JP2809817B2 - Method of forming thin film by vapor phase epitaxy - Google Patents

Method of forming thin film by vapor phase epitaxy

Info

Publication number
JP2809817B2
JP2809817B2 JP12515890A JP12515890A JP2809817B2 JP 2809817 B2 JP2809817 B2 JP 2809817B2 JP 12515890 A JP12515890 A JP 12515890A JP 12515890 A JP12515890 A JP 12515890A JP 2809817 B2 JP2809817 B2 JP 2809817B2
Authority
JP
Japan
Prior art keywords
supply pipe
gas
gas supply
inert gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12515890A
Other languages
Japanese (ja)
Other versions
JPH0424921A (en
Inventor
利夫 東海林
伸治 宮崎
裕一 見方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12515890A priority Critical patent/JP2809817B2/en
Publication of JPH0424921A publication Critical patent/JPH0424921A/en
Application granted granted Critical
Publication of JP2809817B2 publication Critical patent/JP2809817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、気相成長法による薄膜の形成方法に関し特
に、減圧下での気相成長に好適するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of forming a thin film by a vapor phase growth method, and is particularly suitable for vapor phase growth under reduced pressure.

(従来の技術) 気相成長工程では、反応炉内に配置された被処理半導
体基板を所望の温度雰囲気に保ち、続いて所定の材料気
体を供給して薄膜を形成するのが一般的である。ここ
で、炉体を鉛直即ち垂直方向に配置した縦型減圧気相成
長装置の反応部の概略を第1図により説明する。縦型反
応炉1の下部には、材料ガス供給管2、大気復帰用不活
性ガス供給管3及び外気巻込み防止用不活性ガス供給管
4が外部から導入され更に、反応炉1には、複数の被処
理半導体基板6を固定して配置する石英製ボート(Boar
t)5を設置する。石英製ボート5は受台8により反応
炉1内支持され更にまた、加熱源としてヒータ(Heate
r)7を反応炉1の外周に配置して所定の温度に保持で
きるように配慮している。
(Prior Art) In a vapor phase growth process, a semiconductor substrate to be processed placed in a reaction furnace is generally maintained at a desired temperature atmosphere, and then a predetermined material gas is supplied to form a thin film. . Here, an outline of a reaction section of a vertical reduced pressure vapor deposition apparatus in which a furnace body is arranged vertically, that is, in a vertical direction, will be described with reference to FIG. A material gas supply pipe 2, an inert gas supply pipe 3 for returning to the atmosphere, and an inert gas supply pipe 4 for preventing entrainment of outside air are externally introduced into a lower part of the vertical reactor 1. A quartz boat (Boar) on which a plurality of semiconductor substrates 6 to be processed are fixedly arranged.
t) Install 5. The quartz boat 5 is supported in the reaction furnace 1 by the pedestal 8, and further, a heater (Heate) is used as a heating source.
r) 7 is arranged on the outer periphery of the reaction furnace 1 so that it can be maintained at a predetermined temperature.

通常反応炉1に所望の膜生成に必要な気体を材料ガス
供給管2により供給する過程では、それ以外の反応炉
(図示せず)に接続する供給管は使用されない配管構造
となっている。また、第1図に示したように大気復帰用
不活性ガス供給管3により炉内を大気圧に復帰させ、こ
れらにより供給する不活性ガスは、前記の目的の他に反
応炉1内を不活性気体により置換する役目も果たしてい
る。また、最近は、炉口開放時の外気巻込み防止のため
に、反応炉1の尾部に外気巻込み防止用不活性ガス供給
管4を設置する型も多くなっている。このような縦型減
圧気相成長装置においては、反応炉1に材料ガス供給管
2より材料用ガスを供給している間、気体の供給を停止
している大気復帰用不活性ガス供給管2及び外気巻込み
防止用ガス供給管3には、差圧により材料ガスが逆流す
るために各供給管の先端から副生成物が堆積する。ま
た、前項のような使用方法では、膜の組成源となる材料
気体が複数種類であり、夫々用の材料ガス供給管2…が
個々に反応炉に接続される配管をしているものもあるの
で、反応炉への接続状況の概略を第2図に示す。即ち、
第1図に示した材料ガス供給管2を例えば二種類の材料
ガスA、B用として反応炉の尾部に材料ガス供給管2a、
2bを設置している。なお、第2図における他の部品は第
1図と同じなので説明を省略する。ところで、この配管
には、混合・反応により低温雰囲気でも急激に副生成物
を生ずるような材料ガスを用いしかも、材料ガスとして
A及びBを反応炉1へ同時に供給しない場合、例えば材
料ガスAを材料ガス供給管2aから先行導入すると、後か
ら材料気体Bを導入する材料ガス供給管2bに差圧により
材料ガスAが逆流拡散して混入する。従って、後から材
料ガス供給管2bに材料ガスBを導入すると混入している
材料ガスAと反応して材料ガス供給管2bの先端から副生
成物が堆積する。
Usually, in a process of supplying a gas necessary for forming a desired film to the reaction furnace 1 through the material gas supply pipe 2, a supply pipe connected to other reaction furnaces (not shown) is used. Further, as shown in FIG. 1, the inside of the furnace is returned to the atmospheric pressure by the inert gas supply pipe 3 for returning to the atmosphere, and the inert gas supplied by these is used for the purpose other than the above-mentioned purpose to inactivate the inside of the reactor 1. It also serves to replace with active gas. In recent years, in order to prevent outside air from being entrained when the furnace port is opened, the type in which an inert gas supply pipe 4 for preventing outside air from being entrained is installed at the tail of the reactor 1. In such a vertical type reduced pressure vapor phase growth apparatus, while supplying the material gas from the material gas supply pipe 2 to the reaction furnace 1, the supply of the gas to the atmosphere is stopped. In addition, since the material gas flows backward due to the differential pressure in the outside air entrainment preventing gas supply pipe 3, by-products are deposited from the tip of each supply pipe. Further, in the usage method as described in the preceding paragraph, there are a plurality of types of material gases serving as a composition source of the film, and there is a type in which the respective material gas supply pipes 2 are individually connected to the reaction furnace. Therefore, the outline of the connection to the reactor is shown in FIG. That is,
For example, the material gas supply pipe 2 shown in FIG. 1 is used for two kinds of material gases A and B, and the material gas supply pipe 2a is provided at the tail of the reactor.
2b is installed. The other components in FIG. 2 are the same as those in FIG. By the way, in this pipe, a material gas that generates a by-product rapidly even in a low-temperature atmosphere due to mixing and reaction is used, and when A and B are not simultaneously supplied to the reaction furnace 1 as the material gas, for example, the material gas A is used. When the material gas A is introduced in advance from the material gas supply pipe 2a, the material gas A is back-diffused and mixed by the differential pressure into the material gas supply pipe 2b into which the material gas B is introduced later. Therefore, when the material gas B is introduced into the material gas supply pipe 2b later, it reacts with the mixed material gas A and a by-product is deposited from the tip of the material gas supply pipe 2b.

また、反応炉1に供給している材料ガスA、Bの供給
停止時間が同時でない時では、先に供給を停止した材料
ガスB用供給管2bに、未だ供給が続けている材料ガスA
が拡散混入するために、供給管2bに残留する材料ガスB
との反応による副生成物が堆積する。
Further, when the supply stop times of the material gases A and B supplied to the reaction furnace 1 are not simultaneous, the material gas A which is still being supplied to the supply pipe 2b for the material gas B whose supply has been stopped earlier is continued.
Material gas B remaining in the supply pipe 2b because
By-products are deposited due to the reaction with.

この材料ガスとしてジクロルシラン(以下SiH2Cl2
記載する)とアンモニヤ(以下NH3と記載する)により
窒化シリコン(Silicon)を形成する場合では、反応炉
1を減圧状態としてから膜組成と膜厚分布の安定化を図
るためにNH3ガスを先行して導入するのが通常である
が、前記のようにSiH2Cl2ガス用供給管内に差圧によりN
H3ガスが拡散混入する。そこにSiH2Cl2ガスが反応炉1
に供給され始めると反応炉1内に配置する石英ボート5
に固定した被処理半導体基板6に窒化珪素の堆積が始ま
る。材料ガスであるSiH2Cl2+NH3系による窒化珪素膜の
堆積は、700℃〜800℃で行われるが、約150℃以下の低
温度雰囲気で混合すると、塩化アンモニウム(Ammoniu
m)の副生成物が生ずる。このため低温の供給管からSiH
2Cl2ガスが導入され始めた時には、そこに混入している
NH3ガスと接触して塩化アンモンが堆積する。また、両
ガスが反応炉1に供給されている間に、ガス供給を停止
している低温の大気復帰用ガス供給管や外気巻込み防止
用不活性ガス供給管に前記材料ガスが拡散混入して、こ
こにも副生物として塩化アンモニウムが各供給管の先端
から堆積する。次に所望の時期にSiH2Cl2の供給を停止
することにより被処理半導体基板に対する窒化シリコン
膜の堆積が終了するが、NH3ガスは、窒化シリコン膜表
面の組成を安定させるために反応炉1にしばらく供給を
続ける。従って、SiH2−Cl2ガス供給管内にNH3ガスが拡
散混入して残留ガスとの接触により同様に先端から塩化
アンモニウムが堆積する。
When silicon nitride (Silicon) is formed from dichlorosilane (hereinafter referred to as SiH 2 Cl 2 ) and ammonia (hereinafter referred to as NH 3 ) as the material gas, the film composition and film thickness are set after the reactor 1 is depressurized. Normally, NH 3 gas is introduced in advance to stabilize the distribution, but as described above, N 3 gas is introduced into the SiH 2 Cl 2 gas supply pipe by differential pressure.
H 3 gas is diffused and mixed. There SiH 2 Cl 2 gas is in the reactor 1
Quartz boat 5 placed in the reactor 1
The deposition of silicon nitride on the semiconductor substrate 6 to be processed fixed to the substrate starts. Deposition of a silicon nitride film using a material gas of SiH 2 Cl 2 + NH 3 is performed at 700 ° C. to 800 ° C., but when mixed in a low temperature atmosphere of about 150 ° C. or less, ammonium chloride (Ammoniu) is used.
m) by-products are formed. For this reason, SiH
When 2 Cl 2 gas is introduced, it is mixed in
Ammonium chloride is deposited in contact with NH 3 gas. Further, while the two gases are being supplied to the reaction furnace 1, the material gas diffuses and mixes into a low-temperature gas supply pipe for returning to the atmosphere or an inert gas supply pipe for preventing entrainment of outside air, in which the gas supply is stopped. Here, as a by-product, ammonium chloride is deposited from the tip of each supply pipe. Next, when the supply of SiH 2 Cl 2 is stopped at a desired time, the deposition of the silicon nitride film on the semiconductor substrate to be processed is completed, but NH 3 gas is supplied to the reaction furnace in order to stabilize the composition of the silicon nitride film surface. Continue to supply 1 for a while. Therefore, NH 3 gas is diffused and mixed into the SiH 2 —Cl 2 gas supply pipe, and ammonium chloride is similarly deposited from the tip by contact with the residual gas.

最近良く使用される有機系液体材料であるテトラエト
キシシラン[Si(OC2H5以下TEOSと記載する]によ
る酸化珪素膜の形成について説明する。第1図に示した
装置に液体材料TEOSを使用するには、その蒸気圧を稼ぐ
ために加熱してガス化したものを供給管を通して反応炉
へ供給する。この場合、供給管内におけるTEOSガスの再
液化を防止するために供給管自体も加熱する。このよう
にして600〜700℃の雰囲気に維持した反応炉へ供給され
るTEOSガスが熱分解して被処理半導体基板に酸化珪素例
えば二酸化珪素膜が堆積する。しかし、ガスの供給を停
止している大気復帰用ガス供給管や外気巻込み防止用不
活性ガス供給管には、差圧により未分解の副生ガスが混
入するが、加熱されていないために混入したTEOSガス及
び副生ガスが再液化してそのまま付着残留する。そし
て、反応炉1を大気圧状態にした時に巻込んだ外気と接
して加水分解を起こし、供給管先端から酸化珪素が堆積
する。
The formation of a silicon oxide film using tetraethoxysilane [Si (OC 2 H 5 ) 4 or below, referred to as TEOS], which is an organic liquid material often used recently, will be described. In order to use the liquid material TEOS in the apparatus shown in FIG. 1, it is heated and gasified in order to increase its vapor pressure and supplied to the reactor through a supply pipe. In this case, the supply pipe itself is also heated to prevent re-liquefaction of the TEOS gas in the supply pipe. In this way, the TEOS gas supplied to the reaction furnace maintained at the atmosphere of 600 to 700 ° C. is thermally decomposed, and silicon oxide, for example, a silicon dioxide film is deposited on the semiconductor substrate to be processed. However, undecomposed by-product gas is mixed into the gas supply pipe for returning to atmosphere and the inert gas supply pipe for preventing entrapment of outside air where the gas supply is stopped, but it is not heated because it is not heated. The mixed TEOS gas and by-product gas are reliquefied and adhere and remain as they are. Then, when the reactor 1 is brought into the atmospheric pressure state, the reactor 1 comes into contact with the external air that is engulfed therein, causes hydrolysis, and silicon oxide is deposited from the tip of the supply pipe.

(発明が解決しようとする課題) このような使用方法で成膜回数を重ねると、供給管先
端が堆積した副生成物により閉塞される。この結果、ガ
スが流せなくなったりまた、堆積した副生成物がガスを
流す時に飛散して反応炉の汚染及び被処理半導体基板に
悪影響を与え信頼性の低下をもたらす。
(Problems to be Solved by the Invention) When the number of times of film formation is increased in such a usage method, the tip of the supply pipe is closed by the deposited by-product. As a result, the gas cannot be flown, or the deposited by-products are scattered when the gas is flown, thereby contaminating the reaction furnace and adversely affecting the semiconductor substrate to be processed, thereby lowering reliability.

この一例として窒化珪素膜を堆積する被処理半導体基
板に付着したパーティクル(Particle)数(縦軸)と窒
化珪素膜の成膜回数(横軸)の関係を第3図に示し、成
膜回数が15回を超える傾になると、付着量が増える。こ
の様な悪影響を低減するために反応炉のクリーニング
(Cleaning)に合せて大気復帰用ガス供給管や外気巻込
み防止用不活性ガス供給管更に材料ガス供給管の先端に
脱着自在に取付けるノズル(Nozzle)などのクリーニン
グも実施している。
As an example of this, FIG. 3 shows a relationship between the number of particles (vertical axis) adhering to the semiconductor substrate to be processed on which the silicon nitride film is deposited and the number of times the silicon nitride film is formed (horizontal axis). If the inclination exceeds 15 times, the amount of adhesion increases. In order to reduce such adverse effects, a nozzle which is detachably attached to the tip of a gas supply pipe for returning to atmosphere, an inert gas supply pipe for preventing entrainment of outside air, and a material gas supply pipe in accordance with cleaning of the reaction furnace (Cleaning). Cleaning such as Nozzle) is also carried out.

しかし、定期的なクリーニングの間には、前記の問題
は解決されずまた、ノズルなどのクリーニングを行って
も反応炉までの距離が短い大気復帰用ガス供給管や外気
巻込み防止用不活性ガス供給管更に材料ガス供給管は徐
々に副生成物が堆積して汚染される。2系統のガスを供
給している時、一方のガス供給系統に設置し、図面に示
していないマスフローコントローラ(Mass Flow Cont
roller)の故障やガスボンベ(Gas Bonbe)が開いてい
ないなどの操作ミス(Miss)により、反応炉に対する材
料ガスの供給を停止していても反応炉を介して供給して
いる材料ガスが供給を停止している材料ガス供給管全体
に拡散混入して副生成物が堆積して汚染してしまう時が
ある。大気復帰用ガス供給管や外気巻込み防止用不活性
ガス供給管更に材料ガス供給管などの配管系全体をクリ
ーニングすることは、通常不可能で複雑な配管ではなお
さらである。このように配管のの先端部のノズルまでは
洗浄できても配管そのものは副生成物が堆積した状態で
使用しているのが実状であり、被処理半導体基板へのパ
ーティクルなどの汚染源として問題視されつつある。本
発明は、このような事情により成されたもので、ガス供
給管個々の本来の機能を発揮できる条件を提供すること
を目的とするものである。
However, during the regular cleaning, the above problem is not solved, and even when the nozzles and the like are cleaned, the distance to the reaction furnace is short, and the inert gas for preventing the entrainment of outside air is short. The supply pipe and the material gas supply pipe are gradually contaminated by deposition of by-products. When supplying two systems of gas, it is installed in one of the gas supply systems and a mass flow controller (Mass Flow Control)
Roller) failure or gas cylinder (Gas Bonbe) is not open, and operation error (Miss) causes material gas supplied through the reactor to be supplied even if supply of material gas to the reactor is stopped. In some cases, by-products are deposited and contaminated by diffusion and mixing into the entire stopped material gas supply pipe. It is usually impossible to clean the entire piping system such as a gas supply pipe for returning to atmosphere, an inert gas supply pipe for preventing entrainment of outside air, and a material gas supply pipe. In this way, even the nozzle at the tip of the pipe can be cleaned, but the pipe itself is used in a state where by-products are deposited, and it is regarded as a problem as a source of contamination such as particles to the semiconductor substrate to be processed. Is being done. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a condition under which an individual function of each gas supply pipe can be exhibited.

[発明の構成] (課題を解決するための手段) 気相成長反応炉に接続する複数の反応用気体供給管に
予め不活性気体を流す点に本発明に係わる気相成長法に
よる薄膜の形成方法の特徴がある。
[Structure of the Invention] (Means for Solving the Problems) Formation of a thin film by a vapor phase growth method according to the present invention at a point where an inert gas is previously flowed into a plurality of reaction gas supply pipes connected to a vapor phase growth reaction furnace. There is a feature of the method.

(作用) 本発明は、気相成長において膜組成源となる材料ガス
の導入過程で導入予定及び未使用のガス供給管に不活性
ガスを流しておくことにより材料ガスの混入を防止す
る。その結果、供給管内で発生していた副生成物を抑え
かつ、二次的に発生していた副生成物の飛散による被処
理半導体基板へのパーティクルの再付着・汚染をも抑え
て、膜精製過程で発生する不良要因を軽減するものであ
る。
(Function) The present invention prevents the mixing of the material gas by flowing an inert gas into the gas supply pipe which is to be introduced and is unused in the process of introducing the material gas serving as the film composition source in the vapor phase growth. As a result, film purification is achieved by suppressing by-products generated in the supply pipe and also suppressing re-adhesion and contamination of particles to the semiconductor substrate to be processed due to scattering of by-products generated secondarily. This is to reduce the cause of failures occurring in the process.

(実施例) 本発明に係わる一実施例として縦型減圧気相成長法に
配置した被処理半導体基板に材料ガスSiH2Cl2とNH3を膜
組成源とする窒化珪素膜を堆積させる過程を第4図を参
照して説明するが、従来の技術欄と同一の部品には同一
の番号を付ける。即ち、石英ボート5に固定した複数個
の被処理半導体基板6を配置する反応炉1は、減圧状態
とし、NH3ガスを供給管2cにより供給するが、大気復帰
用不活性ガス供給管3や外気巻込み防止用不活性ガス供
給管4には、NH3ガスの拡散による混入防止のために不
活性ガス例えば窒素ガスを流しておく。同じくSiH2Cl2
ガス供給管2dには、連結したSiH2Cl2ガス供給管パージ
(Purge)用不活性ガス供給管10から不活性ガスを流し
ておいてNH3ガスの混入を防止する。しかる後、SiH2Cl2
ガス供給管2dを流れている不活性ガスを後から導入する
材料ガスSiH2Cl2ガスに切換えて反応炉1に流すと被処
理半導体基板6に窒化珪素の堆積が開始して所定膜厚に
達するまでこの状態を維持する。この時、大気復帰用不
活性ガス供給管3や外気巻込み防止用不活性ガス供給管
4には、材料ガスの拡散混入を防止するために不活性ガ
スを所定の時間中流し続ける。次に所望の時期に膜生成
を終えるためにSiH2Cl2ガスの供給を先行停止するがこ
こでまた、窒化珪素膜表面の組成を安定させるためと更
に、反応炉1に供給し続けているNH3ガスの拡散混入を
防止するためにSiH3Cl2ガス供給管3に不活性ガスを流
す。更に、大気復帰用不活性ガス供給管3と外気巻込み
防止用不活性ガス供給管4内にもNH3ガス混入防止用と
して継続して不活性ガスを流しておく。
(Example) As one example according to the present invention, a process of depositing a silicon nitride film using a material gas of SiH 2 Cl 2 and NH 3 as a film composition source on a semiconductor substrate to be processed arranged in a vertical reduced-pressure vapor deposition method is described. As will be described with reference to FIG. 4, the same parts as those in the conventional technical section are denoted by the same reference numerals. That is, the reactor 1 in which a plurality of semiconductor substrates 6 to be processed fixed to the quartz boat 5 are placed is depressurized, and NH 3 gas is supplied by the supply pipe 2c. An inert gas, for example, a nitrogen gas is allowed to flow through the inert gas supply pipe 4 for preventing entrainment of outside air in order to prevent the NH 3 gas from being mixed by diffusion. Also SiH 2 Cl 2
An inert gas is supplied to the gas supply pipe 2d from a connected inert gas supply pipe 10 for purging (Purge) the SiH 2 Cl 2 gas supply pipe to prevent NH 3 gas from being mixed. After a while, SiH 2 Cl 2
When the inert gas flowing through the gas supply pipe 2d is switched to the material gas SiH 2 Cl 2 gas to be introduced later and then flows into the reaction furnace 1, silicon nitride starts to be deposited on the semiconductor substrate 6 to be processed to a predetermined thickness. Maintain this state until it reaches. At this time, an inert gas is kept flowing through the inert gas supply pipe 3 for returning to the atmosphere and the inert gas supply pipe 4 for preventing entrainment of outside air during a predetermined time in order to prevent the material gas from being diffused and mixed. Next, the supply of the SiH 2 Cl 2 gas is stopped in advance in order to terminate the film formation at a desired time, and here, the supply of the SiH 2 Cl 2 gas is continued to stabilize the composition of the surface of the silicon nitride film and further to the reactor 1. An inert gas is flowed through the SiH 3 Cl 2 gas supply pipe 3 to prevent the NH 3 gas from being diffused and mixed. Further, an inert gas is continuously flown into the inert gas supply pipe 3 for returning to the atmosphere and the inert gas supply pipe 4 for preventing entrainment of outside air for preventing NH 3 gas from being mixed.

このように材料ガスを供給している以外の供給管内に
もNH3ガスの混入防止用として不活性ガスを流しておく
ことにより、従来技術で副生成物として生じた塩化アン
モンの堆積が防止できた。従って、副生成物の飛散によ
る反応炉1及び被処理半導体基板5へのパーティクルの
再付着などによる汚染が軽減される。また、SiH2Cl2とN
H3ガスが反応炉に供給されている時、どちらか一方の材
料ガスが何らかのトラブル(Trouble)例えばマスフロ
ーコントローラの故障やガスボンベが開いていないなど
により反応炉1への供給が停止した場合、この材料ガス
用供給管に接続した不活性ガス供給管から不活性ガスを
流すインターロック(Inter Lock)対策を講ずること
により他方のガスの混入を確実に防止することができ
る。
In this way, by flowing an inert gas to prevent NH 3 gas from being mixed in the supply pipe other than the one supplying the material gas, it is possible to prevent the deposition of ammonium chloride generated as a by-product in the prior art. Was. Accordingly, contamination due to reattachment of particles to the reaction furnace 1 and the semiconductor substrate 5 to be processed due to scattering of by-products is reduced. Also, SiH 2 Cl 2 and N
When H 3 gas is supplied to the reactor, if one of the material gases is in trouble (Trouble), for example, the supply to the reactor 1 is stopped due to a failure of the mass flow controller or the gas cylinder is not opened, By taking an interlock measure for flowing the inert gas from the inert gas supply pipe connected to the material gas supply pipe, the mixing of the other gas can be reliably prevented.

他の実施例として有機液体材料であるTEOSを材料ガス
とする酸化珪素膜を縦型減圧気相成長装置を利用する形
成方法を第5図を参照して説明する。TEOSソース(Sour
ce)タンク(Tank)12の加熱によりガス化されて供給管
2eを通して反応炉1に供給されると、熱分解して被処理
半導体基板6に酸化珪素例えば二酸化珪素膜が堆積が始
まる。この時、大気復帰用不活性ガス供給管3と外気巻
込み防止用不活性ガス供給管4内へのTEOSガスの拡散混
入を防ぐために不活性ガスを流しておく。そのために供
給管内には、副生成物の堆積せず、更に生成物の飛散に
よる反応炉1や被処理半導体基板6の汚染が軽減され
る。被処理半導体基板6への酸化珪素例えば二酸化珪素
膜の堆積過程が終了して反応炉1内を大気圧状態にする
場合、TEOSガス供給管2e内に不活性ガス供給管11から不
活性ガスを流しておくと外気混入を防止でき、しかもTE
OSガスが残留した場合に発生する生成物の堆積を抑える
ことができる。
As another embodiment, a method for forming a silicon oxide film using TEOS, which is an organic liquid material, as a material gas by using a vertical reduced pressure vapor deposition apparatus will be described with reference to FIG. TEOS Source (Sour
ce) Supply pipe that is gasified by heating tank 12
When it is supplied to the reaction furnace 1 through 2e, it is thermally decomposed and deposition of silicon oxide, for example, a silicon dioxide film on the semiconductor substrate 6 to be processed starts. At this time, an inert gas is flowed in order to prevent the TEOS gas from being diffused and mixed into the inert gas supply pipe 3 for returning to the atmosphere and the inert gas supply pipe 4 for preventing entrainment of outside air. For this reason, by-products do not accumulate in the supply pipe, and the contamination of the reactor 1 and the semiconductor substrate 6 to be processed due to scattering of the products is reduced. When the process of depositing silicon oxide, for example, a silicon dioxide film, on the semiconductor substrate 6 to be processed is completed and the inside of the reaction furnace 1 is brought to the atmospheric pressure state, the inert gas is supplied from the inert gas supply pipe 11 into the TEOS gas supply pipe 2e. By flowing, it is possible to prevent outside air from being mixed in.
The accumulation of products generated when the OS gas remains can be suppressed.

このようにして供給管内への材料ガスの残留または外
気の拡散混入防止を目的として供給管内に不活性ガスを
流すことにより供給管内及び反応炉1の汚染を防止し、
ひいては被処理半導体基板6への汚染をも防止できる。
しかし、不活性ガスが多く流れ過ぎると反応炉の圧力変
化などの膜生成のための成膜条件が変わり、生成膜の組
成や特性に影響を与えることが予想される。第6図は、
外気巻込み防止用不活性ガス供給管4内への材料ガス混
入防止として流したN2流量(横軸)と被処理半導体基板
6に堆積した窒化珪素膜の膜厚均一性(縦軸)の関係を
示しており、N2流量が50cc/minを超えるあたりから膜厚
均一性が徐々に悪化している。第7図は、外気巻込み防
止用不活性ガス供給管4内への材料ガス混入防止用とし
て流したN2流量(横軸)と窒化珪素膜を堆積させた被処
理半導体基板6に付着したパーティクル数(縦軸)の関
係を示している。
In this way, the inert gas is flowed into the supply pipe for the purpose of preventing the material gas from remaining in the supply pipe or the diffusion of outside air, thereby preventing the inside of the supply pipe and the reaction furnace 1 from being contaminated,
Consequently, contamination of the semiconductor substrate 6 to be processed can be prevented.
However, if too much inert gas flows, it is expected that film formation conditions for film formation, such as pressure changes in the reactor, will change, which will affect the composition and characteristics of the formed film. FIG.
The N 2 flow rate (horizontal axis) and the film thickness uniformity (vertical axis) of the silicon nitride film deposited on the semiconductor substrate 6 to be processed are used to prevent material gas from entering the inert gas supply pipe 4 for preventing entrainment of outside air. The relationship is shown, and the uniformity of the film thickness gradually deteriorates when the N 2 flow rate exceeds about 50 cc / min. FIG. 7 shows the flow rate of N 2 (horizontal axis) for preventing material gas from entering the inert gas supply pipe 4 for preventing entrainment of outside air and the N 2 adhered to the semiconductor substrate 6 on which the silicon nitride film was deposited. The relationship between the number of particles (vertical axis) is shown.

この図から明らかなように、N2ガスの流量が10cc/min
以上なら本発明の効果が見られ、第5図と第6図からN2
ガスの流量が10cc/min乃至50cc/minなら生成膜の組成や
特性に影響を与えずに効果を発揮できる。
As is clear from this figure, the flow rate of N 2 gas was 10 cc / min.
If so, the effect of the present invention can be seen. From FIGS. 5 and 6, N 2
If the gas flow rate is 10 cc / min to 50 cc / min, the effect can be exerted without affecting the composition and characteristics of the formed film.

以上のように縦型減圧気相成長法により窒化珪素膜ま
たは、酸化珪素膜例えば二酸化珪素膜の形成例について
説明したが、反応炉を水平に配置した横型減圧気相成長
法あるいはプラズマ(Plazma)気相成長法に本発明を適
用しても同様な結果が得られることを付記する。
As described above, the formation example of the silicon nitride film or the silicon oxide film, for example, the silicon dioxide film by the vertical type reduced pressure chemical vapor deposition method has been described. Note that similar results can be obtained by applying the present invention to the vapor phase growth method.

[発明の効果] 本発明方法を適用した減圧気相成長法によれば、成膜
回数を重ねても反応炉に接続するガス供給間内に副生成
物が殆ど堆積されずまた、副生成物の飛散による被処理
半導体基板への汚染が抑制できる。更に、被処理半導体
基板におけるパーティクルサイズ(Particle Size粒
径)が0.3μm以上のパーティクル(粒子)数(縦軸)
と成膜回数(横軸)の関係を示した第8図では、成膜回
数の増加に伴う被処理半導体基板への付着粒子数の増加
度が従来方法に比べて本発明方法の方が抑えられている
のが明らかである。また、反応炉に接続される供給管内
に副生成物が殆ど堆積されないために供給管先端からの
閉塞などの難点が解消され、ひいては信頼性が向上し
た。
[Effect of the Invention] According to the reduced pressure vapor phase epitaxy to which the method of the present invention is applied, by-products are hardly deposited between gas supplies connected to the reaction furnace even if the number of times of film formation is increased. The contamination of the semiconductor substrate to be processed due to the scattering of water can be suppressed. Furthermore, the number of particles (particles) having a particle size (Particle Size particle diameter) of 0.3 μm or more on the semiconductor substrate to be processed (vertical axis)
In FIG. 8 showing the relationship between the number of film formations (horizontal axis) and the number of film formations (horizontal axis), the increase in the number of particles adhered to the semiconductor substrate to be processed due to the increase in the number of film formations is smaller in the method of the present invention than in the conventional method It is clear that it has been done. Further, since by-products hardly accumulate in the supply pipe connected to the reactor, difficulties such as blockage from the supply pipe tip were eliminated, and the reliability was improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、従来の減圧気相成長装置の断面図、第2図
は、二種類の材料ガス供給管が接続されている減圧気相
成長装置の供給管近傍の断面図、第3図は、従来の減圧
気相成長法における窒化珪素膜の成膜回数(横軸)と窒
化珪素膜が堆積した被処理半導体基板における粒子数の
関係を示す図、第4図は、本発明方法を適用した窒化珪
素膜形成用減圧気相成長装置の断面図、第5図は、本発
明方法を適用した酸化珪素膜形成用減圧気相成長装置の
断面図、第6図は、本発明方法により窒化珪素膜を外気
巻込み防止用N2供給管を使用して形成する際に供給した
N2ガス量(横軸)と窒化珪素膜の膜厚均一性(縦軸%)
を示すグラフ、第7図は、本発明方法における窒化珪素
膜を外気巻込み防止用N2供給管を使用して形成する際に
供給したN2ガス量(横軸)と被処理半導体基板に付着し
た粒子数の関係を示すグラフ、第8図は、窒化珪素膜の
成膜回数(横軸)と被処理半導体基板に付着した粒子数
(縦軸)の関係を従来と本発明方法と比較して示すグラ
フである。 1:反応炉、 2、2a、2b、2c、2d、2e:材料ガス供給管、 3:大気復帰用不活性ガス供給管、 4:外気巻込み防止用ガス供給管、 5:石英製ボード、6:被処理半導体基板、 7:ヒータ、8:受け台、 9:NH2ガス供給管パージ用不活性ガス供給管、 10:SiH2Cl2ガス供給管パージ用不活性ガス供給管、 11:TEOSガス供給管パージ用不活性ガス供給管、 12:ソースタンク。
FIG. 1 is a cross-sectional view of a conventional low-pressure vapor deposition apparatus, FIG. 2 is a cross-sectional view near a supply pipe of a low-pressure vapor growth apparatus to which two kinds of material gas supply pipes are connected, and FIG. FIG. 4 shows the relationship between the number of silicon nitride film depositions (horizontal axis) and the number of particles on a semiconductor substrate on which a silicon nitride film has been deposited in a conventional reduced pressure vapor deposition method. FIG. 5 is a cross-sectional view of a reduced-pressure vapor deposition apparatus for forming a silicon nitride film, FIG. 5 is a cross-sectional view of a reduced-pressure vapor deposition apparatus for forming a silicon oxide film to which the method of the present invention is applied, and FIG. It was fed at the time of forming the silicon film by using the outside air entrainment prevention N 2 supply pipe
N 2 gas amount (horizontal axis) and thickness uniformity of silicon nitride film (vertical axis%)
FIG. 7 is a graph showing the amount of N 2 gas (horizontal axis) supplied when a silicon nitride film was formed using an N 2 supply pipe for preventing entrapment of outside air in the method of the present invention, and the amount of N 2 gas supplied to a semiconductor substrate to be processed. FIG. 8 is a graph showing the relationship between the number of adhered particles, and FIG. 8 shows the relationship between the number of silicon nitride films formed (horizontal axis) and the number of particles adhered to the semiconductor substrate to be processed (vertical axis) as compared with the conventional method and the method of the present invention. FIG. 1: reaction furnace, 2, 2a, 2b, 2c, 2d, 2e: material gas supply pipe, 3: inert gas supply pipe for return to atmosphere, 4: gas supply pipe for preventing outside air from entrapment, 5: quartz board, 6: semiconductor substrate to be processed, 7: heater, 8: pedestal, 9: NH 2 gas supply pipe, inert gas supply pipe for purge, 10: SiH 2 Cl 2 gas supply pipe, inert gas supply pipe for purge, 11: TEOS gas supply pipe Inert gas supply pipe for purging, 12: source tank.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−1124(JP,A) 特開 昭63−148643(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/316 H01L 21/318 H01L 21/31────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-1124 (JP, A) JP-A-63-148643 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/316 H01L 21/318 H01L 21/31

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素膜を形成するためにジクロルシラ
ンガスとアンモニアガス用の反応ガス供給管が夫々バル
ブを介して接続された反応炉または酸化珪素膜を形成す
るためにテトラエトキシシランガスの反応ガスの供給管
がバルブを介して接続された反応炉において,かつ反応
炉に不活性ガス供給管がバルブを介して接続された場
合,供給管系全体を閉じ、真空に排気する場合及び反応
ガス供給管から反応ガスを供給する場合を除き常時反応
ガス供給管から当該不活性ガスを供給し,かつ不活性ガ
ス供給管には少なくとも薄膜用原料ガスを供給する場合
に不活性ガス供給管から不活性ガスを供給することを特
徴とする気相成長法による薄膜の形成方法
1. A reaction furnace in which dichlorosilane gas and a reaction gas supply pipe for ammonia gas are connected via valves to form a silicon nitride film, or a reaction of tetraethoxysilane gas to form a silicon oxide film. In a reactor in which a gas supply pipe is connected via a valve, and when an inert gas supply pipe is connected to the reactor via a valve, when the entire supply pipe system is closed and exhausted to a vacuum, The inert gas is always supplied from the reaction gas supply pipe except when the reaction gas is supplied from the supply pipe, and the inert gas is supplied from the inert gas supply pipe to the inert gas supply pipe at least when the raw material gas for thin film is supplied. Method for forming thin film by vapor phase epitaxy characterized by supplying active gas
【請求項2】前記形成薄膜が減圧気相成長法であること
を特徴とする請求項1記載の薄膜の形成方法
2. The method for forming a thin film according to claim 1, wherein said formed thin film is formed by a low pressure vapor phase epitaxy method.
JP12515890A 1990-05-15 1990-05-15 Method of forming thin film by vapor phase epitaxy Expired - Lifetime JP2809817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12515890A JP2809817B2 (en) 1990-05-15 1990-05-15 Method of forming thin film by vapor phase epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12515890A JP2809817B2 (en) 1990-05-15 1990-05-15 Method of forming thin film by vapor phase epitaxy

Publications (2)

Publication Number Publication Date
JPH0424921A JPH0424921A (en) 1992-01-28
JP2809817B2 true JP2809817B2 (en) 1998-10-15

Family

ID=14903315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12515890A Expired - Lifetime JP2809817B2 (en) 1990-05-15 1990-05-15 Method of forming thin film by vapor phase epitaxy

Country Status (1)

Country Link
JP (1) JP2809817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204199B1 (en) 1998-09-11 2001-03-20 Kokusai Electric Co., Ltd. Method for producing a semiconductor device
US9169553B2 (en) 2002-11-11 2015-10-27 Hitachi Kokusai Electric Inc. Semiconductor device producing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194036B2 (en) * 2010-01-27 2013-05-08 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method and cleaning method
JP5194047B2 (en) * 2010-04-14 2013-05-08 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method and cleaning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204199B1 (en) 1998-09-11 2001-03-20 Kokusai Electric Co., Ltd. Method for producing a semiconductor device
US9169553B2 (en) 2002-11-11 2015-10-27 Hitachi Kokusai Electric Inc. Semiconductor device producing method

Also Published As

Publication number Publication date
JPH0424921A (en) 1992-01-28

Similar Documents

Publication Publication Date Title
JP3265042B2 (en) Film formation method
US6355107B1 (en) Compound gas injection system
US8980000B2 (en) Density-matching alkyl push flow for vertical flow rotating disk reactors
US20050136657A1 (en) Film-formation method for semiconductor process
US20050199182A1 (en) Apparatus for the preparation of film
US5561087A (en) Method of forming a uniform thin film by cooling wafers during CVD
JP3492596B2 (en) Gas supply device
JPH0459971A (en) Formation of silicon nitride film
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
US4781945A (en) Process for the formation of phosphosilicate glass coating
JP2809817B2 (en) Method of forming thin film by vapor phase epitaxy
KR20190101289A (en) Method of cleaning member in process container, method of manufacturing semiconductor device, substrate processing apparatus, and program
JP2860174B2 (en) Chemical vapor deposition equipment
JP4879693B2 (en) MOCVD apparatus and MOCVD method
JP3948577B2 (en) Manufacturing method of semiconductor single crystal thin film
JP2009010279A (en) Thin film manufacturing device
JPH08104984A (en) Device and method for introducing gas and formation of tungsten thin film
JPS62158867A (en) Cvd thin film forming device
JPH11214317A (en) Treatment apparatus and method for substrate
US20230008131A1 (en) Chemical vapor deposition furnace with a cleaning gas system to provide a cleaning gas
JPH11186171A (en) Semiconductor manufacturing device
JP3707079B2 (en) Compound semiconductor thin film growth method
JPH07172810A (en) Accumulation of adhesive tungsten silicide film from dichlorosilane and tangsten hexafluoride
JPH05121337A (en) Method for gas reaction on solid surface
JPH02268433A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080731

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

EXPY Cancellation because of completion of term