JP2810105B2 - Electrodes for secondary batteries - Google Patents

Electrodes for secondary batteries

Info

Publication number
JP2810105B2
JP2810105B2 JP1114160A JP11416089A JP2810105B2 JP 2810105 B2 JP2810105 B2 JP 2810105B2 JP 1114160 A JP1114160 A JP 1114160A JP 11416089 A JP11416089 A JP 11416089A JP 2810105 B2 JP2810105 B2 JP 2810105B2
Authority
JP
Japan
Prior art keywords
electrode
cylindrical
present
conductive polymer
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1114160A
Other languages
Japanese (ja)
Other versions
JPH02295063A (en
Inventor
圭司 谷口
興利 木村
利幸 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1114160A priority Critical patent/JP2810105B2/en
Publication of JPH02295063A publication Critical patent/JPH02295063A/en
Application granted granted Critical
Publication of JP2810105B2 publication Critical patent/JP2810105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導電性高分子を応用した二次電池用電極に
関する。
Description: TECHNICAL FIELD The present invention relates to an electrode for a secondary battery using a conductive polymer.

[従来の技術] 従来導電性高分子よりなる合剤型電極を使用した2次
電池としては、特開昭62−243248、特開昭62−193061、
特開昭62−176068、特開昭62−93865、特開昭62−16834
8等が公知である。
[Related Art] Conventionally, secondary batteries using a mixture type electrode made of a conductive polymer are disclosed in JP-A-62-243248, JP-A-62-193061,
JP-A-62-176068, JP-A-62-93865, JP-A-62-16834
8 and the like are known.

導電性高分子よりなる合剤型電極の形態としして従来
は粉状または微粒子状の導電性高分子をポリテトラフル
オロエチレン等の結着剤及びカーボンブラック等の導電
性材料と共に混練し、加圧成型するペレット型が一般的
であるが、このものはボタン型電池等、小容量タイプに
適している。一方大電流を取り出すいわゆる大容量タイ
プに本合剤型電極を適用する場合は金属メッシュ等の集
電体に上記混練物を塗布し、加圧成型して集電体と一体
化したシート状合剤電極とし、セパレーター、対極とス
パイラル状にして利用するのが一般的である。
Conventionally, a powdery or particulate conductive polymer is kneaded with a binder such as polytetrafluoroethylene and a conductive material such as carbon black in the form of a mixture-type electrode made of a conductive polymer. A pellet type formed by pressure molding is generally used, but this type is suitable for a small capacity type such as a button type battery. On the other hand, when the present mixture type electrode is applied to a so-called large-capacity type in which a large current is taken out, the kneaded material is applied to a current collector such as a metal mesh, and then formed into a sheet by integrating the current collector with a pressure. It is common to use it as an agent electrode, in a spiral shape with a separator and a counter electrode.

だが、この場合スパイラル状に巻く時、合剤型電極の
ひび割れ、脱落、折れ等が生じ、到底実用に耐えるもの
ではない。この点の改良を目指し、例えば特開昭62−93
865ではアニリン系重合体、フッ素樹脂の水性ディスパ
ージョンに更に低沸点水溶性有機化合物を添加する事が
記載されているが未だ満足のいくものではない。従って
大電流を取り出すにふさわしい合剤型電極の形態として
従来は満足のゆくものがなかった。
However, in this case, when wound in a spiral shape, the mixture-type electrode cracks, falls off, breaks, etc., and is not practically practical. In order to improve this point, for example, Japanese Patent Application Laid-Open No. 62-93
865 describes that a low-boiling water-soluble organic compound is further added to an aqueous dispersion of an aniline-based polymer or a fluororesin, but it is still unsatisfactory. Therefore, there has hitherto been no satisfactory form of a mixture electrode suitable for extracting a large current.

[発明が解決しようとする課題] 本発明は、こうした実情に鑑み、スパイラル型電極の
様に電解液との接触面積及び対極との対向面積が広くと
れる長所を有しながら、かつ平板状に成型した合剤を巻
く時のひび割れ、脱落、折れ等を防止した新規な形態の
二次電池用電極を提供することを目的とするものであ
る。
[Problems to be Solved by the Invention] In view of such circumstances, the present invention has the advantage that a contact area with an electrolyte and an area opposed to a counter electrode can be widened like a spiral type electrode, and is molded into a flat plate. It is an object of the present invention to provide a secondary battery electrode of a novel form in which cracking, falling off, breaking, and the like when winding the prepared mixture are prevented.

[課題を解決するための手段] 本発明者らは、前記した課題を解決すべく、鋭意研究
を重ねた結果、導電性材料と結着材料として導電性高分
子を用いた電極材料を筒状に加圧成形した形態が有効で
あることを見出し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have formed an electrode material using a conductive material and a conductive polymer as a binding material into a cylindrical shape. The present inventors have found that a pressure-formed form is effective, and have reached the present invention.

すなわち、本発明は、導電性材料と結着材料として導
電性高分子を用いた電極材料を筒状に加圧成形せしめた
二次電池用電極である。この場合筒の形状は円筒状が好
ましいが、必要により三角、四角、六角等の角筒でもよ
い。
That is, the present invention is an electrode for a secondary battery in which an electrode material using a conductive polymer and a conductive polymer as a binder material is pressure-formed in a cylindrical shape. In this case, the shape of the tube is preferably a cylindrical shape, but may be a triangular, square, hexagonal, or other rectangular tube if necessary.

本発明の円筒状合剤型電極によれば外周面及び内周面
の2面で電解液に接触が可能であり、同様にこの2面で
対極との対向が可能である。必要ならば大きさの異なる
筒状合剤型電極を同心状あるいは同心円状に配置し、各
々の間にセパレーター、対極を配置すれば実質的に大面
積のとれるスパイラル型と何らかわる事なく、しかもシ
ート状合剤型電極を巻く時の様なひび割れ、脱落、折れ
等の問題は全くないものとなる。
According to the cylindrical mixture type electrode of the present invention, it is possible to contact the electrolytic solution on the two surfaces, the outer peripheral surface and the inner peripheral surface, and similarly, the two surfaces can be opposed to the counter electrode. If necessary, arrange cylindrical mixture type electrodes of different sizes concentrically or concentrically, without any difference from the spiral type which can take a substantially large area if a separator and counter electrode are arranged between each, and There is no problem such as cracking, falling off or breaking when winding the sheet-form mixture type electrode.

この場合の集電方法は種々考えられるが、一例として
はくし状の集電体とし、各くしの歯を各々の円筒状電極
に取りつければ、全円筒状電極からの電流を集中して取
り出す事は容易である。
There are various current collection methods in this case, but as an example, if a comb-shaped current collector is used and the teeth of each comb are attached to each cylindrical electrode, the current from all cylindrical electrodes can be concentrated and extracted. Is easy.

本発明で使用される導電性高分子としては、例えばポ
リピロール、ポリチオフェン、ポリチアジル、ポリアセ
チレン、ポリパラフェニレン、ポリパラフェニレンスル
フィド、ポリアニリン、ポリパラフェニレンビニレン、
ポリイソチアナフテン、ポリピリダジン、ポリアズレ
ン、ポリセレノフェン、ポリピリジン、ポリアセン、ポ
リペリナフタレン等が適宜用いられる。
Examples of the conductive polymer used in the present invention include polypyrrole, polythiophene, polythiazyl, polyacetylene, polyparaphenylene, polyparaphenylene sulfide, polyaniline, polyparaphenylene vinylene,
Polyisothianaphthene, polypyridazine, polyazulene, polyselenophene, polypyridine, polyacene, polyperinaphthalene and the like are appropriately used.

また、これら導電性高分子に対するドーパントとして
はBF4 -、ClO4 -、PF6 -、AsF5、SbF5、Na、I2、K、Br2
がある。
The dopants for these conductive polymers include BF 4 , ClO 4 , PF 6 , AsF 5 , SbF 5 , Na, I 2 , K, Br 2 and the like.

本発明の円筒状電極は正極単位量当りの導電性高分子
の比率を向上させるため、樹脂結着剤は使用しない事が
望ましい。
The cylindrical electrode of the present invention desirably does not use a resin binder in order to improve the ratio of the conductive polymer per unit amount of the positive electrode.

また、導電性材料としてはケッチェンブラック、アセ
チレンブラック、グラファイト等のカーボン系材料、SU
S短繊維、白金、金、銀等の金属微粒子及び金属短繊維
等が挙げられるが、カーボン系材料がより好ましい。
As the conductive material, carbon-based materials such as Ketjen Black, acetylene black, graphite, and the like, SU
Examples include S short fibers, fine metal particles such as platinum, gold, and silver, and short metal fibers, and more preferably a carbon-based material.

次に、これら導電性高分子、導電性材料を用いて本発
明の筒状合剤型電極を作成する方法を以下に例示する。
Next, a method for producing the cylindrical mixture-type electrode of the present invention using the conductive polymer and the conductive material will be described below.

導電性高分子(好ましくは粉体)と導電性材料を混練
し、円筒状合剤成型器で加圧成型後、真空乾燥(樹脂結
着剤が粉体の場合は真空乾燥の必要はない)すれば良
い。
A conductive polymer (preferably powder) and a conductive material are kneaded, molded under pressure using a cylindrical mixture molding machine, and then vacuum dried (if the resin binder is a powder, vacuum drying is not necessary). Just do it.

導電性高分子及び導電性材料の重量比としては導電性
高分子が60〜100重量%好ましくは80〜95重量%、導電
性材料は40重量%以下好ましくは5〜20重量%である。
The weight ratio of the conductive polymer to the conductive material is 60 to 100% by weight, preferably 80 to 95% by weight, and the conductive material is 40% by weight or less, preferably 5 to 20% by weight.

本発明で使用する導電性高分子は電解重合法、化学重
合法いずれでも良いが、混練の際、便利な粉状で得やす
い事及び量産性の点で化学重合法のものがより好まし
い。
The conductive polymer used in the present invention may be either an electrolytic polymerization method or a chemical polymerization method. However, a chemical polymerization method is more preferable from the viewpoints of easy powdery production and easy mass production during kneading.

本発明の筒状合剤型電極を正極として二次電池に使用
する場合、負極としては亜鉛、アルミニウム、マグネシ
ウム、リチウム、カドミウム等及び正極とは別種の導電
性高分子が使用できる。
When the cylindrical mixture type electrode of the present invention is used as a positive electrode in a secondary battery, zinc, aluminum, magnesium, lithium, cadmium, and the like and a conductive polymer different from the positive electrode can be used as the negative electrode.

また、本発明の筒状合剤型電極を負極として二次電池
に使用する場合、正極としては二酸化マンガン、酸化
銀、弗化黒鉛、塩化チオニル、活性炭、二硫化チタン、
二硫化モリブデン及び負極とは別種の導電性高分子が使
用できる。もちろん、正極、負極ともに本発明の導電性
高分子よりなる筒状合剤型電極であっても良い。
Further, when the cylindrical mixture type electrode of the present invention is used as a negative electrode in a secondary battery, manganese dioxide, silver oxide, graphite fluoride, thionyl chloride, activated carbon, titanium disulfide,
A different kind of conductive polymer from molybdenum disulfide and the negative electrode can be used. Of course, both the positive electrode and the negative electrode may be cylindrical mixture-type electrodes made of the conductive polymer of the present invention.

電解液としてはハロゲン化金属の水溶液または有機溶
媒の溶液が好適に使用できる。ただし、負極がリチウム
の場合は有機溶媒、例えばγ−ブチロラクトン、プロピ
レンカーボネート、ジメチルホルムアミド、ジメトキシ
エタン等から選択される。支持塩としては水溶液系では
塩化アンモニウム、有機溶媒などは過塩素酸リチウム、
ホウフッ化リチウム等が用いられる。
An aqueous solution of a metal halide or a solution of an organic solvent can be suitably used as the electrolytic solution. However, when the negative electrode is lithium, it is selected from organic solvents such as γ-butyrolactone, propylene carbonate, dimethylformamide, dimethoxyethane and the like. As a supporting salt, ammonium chloride in an aqueous solution system, lithium perchlorate in an organic solvent, etc.,
Lithium borofluoride or the like is used.

[実施例] 以下、実施例により本発明を更に具体的に説明する。EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1 (1)化学重合ポリアニリンの合成 300mlの1MHCl水溶液にアニリン20.4g(0.219mol)を
溶解し、氷冷下5〜10℃に保ちながら(NH42S2O811.5
g(0.0504mol)を200mlの1MHCl水溶液に溶解した溶液を
滴下、撹拌した。滴下終了後、2時間同温度で撹拌を続
け、析出したポリアニリン(粉状)を濾取した。得られ
たポリアニリンを200mlの水で3回洗浄し、次にメタノ
ール100mlで2回洗浄し、乾燥した。
Example 1 (1) Synthesis of Chemically Polymerized Polyaniline 20.4 g (0.219 mol) of aniline was dissolved in 300 ml of a 1M aqueous solution of HCl, and (NH 4 ) 2 S 2 O 8 11.5
g (0.0504 mol) in 200 ml of 1M aqueous HCl was added dropwise and stirred. After completion of the dropwise addition, stirring was continued at the same temperature for 2 hours, and the precipitated polyaniline (powder) was collected by filtration. The polyaniline obtained was washed three times with 200 ml of water, then twice with 100 ml of methanol and dried.

次に本ポリアニリンをヒドラジンの20%メタノール溶
液300ml中、室温で2時間撹拌し、脱ドープ及び還元を
行ない濾取した。本ポリアニリンを再びヒドラジンの20
%メタノール溶液300ml中処理を行なった。この脱ドー
プ還元処理を5回繰返し、濾取物をメタノール100mlで
2回洗浄し、淡青色のポリアニリン10.0gを得た。
Next, the polyaniline was stirred in 300 ml of a 20% methanol solution of hydrazine at room temperature for 2 hours, dedoped and reduced, and filtered. This polyaniline is replaced with hydrazine 20
The treatment was performed in 300 ml of a 30% methanol solution. This dedope reduction treatment was repeated 5 times, and the collected matter was washed twice with 100 ml of methanol to obtain 10.0 g of light blue polyaniline.

(2)円筒状合剤型電極の作成 上記で合成したポリアニリン1.56gとグラファイト0.1
6g(ロンザ社製KS−6)を充分に混練し、加圧成型器に
て100kg/cm2の圧力で外径9.5mm、内径6mm、高さ40mmの
第1図に示す円筒状電極を作成した。
(2) Preparation of cylindrical mixture type electrode 1.56g of polyaniline synthesized above and 0.1 of graphite
6 g (KS-6 manufactured by Lonza) is sufficiently kneaded, and a pressure molding machine is used to produce a cylindrical electrode having an outer diameter of 9.5 mm, an inner diameter of 6 mm and a height of 40 mm at a pressure of 100 kg / cm 2 as shown in FIG. did.

(3)電池特性の評価 上記円筒状電極を正極とし、リチウム箔[本城金属
(株)、50μm厚]セパレーター(ポリプラスチックス
(株)ジュラガード)、及び電解液としてLiBF4のプロ
ピレンカーボネート70Vol%、ジメトキシエタン30Vol%
の3M溶液を使用し、第2図に示す評価用セルを作成し、
充放電特性を調べた。
(3) Evaluation said cylindrical electrodes of the battery characteristics as a positive electrode, lithium foil [Honjo Metal Co., 50 [mu] m thick] separator (Polyplastics Co. Jura guard), and propylene carbonate 70Vol of LiBF 4 as the electrolyte %, Dimethoxyethane 30Vol%
Using a 3M solution of the above, an evaluation cell shown in FIG. 2 was prepared.
The charge / discharge characteristics were examined.

なお、評価方法は次の通りである。 The evaluation method is as follows.

充電終止電圧3.8V、放電終止電圧2.3V、充放電電流20
mAに設定し、充放電試験を行った。正極エネルギー密度
は348Wh/kgであった。また、100回の充放電においても
正極の形状に変化は見られず、割れ、脱落等は認められ
なかった。
Charge end voltage 3.8V, discharge end voltage 2.3V, charge / discharge current 20
mA was set and a charge / discharge test was performed. The positive electrode energy density was 348 Wh / kg. In addition, no change was observed in the shape of the positive electrode even after 100 charge / discharge cycles, and no cracking or falling off was observed.

比較例1 ポリアニリン2.81g、グラファイト(ロンザ社製KS−
6)0.28gを充分に混練し、加圧成型器にて100kg/cm2
圧力で直径9.5mm、高さ40mmの円柱状電極を作成した。
本円柱状電極を正極とし、この周りにセパレーター(ポ
リプラスチックス(株)ジュラガード)を巻き、更にこ
の周りにリチウム箔(本城金属(株)、50μm厚)を巻
き、実施例1と同様の評価用セルで充放電試験を行なっ
た。
Comparative Example 1 2.81 g of polyaniline, graphite (KS- manufactured by Lonza)
6) 0.28 g was sufficiently kneaded, and a columnar electrode having a diameter of 9.5 mm and a height of 40 mm was prepared at a pressure of 100 kg / cm 2 using a pressure molding machine.
This columnar electrode is used as a positive electrode, a separator (Polyplastics Co., Ltd. Duraguard) is wound around this electrode, and a lithium foil (Honjo Metal Co., Ltd., 50 μm thick) is further wound therearound. A charge / discharge test was performed using the evaluation cell.

正極エネルギー密度は23/Wh/kgであった。また100回
の充放電試験後、正極には縦方向に亀裂が認められた。
The positive electrode energy density was 23 / Wh / kg. After 100 charge / discharge tests, cracks were observed in the positive electrode in the vertical direction.

比較例2 厚さ0.1mm、メッシュサイズ2mm×1mmのステンレス(S
US316)のエキスパンドメタルを長さ100mm、幅40mmの大
きさに切断した上に実施例2の混練物を塗布時の厚さ2m
mになる様に塗布し、加圧成型器にて100kg/cm2で加圧
し、シート状合剤型電極とした。本シート状合剤型電極
を真空下、100℃で5時間、乾燥し、本乾燥後のシート
状合剤型電極を5mmφの丸棒に巻きつけてクラックの発
生、エキスパンドメタルとの密着性を観察した。その結
果、塗布後の乾燥時にクラックが入り、巻きつけテスト
では大きな割れが生じた。また、エキスパンドメタルか
らの剥れも生じていた。
Comparative Example 2 Thickness 0.1 mm, mesh size 2 mm × 1 mm stainless steel (S
US316) expanded metal cut into a size of 100 mm in length and 40 mm in width, and the kneaded material of Example 2 was applied to a thickness of 2 m when applied.
m and pressurized at 100 kg / cm 2 with a pressure molding machine to obtain a sheet-form mixture type electrode. The sheet-form mixture electrode is dried at 100 ° C. for 5 hours under vacuum, and the dried sheet-form mixture-type electrode is wound around a 5 mmφ round bar to generate cracks and adherence to expanded metal. Observed. As a result, cracks occurred during drying after coating, and large cracks occurred in the winding test. In addition, peeling from the expanded metal also occurred.

[発明の効果] 以上説明したように本発明の筒状合剤型電極を使用し
た2次電池は製作時あるいは使用時に電極にひび割れ、
剥れ等の欠陥を生じることがなく、充分なエネルキギー
容量と充放電特性、および安定性を示し、信頼性の高い
電極である。
[Effects of the Invention] As described above, the secondary battery using the cylindrical mixture-type electrode of the present invention has cracks in the electrode at the time of manufacture or use.
It is a highly reliable electrode that shows sufficient energy capacity, charge / discharge characteristics, and stability without causing defects such as peeling.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の二次電池に使用する筒状電極の説明す
る図、第2図は本発明の二次電池を評価するためのセル
を説明する図。 1……正極用白金リード線、 2……負極用白金線リード、3……テフロン栓、 4……電解液、5……リチウム箔(負極)、 6……ジュラガード(セパレータ)、 7……筒状正極、8……ガラスビン。
FIG. 1 is a view for explaining a cylindrical electrode used for a secondary battery of the present invention, and FIG. 2 is a view for explaining cells for evaluating the secondary battery of the present invention. 1 ... Platinum lead wire for positive electrode, 2 ... Platinum wire lead for negative electrode, 3 ... Teflon stopper, 4 ... Electrolyte, 5 ... Lithium foil (negative electrode), 6 ... Duraguard (separator), 7 ... ... cylindrical positive electrode, 8 ... glass bottle.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−243248(JP,A) 特開 昭62−93865(JP,A) 実開 昭60−13672(JP,U) 実開 昭56−112772(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 - 4/04,4/62,10/40──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-243248 (JP, A) JP-A-62-93865 (JP, A) Fully open Showa 60-13672 (JP, U) Really open Showa 56- 112772 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 4/02-4/04, 4/62, 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性材料と結着材料として導電性高分子
を用いた電極材料を筒状に加圧成形せしめた二次電池用
電極。
An electrode for a secondary battery in which an electrode material using a conductive material and a conductive polymer as a binder material is pressure-formed into a cylindrical shape.
JP1114160A 1989-05-09 1989-05-09 Electrodes for secondary batteries Expired - Lifetime JP2810105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1114160A JP2810105B2 (en) 1989-05-09 1989-05-09 Electrodes for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114160A JP2810105B2 (en) 1989-05-09 1989-05-09 Electrodes for secondary batteries

Publications (2)

Publication Number Publication Date
JPH02295063A JPH02295063A (en) 1990-12-05
JP2810105B2 true JP2810105B2 (en) 1998-10-15

Family

ID=14630664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114160A Expired - Lifetime JP2810105B2 (en) 1989-05-09 1989-05-09 Electrodes for secondary batteries

Country Status (1)

Country Link
JP (1) JP2810105B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261717B1 (en) 1999-05-28 2001-07-17 The Gillette Company Battery having an electrode within another electrode
US6235422B1 (en) 1999-05-28 2001-05-22 The Gillette Company Battery
US6342317B1 (en) 1999-07-21 2002-01-29 The Gillette Company Battery
US6410187B1 (en) 1999-09-09 2002-06-25 The Gillette Company Primary alkaline battery
JP4314508B2 (en) * 2002-04-15 2009-08-19 日本電気株式会社 Radical battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215970Y2 (en) * 1980-01-30 1987-04-22
JPS6013672U (en) * 1983-07-08 1985-01-30 三洋電機株式会社 cylindrical battery
JPS6293865A (en) * 1985-10-21 1987-04-30 Showa Denko Kk Aniline polymer electrode

Also Published As

Publication number Publication date
JPH02295063A (en) 1990-12-05

Similar Documents

Publication Publication Date Title
EP0249331A1 (en) Method of manufacturing a secondary battery
JP4594012B2 (en) Carboxymethylcellulose binder and lithium battery using the same
EP0199175B1 (en) Negative electrodes for non-aqueous secondary batteries composed of conjugated polymer and alkali metal alloying or inserting material
US5677084A (en) Electrode and secondary battery using the same
US5202202A (en) Cell comprising polyaniline positive electrode and method for producing polyaniline powder therefor
JP2810105B2 (en) Electrodes for secondary batteries
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
JPH07302586A (en) Battery electrode and its manufacture
JP3403858B2 (en) Organic electrolyte battery
JP3529802B2 (en) Negative electrode for secondary battery
JPH01132045A (en) Battery
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JP3115165B2 (en) Lithium secondary battery
JPH0821430B2 (en) Secondary battery
JP2542221B2 (en) Battery using polyaniline composite electrode
JPH04179049A (en) Negative electrode for battery
JP2898647B2 (en) Rechargeable battery
JP2923560B2 (en) Secondary battery and its negative electrode
JPH0719619B2 (en) Organic electrolyte secondary battery
JP3042743B2 (en) Electrode manufacturing method
JPH01124970A (en) Lithium secondary battery
JPH0428163A (en) Nonaqueous secondary battery
JPH03163753A (en) Conductive polymer electrode
EP0629011A1 (en) Electrode and secondary cell which uses the electrode
JPS63150866A (en) Secondary cell