 2001-10-09 2003-04-10 Philips Corp Intellectual Pty Electrical/electronic component has lateral, rear cover materials at least partly of electrically conductive material and/or of electrically conductive material in layers but in connected manner
JP4750523B2 (en) * 2005-09-27 2011-08-17 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
JP2011066193A (en) * 2009-09-17 2011-03-31 Rohm Co Ltd Optical device, and method of manufacturing the same
JP5542848B2 (en) * 2012-02-07 2014-07-09 信越化学工業株式会社 SEALING MATERIAL LAMINATE COMPOSITE, SEMICONDUCTOR SEMICONDUCTOR MOUNTING WAFER, SEMICONDUCTOR SEMICONDUCTOR FORMED WAFER, SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD

Also Published As

Publication number Publication date
JPH10112468A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US7847411B2 (en) Electronic device and method of manufacturing the same
KR100907232B1 (en) Semiconductor device and manufacturing method thereof
US5636104A (en) Printed circuit board having solder ball mounting groove pads and a ball grid array package using such a board
KR100272045B1 (en) A semiconductor device and a method for manufacturing the same
KR100268608B1 (en) Semiconductor device and its manufacturing method
US5661087A (en) Vertical interconnect process for silicon segments
US6174751B1 (en) Method of manufacturing resin encapsulated semiconductor device
US6077757A (en) Method of forming chip semiconductor devices
JPH06342794A (en) Resin-sealed type semiconductor package and manufacture thereof
US20100225001A1 (en) Manufacturing method of semiconductor device, semiconductor device, and electronic device
US7053492B2 (en) Circuit device and method of manufacturing the same
US6285087B1 (en) Resin-shield type semiconductor device
CN109509727A (en) A kind of semiconductor chip packaging method and encapsulating structure
US7615408B2 (en) Method of manufacturing semiconductor device
JP2812326B2 (en) Manufacturing method of chip type semiconductor device
JP4073308B2 (en) Circuit device manufacturing method
US6323434B1 (en) Circuit board and production method thereof
US8053281B2 (en) Method of forming a wafer level package
US5485337A (en) Thin film magnetic head structure and method of fabricating the same for accurately locating and connecting terminals to terminal connections
WO1999009592A1 (en) Flip-chip semiconductor package and method for manufacturing the same
JP4234270B2 (en) Manufacturing method of semiconductor device
JP3472601B2 (en) Semiconductor device
KR20010061784A (en) Chip scale package and method of fabricating the same
US20110221066A1 (en) Method for manufacturing a semiconductor device and a semiconductor device
JP2597809B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees