JP2805010B2 - Method for forming electrode of oxide superconductor - Google Patents

Method for forming electrode of oxide superconductor

Info

Publication number
JP2805010B2
JP2805010B2 JP63247065A JP24706588A JP2805010B2 JP 2805010 B2 JP2805010 B2 JP 2805010B2 JP 63247065 A JP63247065 A JP 63247065A JP 24706588 A JP24706588 A JP 24706588A JP 2805010 B2 JP2805010 B2 JP 2805010B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
contact
electrode material
electrode
power application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63247065A
Other languages
Japanese (ja)
Other versions
JPH0294675A (en
Inventor
忠興 日下
義彦 鈴木
任 四谷
倉一 小川
隆治 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKAPREFECTURAL GOVERNMENT
Daihen Corp
Original Assignee
OSAKAPREFECTURAL GOVERNMENT
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKAPREFECTURAL GOVERNMENT, Daihen Corp filed Critical OSAKAPREFECTURAL GOVERNMENT
Priority to JP63247065A priority Critical patent/JP2805010B2/en
Publication of JPH0294675A publication Critical patent/JPH0294675A/en
Application granted granted Critical
Publication of JP2805010B2 publication Critical patent/JP2805010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物超伝導体に電極を形成する方法に関
するものである。
The present invention relates to a method for forming an electrode on an oxide superconductor.

[従来の技術] 超導電体に電極を形成して該電極を通して超伝導体に
給電する場合、電極と超伝導体との接合部の抵抗値が大
きいと通電により該接合部で損失が生じて発熱し、超伝
導性が失われるおそれがある。また一般に電極と超伝導
体との接合部が非線形な特性を持つことは好ましくな
い。
[Prior Art] When an electrode is formed on a superconductor and power is supplied to the superconductor through the electrode, if the resistance of the junction between the electrode and the superconductor is large, loss occurs at the junction due to energization. Heat may be generated and superconductivity may be lost. In general, it is not preferable that the joint between the electrode and the superconductor has nonlinear characteristics.

そのため超伝導体に電極を形成する場合には、電極と
超伝導体の接合部にオーミックコンタクトの形成して該
接合部の電圧対電流特性をリニアなものとするととも
に、その抵抗値を出来るだけ小さくする必要がある。
Therefore, when an electrode is formed on a superconductor, an ohmic contact is formed at the junction between the electrode and the superconductor to make the voltage-current characteristics of the junction linear and to reduce the resistance as much as possible. Need to be smaller.

最近YBa2Cu3O7−δ(YBCOと略称される。)や、Bi
(Pb)SrCaCuO等の酸化物超伝導体が高温で超伝導を示
す素材として注目されている。この種の酸化物超伝導体
に電極を形成する方法としては、現在3つの方法が試み
られている。
Recently, YBa 2 Cu 3 O 7-δ (abbreviated as YBCO), Bi
An oxide superconductor such as (Pb) SrCaCuO has attracted attention as a material exhibiting superconductivity at high temperatures. Currently, three methods have been attempted as a method of forming an electrode on this type of oxide superconductor.

第1の方法は、銀ペーストによる方法で、この方法で
は、酸化物超伝導体を仮焼成した階段で銀ペーストによ
り所定箇所に電極を形成し、その後酸素雰囲気中で酸化
物超伝導体を本焼成する際に電極を焼成する。
The first method is a method using a silver paste. In this method, an electrode is formed at a predetermined position with a silver paste in a step in which the oxide superconductor is pre-baked, and then the oxide superconductor is applied in an oxygen atmosphere. The electrode is fired when firing.

第2の方法は、Ag,PtまたはAuの薄膜により電極を形
成する方法である。この方法では酸化物超伝導体の電極
形成面にAg,PtまたはAuを蒸着してこれらのいずれかの
薄膜を形成し、次いで該薄膜を形成した酸化物超伝導体
を酸素雰囲気中で熱処理する。
The second method is a method of forming an electrode from a thin film of Ag, Pt or Au. In this method, Ag, Pt or Au is deposited on the electrode forming surface of the oxide superconductor to form a thin film of any of these, and then the oxide superconductor on which the thin film is formed is heat-treated in an oxygen atmosphere. .

第3の方法は、超音波を加えながら酸化物超伝導体に
リード線を直接半田付けする方法である。
The third method is a method of directly soldering a lead wire to an oxide superconductor while applying ultrasonic waves.

[発明が解決しようとする課題] 上記第1の方法によると、電極と酸化物超伝導体との
接合部にオーミックコンタクトを形成して該接触部の抵
抗を小さくすることができる。
[Problems to be Solved by the Invention] According to the first method, an ohmic contact can be formed at a junction between the electrode and the oxide superconductor to reduce the resistance of the contact.

しかしながらこの方法は、酸化物超伝導体に銀ペース
トを付着する工程と高温で焼成する工程とを必要とする
ため、工数が多くなって作業性が悪いという問題があ
る。また銀ペーストにより種々のパターンを高精度で形
成することは困難であるため、第1の方法では形状や寸
法を正確に管理して電極を形成したり微小部分に電極を
形成したりすることが難しいという問題もある。
However, since this method requires a step of attaching a silver paste to the oxide superconductor and a step of firing at a high temperature, there is a problem that the number of steps is increased and workability is poor. In addition, since it is difficult to form various patterns with high precision by using silver paste, the first method involves forming electrodes by controlling the shape and dimensions accurately and forming electrodes in minute parts. There is also a problem that it is difficult.

次に第2の方法は、面倒な蒸着を行うために高価な装
置を必要とする上に工数を多く必要とするため、電極の
形成に要するコストが高くなるという問題がある。また
この方法では平面的な電極しか形成できないため、該電
極を他の箇所に接続する際には該電極にリード線をボン
ディングする必要があり、面倒である。
Next, the second method has a problem that the cost required for forming an electrode is increased because an expensive apparatus is required for performing cumbersome vapor deposition and many steps are required. Further, since only a planar electrode can be formed by this method, it is necessary to bond a lead wire to the electrode when connecting the electrode to another portion, which is troublesome.

更に第3の方法(超音波半田法)は比較的簡単に実施
できるが、この方法では電極と酸化物超伝導体との間の
接合部の抵抗値を充分に低くすることができないという
問題がある。電極と超伝導体との間の接合部の抵抗は少
なくとも10-5Ωcm2以下にすることが好ましいが、超音
波半田法では通常10-1Ωcm2程度までしか抵抗値を下げ
ることができない。
Further, the third method (ultrasonic soldering method) can be performed relatively easily, but this method has a problem that the resistance value of the joint between the electrode and the oxide superconductor cannot be sufficiently reduced. is there. The resistance of the junction between the electrode and the superconductor is preferably at least 10 −5 Ωcm 2 or less, but the ultrasonic soldering method can usually reduce the resistance only to about 10 −1 Ωcm 2 .

本発明の目的は、酸化物超伝導体に電極を簡単にしか
も精度良く形成することができる酸化物超伝導体の電極
形成方法を提供することにある。
An object of the present invention is to provide a method for forming an electrode of an oxide superconductor, which can easily and accurately form an electrode on the oxide superconductor.

本発明の他の目的は、面状の電極及び線状の電極のい
ずれをも簡単に形成できるようにした酸化物超伝導体の
電極形成方法を提供することにある。
It is another object of the present invention to provide a method for forming an electrode of an oxide superconductor, which can easily form both a planar electrode and a linear electrode.

[課題を解決するための手段] 本発明の方法では、酸化物超伝導体に対向する課電用
接触素子を設けて該課電用接触子と酸化物超伝導体との
間に常伝導体からなる電極素材を挾み込み、課電用接触
子を酸化物超伝導体側に加圧した状態で該課電用接触子
を通して電極素材と酸化物超伝導体との接触部にパルス
電流を通電する。これによりが該接触部で瞬間的に発熱
させて電極素材を酸化物超伝導体を接合する。
[Means for Solving the Problems] According to the method of the present invention, a contact element for power application facing the oxide superconductor is provided, and a normal conductor is provided between the power application contact and the oxide superconductor. A pulse current is applied to the contact portion between the electrode material and the oxide superconductor through the power supply contact while the contact for voltage application is pressed to the oxide superconductor side while sandwiching the electrode material made of I do. This causes instantaneous heat generation at the contact portion to join the electrode material to the oxide superconductor.

酸化物超伝導体によっては、上記のようにして電極を
接合した状態で電極と酸化物超伝導体との接合部にオー
ミックコンタクトが形成されないことがある。
Depending on the oxide superconductor, an ohmic contact may not be formed at the junction between the electrode and the oxide superconductor when the electrodes are joined as described above.

この場合には、上記の方法で電極が接合された酸化物
超伝導体を酸素雰囲気中に配置して熱処理を行う。
In this case, the heat treatment is performed by placing the oxide superconductor to which the electrodes are joined by the above method in an oxygen atmosphere.

課電用接触子は電極を酸化物超伝導体に加圧した状態
で該電極素材と酸化物超伝導体との接触部に通電し得る
ものであればよいが、好ましい一例では、課電用接触子
を酸化物超伝導体の同じ面側に複数個対を成すように設
けて、該対を成す課電用接触子を酸化物超伝導体に対向
させる。そして該対を成す課電用接触子と酸化物超伝導
体との間に電極素材を挾みこみ、対を成す課電用接触子
間に電圧を印加して、一方の課電用接触子→電極素材→
電極素材と酸化物超伝導体との接触部→酸化物超伝導体
→酸化物超伝導体と電極素材との接触部→他方の課電用
接触子の経路、及び一方の課電用接触子→電極素材→他
方の課電用接触子の経路で電流を流す。
The power application contact may be any as long as it can conduct electricity to the contact portion between the electrode material and the oxide superconductor in a state where the electrode is pressed against the oxide superconductor. A plurality of contacts are provided on the same surface side of the oxide superconductor so as to form a plurality of pairs, and the pair of power application contacts forming the pair are opposed to the oxide superconductor. An electrode material is sandwiched between the pair of charging contacts and the oxide superconductor, a voltage is applied between the pair of charging contacts, and one of the charging contacts → Electrode material →
Contact part between electrode material and oxide superconductor → oxide superconductor → contact part between oxide superconductor and electrode material → path of the other power contact and one power contact → Current flows through the path of the electrode material → the other power application contact.

また対を成す課電用接触子を、酸化物超伝導体を間に
して対向させ、一方の課電用接触子→電極素材→酸化物
超伝導体→他方の課電用接触子の経路で電流を流すよう
にしてもよい。
Also, the pair of power application contacts are opposed to each other with the oxide superconductor in between, and in the path of one power application contact → electrode material → oxide superconductor → the other power application contact A current may flow.

上記電極素材は、銀、金または白銀のいずれかにより
形成するのが良い。
The electrode material is preferably formed of any of silver, gold and silver.

[作 用] 上記のように、課電用接触子と酸化物超伝導体との間
に常伝導体からなる電極素材を挾み込んで課電用接触子
を酸化物超伝導体側に加圧した状態で該課電用接触子を
通して前記電極素材と酸化物超伝導体との接触部にパル
ス電流を通電し、この通電により電極素材と酸化物超伝
導体との接触部付近で発熱させると、電極素材は酸化物
超伝導体に接合することができる。この場合通電は課電
用接触子にパルス状の電圧を印加することにより行えば
よく、電極素材の接合は極めて短時間で終了する。
[Operation] As described above, the electrode material made of a normal conductor is sandwiched between the contact for electricity application and the oxide superconductor, and the contact for electricity application is pressed toward the oxide superconductor. In this state, a pulse current is applied to the contact portion between the electrode material and the oxide superconductor through the power application contact, and heat is generated in the vicinity of the contact portion between the electrode material and the oxide superconductor by the current application. In addition, the electrode material can be bonded to the oxide superconductor. In this case, energization may be performed by applying a pulsed voltage to the contact for power application, and the joining of the electrode materials is completed in a very short time.

電極素材と酸化物超伝導体との接触部に通電して両者
を接合する際に、通電を長時間行うと、該超伝導体が必
要以上に加熱されため、超伝導体の電極材料との接触部
が常伝導体となり、超伝導体としての機能が喪失する。
本発明においては、電極素材と酸化物超伝導体との接触
部に流す電流をパルス電流とすることにより該接触部で
瞬間的に発熱させるため、酸化物超伝導体の機能を損な
うことなく接合を行うことができる。また、本発明のよ
うに、電極素材と酸化物超伝導体との接触部に流す電流
をパルス波形とすると、電極素材が必要以上に加熱溶融
されて損失するのを防ぐことができる。
When energization is performed for a long time when energizing the contact portion between the electrode material and the oxide superconductor and joining them, if the energization is performed for a long time, the superconductor is heated more than necessary, and the The contact portion becomes a normal conductor and loses its function as a superconductor.
In the present invention, since the current flowing through the contact portion between the electrode material and the oxide superconductor is made into a pulse current to instantaneously generate heat at the contact portion, the joining is performed without impairing the function of the oxide superconductor. It can be performed. Further, when the current flowing through the contact portion between the electrode material and the oxide superconductor has a pulse waveform as in the present invention, it is possible to prevent the electrode material from being heated and melted more than necessary and lost.

電極素材と酸化物超伝導体との接合部の状態は明らか
でないが、電極素材と酸化物超伝導体とが界面で一部焼
結しているが、または通電による発熱により電極素材の
一部が溶融または軟化して酸化物超伝導体の表面に分布
する微細な孔に食込んだ状態にあると推測される。
The state of the joint between the electrode material and the oxide superconductor is not clear, but the electrode material and the oxide superconductor are partially sintered at the interface, or a part of the electrode material is Is presumed to be in a state of melting or softening and biting into fine pores distributed on the surface of the oxide superconductor.

酸化物超伝導体によっては、通電により電極素材と酸
化物超伝導体とを接合しただけでは両者の接合部に低抵
抗のオーミックコンタクトが形成されない場合がある。
この場合には、電極素材が接合された酸化物超伝導体を
酸素雰囲気中に配置して熱処理を行うことによりオーミ
ックコンタクトを形成することができる。このように酸
素雰囲気中での熱処理を必要とする酸化物超伝導体とし
ては例えばYBCOがある。
Depending on the oxide superconductor, a low-resistance ohmic contact may not be formed at the junction between the electrode material and the oxide superconductor only by energization.
In this case, an ohmic contact can be formed by arranging the oxide superconductor to which the electrode material is bonded in an oxygen atmosphere and performing heat treatment. An example of such an oxide superconductor requiring heat treatment in an oxygen atmosphere is YBCO.

通電により電極素材を酸化物超伝導体に接合した階段
でオーミックコンタクトが得られないのは、酸化物超伝
導体が加熱された際にその結晶中から酸素が失われて電
極素材と酸化物超伝導体との接合部付近で酸化物超伝導
体の結晶構造が斜方晶系から正方晶系に転位することに
よるものと考えられる。そして電極素材を接合した段階
でオーミックコンタクトが得られない場合でも、その後
酸素雰囲気中で熱処理を行うと、低抵抗のオーミックコ
ンタクトが得られるのは、酸化物超伝導体の結晶中に酸
素が吸収されて電極素材と酸化物超伝導体との接合部近
傍の結晶構造が正方晶系から斜方晶系に転移することに
よるものと推定される。
Ohmic contact cannot be obtained at the stage when the electrode material is joined to the oxide superconductor by energization because oxygen is lost from the crystal when the oxide superconductor is heated and the electrode material and the oxide superconductor are lost. It is considered that the crystal structure of the oxide superconductor changes from an orthorhombic system to a tetragonal system near the junction with the conductor. Even if the ohmic contact cannot be obtained at the stage of joining the electrode materials, if heat treatment is performed in an oxygen atmosphere thereafter, a low-resistance ohmic contact can be obtained because oxygen is absorbed in the oxide superconductor crystal. It is presumed that the crystal structure near the junction between the electrode material and the oxide superconductor is changed from a tetragonal system to an orthorhombic system.

[実施例] 以下添附図面を参照して本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

本発明に方法は、公知のスポット溶接装置または同装
置と同様の原理の装置を用いて実施することができる。
The method according to the present invention can be carried out using a known spot welding apparatus or an apparatus having the same principle as the apparatus.

第1図は本発明に実施例で用いた装置の構成を概略的
に示したものである。この例では台板1の上に板状の酸
化物超伝導体2を配置し、この酸化物超伝導体の電極形
成面(この例では上面)2aに棒状に形成された1対の課
電用接触子3,4を平行に配置して対向させる。課電用接
触子3,4は、酸化物超伝導体2と電極形成面2aと平行な
方向に所定の間隔dを隔てて配置し、電極形成面2aと直
角な方向に移動し得るようにしておく。
FIG. 1 schematically shows the structure of the apparatus used in the embodiment of the present invention. In this example, a plate-shaped oxide superconductor 2 is arranged on a base plate 1, and a pair of power-supply members formed in a rod shape on an electrode forming surface (upper surface in this example) 2a of the oxide superconductor. The contacts 3 and 4 are arranged in parallel and face each other. The power application contacts 3 and 4 are arranged at a predetermined distance d in a direction parallel to the oxide superconductor 2 and the electrode forming surface 2a so as to be movable in a direction perpendicular to the electrode forming surface 2a. Keep it.

また課電用接触子3,4は配線5,6を通してスポット溶接
用電源装置7に接続し、該電源装置から接触子3,4間に
第2図に示すようなパルス状の電圧を印加し得るように
する。
The power application contacts 3 and 4 are connected to the spot welding power supply 7 through the wirings 5 and 6, and a pulse-like voltage as shown in FIG. To get.

電極を形成するに当っては、先ず課電用接触子3,4の
先端と酸化物超伝導体2との間に、銀、金または白金等
からなる電極素材8を挾み込み、図示しない加圧装置よ
り課電用接触子3,4を酸化物超伝導体2側に加圧する。
この状態で電源装置7から課電用接触子3,4間にパルス
状の電圧を印加し、電源装置7→接触子3→電極素材8
→酸化物超伝導体2→電極素材8→接触子4→電源装置
7の経路及び電源装置7→接触子3→電極素材8→接触
子4→電源装置7の経路で電流を流す。これにより電極
素材8と酸化物超伝導体2との接触部付近に発熱を生じ
させ、電極素材8を酸化物超伝導体2に接合する。
In forming the electrodes, first, an electrode material 8 made of silver, gold, platinum, or the like is sandwiched between the tips of the power application contacts 3, 4 and the oxide superconductor 2, and is not shown. The power application contacts 3 and 4 are pressed against the oxide superconductor 2 by a pressing device.
In this state, a pulsed voltage is applied from the power supply 7 to the power application contacts 3 and 4, and the power supply 7 → the contact 3 → the electrode material 8 is applied.
A current flows through the path of the oxide superconductor 2 → the electrode material 8 → the contact 4 → the power supply 7 and the power supply 7 → the contact 3 → the electrode material 8 → the contact 4 → the power supply 7. As a result, heat is generated in the vicinity of the contact portion between the electrode material 8 and the oxide superconductor 2, and the electrode material 8 is joined to the oxide superconductor 2.

実施例では、酸化物超伝導体2として臨界温度TCが93
KのYBa2Cu3O7−δを用い、電極素材8として直径50μ
mの銀線を用いた。課電用接触子3,4としては銅クロム
合金からなるものを用い、両接触子3,4間の距離dは0.2
5mmとした。そして70Kg/cm2の加圧力で接触子3,4を酸化
物超伝導体2側に加圧しつつ、溶接電源装置7から課電
用接触子3,4間に波高値が1V、パルス幅tが30msecのパ
ルス電圧を印加したところ、電極素材8を酸化物超伝導
体2に接合することができた。接合部の面積は2×10-4
cm2であった。
In an embodiment, the critical temperature T C as the oxide superconductor 2 is 93
Using YBa 2 Cu 3 O 7-δ of K, diameter 50μ as electrode material 8
m silver wire was used. The contacts 3 and 4 for power application are made of a copper-chromium alloy, and the distance d between the contacts 3 and 4 is 0.2.
5 mm. While pressing the contacts 3 and 4 toward the oxide superconductor 2 with a pressing force of 70 kg / cm 2, a peak value of 1 V and a pulse width t were applied between the welding power supply 7 and the contact 3 and 4 for power application. When a pulse voltage of 30 msec was applied, the electrode material 8 could be joined to the oxide superconductor 2. The area of the joint is 2 × 10 -4
It was cm 2.

このようにして電極素材8を酸化物超伝導体2に接合
したサンプルについて、電極素材8と酸化物超伝導体2
との接合部の電圧対電流特性を測定したところ、第4図
に示す結果が得られた。第4図において曲線aは室温に
おける特性を示し、曲線bは酸化物超伝導体2の臨界温
度TC(=93K)よりも低い80Kにおける特性を示してい
る。これらの結果は、電極素材8と酸化物超伝導体2と
を接合部の電圧対電流特性が非線形で、オーミックコン
タクトが形成されていないことを示している。
For the sample in which the electrode material 8 was bonded to the oxide superconductor 2 in this manner, the electrode material 8 and the oxide superconductor 2
When the voltage-current characteristics of the junction between the two were measured, the results shown in FIG. 4 were obtained. In FIG. 4, a curve a shows the characteristic at room temperature, and a curve b shows the characteristic at 80 K lower than the critical temperature T C (= 93 K) of the oxide superconductor 2. These results show that the voltage-current characteristics of the junction between the electrode material 8 and the oxide superconductor 2 are non-linear, and that no ohmic contact is formed.

また第5図は、上記のサンプルについて電極素材と酸
化物超伝導体との接合部を接触抵抗の温度変化を測定し
た結果を示したもので、接触抵抗は温度の上昇に伴って
低下している。このことは、接合部が半導体の挙動の示
すことを示している。
FIG. 5 shows the result of measuring the temperature change of the contact resistance at the junction between the electrode material and the oxide superconductor with respect to the above sample, and the contact resistance decreases as the temperature increases. I have. This indicates that the junction exhibits the behavior of the semiconductor.

そこで、上記のようにして電極素材8は接合された酸
化物超伝導体2を酸素雰囲気の炉に入れて熱処理を行っ
た。実験では、上記の方法で銀線を接合したYBCOのサン
プルA,B及びCを用意した。
Therefore, the electrode material 8 was heat-treated by placing the bonded oxide superconductor 2 in a furnace in an oxygen atmosphere. In the experiment, samples A, B and C of YBCO to which a silver wire was bonded by the above method were prepared.

次にサンプルA,B及びCをそれぞれ100%の酸素雰囲気
で、熱処理温度を異ならせて1時間熱処理した。この熱
処理における温度変化のパターンは第6図に示す通りで
ある。先ず室温から毎分6℃の割合いで所定の熱処理温
度X℃まで昇温させる。そして該温度X℃を1時間保持
した後、毎分1℃の割合いで室温まで低下させ、熱処理
を終了する。
Next, Samples A, B and C were each heat-treated for 1 hour in a 100% oxygen atmosphere at different heat treatment temperatures. The pattern of the temperature change in this heat treatment is as shown in FIG. First, the temperature is raised from room temperature to a predetermined heat treatment temperature X ° C at a rate of 6 ° C per minute. After maintaining the temperature X ° C. for one hour, the temperature is lowered to room temperature at a rate of 1 ° C. per minute, and the heat treatment is completed.

実験ではサンプルA,B及びCの熱処理温度Xをそれぞ
れ、400℃,500℃及び600℃とし、接合部の状態を調べた
ところ、400℃の熱処理では、オーミックコンタクトが
形成されなかったが、500℃及び600℃の熱処理では完全
なオーミックコンタクトが形成されていることが明らか
になった。
In the experiment, the heat treatment temperature X of samples A, B and C was set to 400 ° C., 500 ° C. and 600 ° C., respectively, and the state of the junction was examined. As a result, no ohmic contact was formed by the heat treatment at 400 ° C. It was clarified that a complete ohmic contact was formed by the heat treatment at 600C and 600C.

熱処理後のサンプルAないしCについて、それぞれの
接合部の接触抵抗を周知の3端子法により測定して、そ
の温度変化を求めたところ、第7図のような結果が得ら
れた。即ち熱処理温度を400℃とした場合には、第7図
の曲線aのように接合部の接触抵抗が100K以上の領域で
温度の上昇に伴って減少する特性(半導体の挙動)を示
す。これは未だ接合部にオーミックコンタクトが形成さ
れていないことを意味している。曲線b及びcはそれぞ
れ熱処理温度を500℃及び600℃とした場合で、これらの
場合には接合部の接触抵抗が全領域で温度の上昇に伴っ
て上昇する特性が得られる。これらの特性は、接合部に
オーミックコンタクトが形成されていることを示してい
る。
For the samples A to C after the heat treatment, the contact resistance of each joint was measured by a well-known three-terminal method, and the temperature change was obtained. As a result, the results shown in FIG. 7 were obtained. That is, when the heat treatment temperature is set to 400 ° C., a characteristic (behavior of the semiconductor) is shown in a curve a of FIG. 7 in which the contact resistance of the junction decreases with an increase in temperature in a region of 100 K or more. This means that no ohmic contact has yet been formed at the junction. Curves b and c show the case where the heat treatment temperature is 500 ° C. and 600 ° C., respectively, and in these cases, the characteristic that the contact resistance of the joint increases in all regions with the rise in temperature is obtained. These characteristics indicate that an ohmic contact is formed at the junction.

一例として、500℃で熱処理を行ったサンプルBにつ
いて接合部の電圧対電流特性を測定した結果を第8図に
示す。第8図において直線aは室温における特性を示
し、直線bは80Kにおける特性を示している。いずれの
場合も接合部の電流対流圧特性はリニアな特性であり、
これは接合部にオーミックコンタクトが形成されている
ことを意味している。尚80Kにおける接触抵抗は1.2×10
-7Ωcm2であった。
As an example, FIG. 8 shows the results of measuring the voltage-current characteristics of the junction of Sample B that was heat-treated at 500 ° C. In FIG. 8, a straight line a shows the characteristic at room temperature, and a straight line b shows the characteristic at 80K. In either case, the current-convection pressure characteristics of the junction are linear characteristics,
This means that an ohmic contact is formed at the junction. The contact resistance at 80K is 1.2 × 10
-7 Ωcm 2 .

上記サンプルAないしCについて、熱処理温度と接合
部の状態と接触抵抗の大きさとの関係をまとめて示すと
下記の表のようになる。
The following table summarizes the relationship between the heat treatment temperature, the state of the joint, and the magnitude of the contact resistance for the samples A to C.

この表において「non ohmic」は電極素材と酸化物超
伝導体との接合部にオーミックコンタクトが形成されて
いないことを示し、「ohmic」は同接合部にオーミック
コンタクトが形成されていることを示す。
In this table, "non ohmic" indicates that no ohmic contact is formed at the junction between the electrode material and the oxide superconductor, and "ohmic" indicates that an ohmic contact is formed at the same junction. .

上記の表から、YBCOに銀線を接触させて通電により発
熱させて接合した後、酸素雰囲気中にて500℃以上の温
度で熱処理を行うと、接合部にオーミックコンタクトの
形成して、その接触抵抗を10-6Ωcm2以下に引下げるこ
とができることがわかる。
From the above table, it is possible to form a ohmic contact at the joint by applying a heat treatment at a temperature of 500 ° C. or more in an oxygen atmosphere after contacting the silver wire with the YBCO and generating heat by energization. It can be seen that the resistance can be reduced to 10 −6 Ωcm 2 or less.

以上のことから、電極素材を酸化物超伝導体に接合し
た段階でオーミックコンタクトが形成されていない場合
でも、酸素雰囲気中で熱処理を行うことによりオーミッ
クコンタクトを形成できることがわかる。これは、接合
時の発熱により酸素が失われて斜方晶系から正方晶系に
転移した接合部近傍の酸化物超伝導体が、酸素雰囲気中
での熱処理により酸素を吸収して再び斜方晶に転位する
ことによるものと考えられる。YBCOの場合に500℃以上
の熱処理が必要がなるのは、YBCOが500℃以上で酸素を
吸収し易くなるためであると思われる。
From the above, it can be seen that even when an ohmic contact is not formed at the stage when the electrode material is bonded to the oxide superconductor, the ohmic contact can be formed by performing the heat treatment in an oxygen atmosphere. This is because the oxide superconductor in the vicinity of the junction where oxygen is lost due to heat generated at the time of joining and transition from orthorhombic to tetragonal, absorbs oxygen by heat treatment in an oxygen atmosphere, and becomes orthorhombic again. This is probably due to dislocation to the crystal. It is considered that the reason why the heat treatment at 500 ° C. or higher is required in the case of YBCO is that YBCO easily absorbs oxygen at 500 ° C. or higher.

上記の実施例では、対の課電用接触子3及び4を、酸
化物超伝導体2の同じ面側に並べて配置して、これらの
接触子と酸化物超伝導体との間に電極素材2を挾み込む
ようにしたが、第3図に示すように、少なくとも1対の
課電用接触子3,4を酸化物超伝導体2を間にして対向配
置し、対の接触子3,4の内の少なくとも一方と酸化物超
伝導体2との間に電極素材8を挾み込むようにしてもよ
い。この場合にも接触子3,4間にパルス状の電圧を印加
することにより、電極素材8と酸化物超伝導体2との接
触部で発熱させて両者の接合することがてきる。
In the above embodiment, the pair of power application contacts 3 and 4 are arranged side by side on the same surface of the oxide superconductor 2, and an electrode material is placed between these contacts and the oxide superconductor. As shown in FIG. 3, at least one pair of power application contacts 3 and 4 are arranged to face each other with the oxide superconductor 2 interposed therebetween, as shown in FIG. , 4 may be interposed between the oxide superconductor 2 and the electrode material 8. Also in this case, by applying a pulse-like voltage between the contacts 3 and 4, heat is generated at the contact portion between the electrode material 8 and the oxide superconductor 2 to join them.

上記の実施例では、線状の電極素材を用いたが、箔状
の電極素材を用いて面状電極を形成することもできる。
In the above embodiment, a linear electrode material is used, but a planar electrode may be formed using a foil electrode material.

上記の各実施例では、各課電用接触子が棒状に形成さ
れているが、課電用接触子の形状は電極の素材の形状に
応じて適宜に変更することができる。
In each of the above embodiments, each power-applying contact is formed in a rod shape, but the shape of the power-applying contact can be appropriately changed according to the shape of the electrode material.

また面状の電極素材を用いるような合には、必要に応
じて複数対の課電用接触子を設けて、接合点の数を増加
させることもできる。
When a planar electrode material is used, a plurality of pairs of power application contacts may be provided as needed to increase the number of junctions.

第3図に示すように、対の課電用接触子を酸化物超伝
導体の両側に配置する場合に、酸化物超伝導体に直接接
触する接触子4は板状に形成することができる。
As shown in FIG. 3, when the pair of power application contacts are arranged on both sides of the oxide superconductor, the contact 4 that directly contacts the oxide superconductor can be formed in a plate shape. .

また第1図のように接触子3,4を配置する場合に、台
板1と接触子3との間及び台板1と接触子4とを間にそ
れぞれパルス電圧を印加するようにしてもよい。
When the contacts 3 and 4 are arranged as shown in FIG. 1, a pulse voltage may be applied between the base plate 1 and the contact 3 and between the base plate 1 and the contact 4 respectively. Good.

[発明の効果] 以上のように、本発明によれば、課電用接触子と酸化
物超伝導体とを間に常伝導体からなる電極素材を挾み込
んで課電用接触子を酸化物超伝導体側に加圧した状態で
該課電用接触子を通して電極素材と酸化物超伝導体との
接触部にパルス電流を通電することにより、該接触部で
短時間だけ発熱させて電極素材を酸化物超伝導体に接合
するようにしたため、酸化物超伝導体と超伝導性を損な
うことなく、また電極素材を損傷することなく、酸化物
超伝導体への電極の形成を簡単に行うことかできる。
[Effects of the Invention] As described above, according to the present invention, an electrode material made of a normal conductor is sandwiched between a charging contact and an oxide superconductor to oxidize the charging contact. When a pulse current is applied to the contact portion between the electrode material and the oxide superconductor through the power application contact in a state where the pressure is applied to the material superconductor side, heat is generated only for a short time at the contact portion, and the electrode material is heated. Can be easily bonded to the oxide superconductor without damaging the superconductivity with the oxide superconductor and without damaging the electrode material. I can do it.

特に請求項2に記載の発明によれば、YBCOのように熱
が加えられた際に斜方晶系から正方晶系に転移し易い酸
化物超伝導体に対しても低抵抗のオーミックコンタクト
を有する電極を形成するできる利点がある。
In particular, according to the second aspect of the present invention, a low-resistance ohmic contact can be formed even with an oxide superconductor that easily transitions from an orthorhombic system to a tetragonal system when heat is applied, such as YBCO. There is an advantage that an electrode can be formed.

また本発明では、線状の電極及び面状の電極のいずれ
をも形成できるため、使用目的に合致した電極を形成す
ることができる。特に酸化物超伝導体を他の部品に配線
す必要がある場合には、線状の電極素材を用いることに
より、電極自体を配線として用いることができるので、
工数の削減を図ることができる。
Further, in the present invention, since both a linear electrode and a planar electrode can be formed, an electrode suitable for the intended use can be formed. Especially when it is necessary to wire the oxide superconductor to other parts, by using a linear electrode material, the electrode itself can be used as wiring,
The man-hour can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法を実施する装置の構成を概略的に
示した構成図、第2図は第1図の装置の接触子間に印加
するパルス電圧の波形を示した波系図、第3図は本発明
の方法を実施する装置の他の構成例を示した構成図、第
4図及び第5図はそれぞれ電極素材を酸化物超伝導体に
接合した段階での接合部の電圧対電流特性及び接触抵抗
の温度特性を示す線図、第6図は本発明の実施例におけ
る熱処理の温度変化パターンを示す線図、第7図は熱処
理後の接合部の接触抵抗の温度特性を示した線図、第8
図は熱処理後の接続部の電圧対電流特性を示す線図であ
る。 1……台板、2……酸化物超伝導体、3,4……課電用接
触子、7……スポット溶接用電源装置、8……電極素
材。
FIG. 1 is a schematic diagram showing the configuration of an apparatus for carrying out the method of the present invention, FIG. 2 is a wave diagram showing a waveform of a pulse voltage applied between contacts of the apparatus of FIG. FIG. 3 is a configuration diagram showing another configuration example of an apparatus for carrying out the method of the present invention, and FIGS. 4 and 5 respectively show a voltage vs. voltage of a junction at the stage when the electrode material is joined to the oxide superconductor. FIG. 6 is a diagram showing a temperature characteristic of a current characteristic and a contact resistance, FIG. 6 is a diagram showing a temperature change pattern of a heat treatment in an embodiment of the present invention, and FIG. Diagram, 8th
The figure is a diagram showing voltage-current characteristics of the connection part after the heat treatment. DESCRIPTION OF SYMBOLS 1 ... Base plate, 2 ... Oxide superconductor, 3, 4 ... Contact for power application, 7 ... Power supply device for spot welding, 8 ... Electrode material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 倉一 兵庫県神戸市垂水区舞子台4丁目3―16 (72)発明者 青山 隆治 大阪府大阪市淀川区田川2丁目1番11号 株式会社ダイヘン内 (56)参考文献 特開 昭58−87884(JP,A) 特開 昭60−166276(JP,A) 特開 昭62−202876(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 39/00 ZAA H01L 39/22 - 39/24 ZAA C04B 37/02 H01L 21/60──────────────────────────────────────────────────続 き Continued on the front page (72) Kuraichi Ogawa 4-3-1-16 Maikodai, Tarumizu-ku, Kobe-shi, Hyogo (72) Ryuharu Aoyama 2-1-1 Tagawa, Yodogawa-ku, Osaka-shi, Osaka Co., Ltd. (56) References JP-A-58-87884 (JP, A) JP-A-60-166276 (JP, A) JP-A-62-202876 (JP, A) (58) Fields studied (Int. . 6, DB name) H01L 39/00 ZAA H01L 39/22 - 39/24 ZAA C04B 37/02 H01L 21/60

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超伝導体に電極を形成する方法にお
いて、 前記酸化物超伝導体に対向する課電用接触子を設けて該
課電用接触子と酸化物超伝導体との間に常伝導体からな
る電極素材を挾み込み、 前記課電用接触子を酸化物超伝導体側に加圧した状態で
該課電用接触子を通して前記電極素材と酸化物超伝導体
との接触部にパルス電流を通電することにより該接触部
付近で発熱させて前記電極素材を酸化物超伝導体に接合
することを特徴とする酸化物超伝導体の電極形成方法。
1. A method for forming an electrode on an oxide superconductor, comprising the steps of: providing a contact for power application facing the oxide superconductor, and providing a contact between the power application contact and the oxide superconductor. An electrode material made of a normal conductor is sandwiched between the electrodes, and the contact between the electrode material and the oxide superconductor is passed through the contact for applying power while the contact for applying power is pressed toward the oxide superconductor. A method of forming an electrode of an oxide superconductor, comprising: applying a pulse current to a portion to generate heat near the contact portion to join the electrode material to the oxide superconductor.
【請求項2】酸化物超伝導体に電極を形成する方法にお
いて 前記酸化物超伝導体に対向する課電用接触子を設けて該
課電用接触子と酸化物超伝導体との間に常伝導体からな
る電極素材を挾み込み、 前記課電用接触子を前記酸化物超伝導体側に加圧した状
態で該課電用接触子を通して前記電極素材と酸化物超伝
導体との接触部にパルス電流を通電することにより該接
触部付近で発熱させて前記電極素材を酸化物超伝導体に
接合し、 次いで前記電極素材が接合された酸化物超伝導体を酸素
雰囲気中で熱処理することを特徴とする酸化物超伝導体
の電極形成方法。
2. A method for forming an electrode on an oxide superconductor, comprising: providing a power application contact facing the oxide superconductor; and providing a contact between the power application contact and the oxide superconductor. An electrode material made of a normal conductor is sandwiched, and the electrode material is brought into contact with the oxide superconductor through the power application contact with the power application contact pressed against the oxide superconductor. The electrode material is joined to the oxide superconductor by generating heat near the contact portion by applying a pulse current to the portion, and then the oxide superconductor to which the electrode material is joined is heat-treated in an oxygen atmosphere. A method for forming an electrode of an oxide superconductor, comprising:
【請求項3】前記課電用接触子を複数個対を成すように
設けて該対を成す課電用接触子を前記酸化物超導電体の
同じ面側に配置し、該対を成す課電用接触子と酸化物超
導電体との間に前記電極素材を挾み込むことを特徴とす
る請求項1または2に記載の酸化物超伝導体の電極形成
方法。
3. A plurality of pairs of power application contacts are provided so as to form a pair, and the pair of power application contacts are arranged on the same surface of the oxide superconductor. 3. The method for forming an electrode of an oxide superconductor according to claim 1, wherein the electrode material is sandwiched between an electrical contact and an oxide superconductor.
【請求項4】前記課電用接触子を複数個対を成すように
設けて該対を成す課電用接触子を前記酸化物超導電体を
間にして対向させ、 少なくとも一方の課電用接触子と酸化物超導電体との間
に電極素材を挾み込むことを特徴とする請求項1または
2に記載の酸化物超伝導体の電極形成方法。
4. A plurality of power application contacts are provided so as to form a plurality of pairs, and the pair of power application contacts are opposed to each other with the oxide superconductor therebetween. 3. The method for forming an electrode of an oxide superconductor according to claim 1, wherein an electrode material is sandwiched between the contact and the oxide superconductor.
【請求項5】前記電極素材は銀、金または白金からなっ
ている請求項1ないし4のいずれか1つに記載に酸化物
超伝導体の電極形成方法。
5. The method for forming an electrode of an oxide superconductor according to claim 1, wherein said electrode material is made of silver, gold or platinum.
JP63247065A 1988-09-30 1988-09-30 Method for forming electrode of oxide superconductor Expired - Fee Related JP2805010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247065A JP2805010B2 (en) 1988-09-30 1988-09-30 Method for forming electrode of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247065A JP2805010B2 (en) 1988-09-30 1988-09-30 Method for forming electrode of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH0294675A JPH0294675A (en) 1990-04-05
JP2805010B2 true JP2805010B2 (en) 1998-09-30

Family

ID=17157902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247065A Expired - Fee Related JP2805010B2 (en) 1988-09-30 1988-09-30 Method for forming electrode of oxide superconductor

Country Status (1)

Country Link
JP (1) JP2805010B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887884A (en) * 1981-11-20 1983-05-25 Nippon Telegr & Teleph Corp <Ntt> Forming method for electrode of oxide superconductor circuit
JPS60166276A (en) * 1984-02-08 1985-08-29 工業技術院長 Bonding of ceramic and metal
JPS62202876A (en) * 1985-11-25 1987-09-07 東洋電機製造株式会社 Super sonic joining method of metal to ceramics

Also Published As

Publication number Publication date
JPH0294675A (en) 1990-04-05

Similar Documents

Publication Publication Date Title
US7504312B2 (en) Stacked electrical resistor pad for optical fiber attachment
EP0371410B1 (en) Joining of high-temperature oxide superconductors
JPH0270388A (en) Method of testing article before welding
JP3222207B2 (en) Semiconductor device and manufacturing method thereof
JPS6112397B2 (en)
JP2805010B2 (en) Method for forming electrode of oxide superconductor
US5126527A (en) High temperature solder device for flat cables
US3519778A (en) Method and apparatus for joining electrical conductors
JP2550188B2 (en) Oxide-based high temperature superconductor, joining method and brazing material
CN100505358C (en) Method for creating an electrical contact for a piezoelectric actuator and polarizing the piezoelectric actuator
JPH02116180A (en) Formation of oxide superconductor electrode
JPH07135034A (en) Connecting method for superconducting wire
JP2001093358A (en) Electrode for oxide superconductive current lead and method for manufacturing electrode
JPH0287030A (en) Platinum temperature sensor
JP2752674B2 (en) Sensor
JPS60177636A (en) Junction of semiconductor and metal
JPS61237441A (en) Wire bonding method
JP3181778B2 (en) Articulated manipulator
JPH01227458A (en) Formation of bump electrode
JP2770247B2 (en) Method for producing superconducting composite with electrode
JP3082678U (en) Lead wire joining structure and thermoelectric module using the joining structure
JP2830510B2 (en) Low resistance current lead material and method of manufacturing the same
SU368679A1 (en) METHOD OF CONNECTING CONCLUSIONS TO SEMICONDUCTOR DEVICES
JP2528571B2 (en) Welding method for dissimilar metal members
JPH0697625B2 (en) Method of joining electrode terminals to oxide superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees