JP2803755B2 - Multilayer electronic circuit board - Google Patents

Multilayer electronic circuit board

Info

Publication number
JP2803755B2
JP2803755B2 JP1247048A JP24704889A JP2803755B2 JP 2803755 B2 JP2803755 B2 JP 2803755B2 JP 1247048 A JP1247048 A JP 1247048A JP 24704889 A JP24704889 A JP 24704889A JP 2803755 B2 JP2803755 B2 JP 2803755B2
Authority
JP
Japan
Prior art keywords
electronic circuit
circuit board
sintered body
resin
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1247048A
Other languages
Japanese (ja)
Other versions
JPH03108796A (en
Inventor
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1201757A priority Critical patent/JP2787953B2/en
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1247048A priority patent/JP2803755B2/en
Priority to US07/556,521 priority patent/US5144536A/en
Priority to KR1019900011819A priority patent/KR100211852B1/en
Priority to DE69008963T priority patent/DE69008963T2/en
Priority to EP90114875A priority patent/EP0411639B1/en
Publication of JPH03108796A publication Critical patent/JPH03108796A/en
Application granted granted Critical
Publication of JP2803755B2 publication Critical patent/JP2803755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,表面に導電性回路等の膜状素子を形成し
た,放熱性,信頼性に優れた多層状の電子回路基板に関
する。
Description: TECHNICAL FIELD The present invention relates to a multilayer electronic circuit board having excellent heat dissipation and reliability, having a film-like element such as a conductive circuit formed on a surface thereof.

〔従来技術〕(Prior art)

近年,電子回路基板としては種々のものが知られ,か
つ実用化されており,例えばガラス・エポキシ複合体,
アルミナ質焼結体およびムライト質焼結体等を基板材料
とする電子回路基板が提案され使用されている。そし
て,高集積化を促進する1つの方法として,シリコン集
積回路などを直接基板に搭載する実装方法が検討されて
いる。
In recent years, various electronic circuit boards have been known and put into practical use. For example, glass-epoxy composites,
2. Description of the Related Art Electronic circuit boards using alumina sintered bodies, mullite sintered bodies, and the like as substrate materials have been proposed and used. As one method for promoting high integration, a mounting method of directly mounting a silicon integrated circuit or the like on a substrate is being studied.

しかしながら,ガラス・エポキシ複合体はシリコン集
積回路と熱膨張率が大きく異なるため,該基板に直接搭
載することのできるシリコン集積回路は極めて小さいも
のに限られている。そればかりでなく,ガラス・エポキ
シ複合体のみからなる基板は,回路形成工程において寸
法が変化し易いため,特に微細で精密な回路が要求され
る基板には適用が困難である。
However, since the glass-epoxy composite has a significantly different coefficient of thermal expansion from the silicon integrated circuit, the silicon integrated circuit that can be directly mounted on the substrate is limited to an extremely small one. In addition, a substrate made of a glass-epoxy composite alone is liable to change its dimensions in a circuit forming process, and therefore is difficult to apply particularly to a substrate requiring a fine and precise circuit.

また,これらの基板は,樹脂の割合が大きいため,熱
伝導率が高々0.5w/m・Kと小さく,近年の高密度のシリ
コン集積回路や抵抗部品などによる発熱に対して,充分
な放熱能力を有していない。
In addition, since these substrates have a large proportion of resin, their thermal conductivity is as low as 0.5 w / m · K at most, and they have a sufficient heat dissipation capacity against heat generated by recent high-density silicon integrated circuits and resistance components. Do not have.

また,アルミナ質焼結体やムライト質焼結体は硬度が
高く機械加工性に劣る。そのため,例えばスルーホール
等を設けるような機械加工が必要な場合には,生成形体
の段階で加工した後焼成する方法が行われている。しか
し,焼成時の収縮を均一に生じさせることは困難であ
り,特に高い寸法精度を要求されるものや寸法の大きな
ものを製造することは困難であった。
Further, alumina-based sintered bodies and mullite-based sintered bodies have high hardness and are inferior in machinability. For this reason, for example, when machining such as providing a through hole or the like is required, a method of firing after processing at the stage of a formed body is performed. However, it is difficult to uniformly generate shrinkage during firing, and it is particularly difficult to manufacture a product requiring high dimensional accuracy or a product having a large size.

そこで,これらの問題に対処するため,特開昭61−28
7190号あるいは特開昭64−82689号には,多孔質セラミ
ック焼結体の気孔に樹脂を含浸した基板が提案されてい
る。
To address these problems, Japanese Patent Laid-Open No.
No. 7190 or JP-A-64-82689 proposes a substrate in which the pores of a porous ceramic sintered body are impregnated with a resin.

この基板は,セラミックの気孔率を種々変化させるこ
とで,実装する部品,例えばシリコン集積回路等の熱膨
張に合わせたもので,低膨張で寸法安定性に優れてい
る。また,機械加工が容易で大型化及び軽量化に対応で
きる。
This substrate is adapted to the thermal expansion of a component to be mounted, for example, a silicon integrated circuit or the like by changing the porosity of the ceramic in various ways, and has low expansion and excellent dimensional stability. In addition, machining is easy, and it is possible to cope with an increase in size and weight.

一方,近年は,高集積化のために,電子回路基板を複
数枚重ねて多層電子回路基板とすることが多用されてい
る。
On the other hand, in recent years, a multilayer electronic circuit board is often used by stacking a plurality of electronic circuit boards for high integration.

また,チップ抵抗,コンデンサー等のチップ部品に代
わり,これら素子を膜状に回路上に形成した膜状素子を
有する電子回路基板が開発されている。
Further, instead of chip components such as chip resistors and capacitors, an electronic circuit board having a film-like element in which these elements are formed on a circuit in the form of a film has been developed.

このように,膜状の導電性回路,抵抗体,コンデンサ
ー等の膜状素子を形成することにより,電子回路基板の
小型化,軽量化が図られる。
As described above, by forming a film-like conductive circuit, a resistor, a capacitor, and other film-like elements, the size and weight of the electronic circuit board can be reduced.

〔解決しようとする課題〕[Problem to be solved]

しかしながら,上記の多孔質セラミック−樹脂含浸基
板に膜状素子を形成した電子回路基板は,使用上の信頼
性に乏しい。
However, an electronic circuit board in which a film element is formed on the above-described porous ceramic-resin impregnated substrate has poor reliability in use.

即ち,上記の樹脂含浸多孔質セラミック基板では,そ
の表面に形成した膜状素子が樹脂上に形成されるため,
樹脂の挙動により膜状素子が著しく影響を受ける。例え
ば,高湿度,高温度により,上記樹脂と接触している膜
状素子の初期特性,例えば,抵抗値,コンデンサー容量
が大きく変動するという大きな欠点がある。
That is, in the above-described resin-impregnated porous ceramic substrate, the film-like element formed on the surface is formed on the resin.
The behavior of the resin significantly affects the film-shaped element. For example, there is a major drawback in that the initial characteristics, for example, the resistance value and the capacitance of the film-like element in contact with the resin greatly fluctuate due to high humidity and high temperature.

また,複数枚の電子回路基板を積層してなる多層電子
回路基板においては,各電子回路基板の電子回路から発
生する熱を効率良く外部へ放出させる必要がある。特に
多層となるほど,各基板の電子回路から発生する熱は外
部へ放出され難くなる。
In a multilayer electronic circuit board formed by laminating a plurality of electronic circuit boards, it is necessary to efficiently release the heat generated from the electronic circuit of each electronic circuit board to the outside. In particular, as the number of layers increases, it becomes more difficult for heat generated from the electronic circuit of each substrate to be released to the outside.

本発明は,かかる従来の問題点に鑑み,上記の樹脂含
浸多孔質セラミック焼結体基板の長所を生かした,耐高
湿度性,耐高温度性及び放熱性に優れた,信頼性の高い
多層電子回路基板を提供しようとするものである。
In view of the above-mentioned conventional problems, the present invention provides a highly reliable multi-layered film having excellent resistance to high humidity, high temperature, and heat radiation by taking advantage of the above-mentioned resin-impregnated porous ceramic sintered substrate. It is intended to provide an electronic circuit board.

〔課題の解決手段〕[Solutions to solve the problem]

本発明は,多孔質セラミック焼結体の表面に膜状の導
電性回路,抵抗体,コンデンサー等の膜状素子を直接形
成すると共に該多孔質セラミック焼結体に放熱体を接着
した電子回路基板を作製し,その後該電子回路基板を積
層すると共に該電子回路基板の間に無機質又は金属の多
孔質中間層を介在させて接着し,次いで上記多孔質セラ
ミック焼結体の気孔内に樹脂を充填してなることを特徴
とする多層電子回路基板にある。
The present invention relates to an electronic circuit board in which a film-like conductive circuit, a resistor, a capacitor or the like is directly formed on a surface of a porous ceramic sintered body, and a radiator is bonded to the porous ceramic sintered body. Then, the electronic circuit boards are laminated and bonded together by interposing an inorganic or metal porous intermediate layer between the electronic circuit boards, and then the resin is filled into the pores of the porous ceramic sintered body. A multilayer electronic circuit board characterized in that:

本発明において最も注目すべきことは,多孔質セラミ
ック焼結体の表面に直接膜状素子を形成すると共に該焼
結体に放熱体を接着した電子回路基板を複数枚用い,こ
れらの間に前記多孔質中間層を介在させて,積層,接着
し,次いで前記焼結体の気孔内に樹脂を含浸したことで
ある。
The most remarkable point in the present invention is that a plurality of electronic circuit boards having a film element directly formed on the surface of a porous ceramic sintered body and a radiator bonded to the sintered body are used. Laminating and bonding are performed with a porous intermediate layer interposed therebetween, and then the resin is impregnated in the pores of the sintered body.

即ち,本発明の電子回路基板においては,多孔質セラ
ミック焼結体の表面の気孔及び凹凸に,導電性回路等の
膜状素子がくさび状に入り込んで直接密着している。ま
た,放熱体も,直接に,或いは接着層を介して,上記気
孔及び凹凸にくさび状に入り込んで密着している。一
方,膜状素子形成部分以外の気孔内には,電子回路基板
を積層した後に樹脂が充填される。
That is, in the electronic circuit board of the present invention, a film-like element such as a conductive circuit enters the pores and irregularities on the surface of the porous ceramic sintered body and comes into direct contact with the wedge shape. Further, the heat radiator also enters the pores and unevenness in a wedge shape directly or through an adhesive layer, and is closely adhered. On the other hand, the pores other than the film-shaped element forming portion are filled with resin after the electronic circuit board is laminated.

多孔質セラミック焼結体の表面に導電性回路等の膜状
素子を形成する方法としては,まずセラミックの生成形
体に膜状素子を形成する粒子を含んだペーストを,印刷
などの方法により塗布し,次いでセラミックの生成形体
を焼結体が形成される温度で焼成する方法がある。
As a method for forming a film-like element such as a conductive circuit on the surface of a porous ceramic sintered body, first, a paste containing particles for forming the film-like element is applied to a ceramic formed body by a method such as printing. Then, there is a method of firing the formed ceramic body at a temperature at which a sintered body is formed.

また,他の方法としては,まず多孔質セラミック焼結
体を作成しておいた後,その表面に前記ペーストを塗布
し,次いで焼つける方法がある。
Another method is to first prepare a porous ceramic sintered body, apply the paste to the surface of the sintered body, and then bake the paste.

更に,多孔質セラミック焼結体の表面に回路となる部
分以外をマスクして,蒸着,スパッター等により導電性
回路等の膜状素子を形成し,その後前記マスクを除去す
る方法がある。
Further, there is a method in which a portion other than a circuit is masked on the surface of the porous ceramic sintered body, a film-like element such as a conductive circuit is formed by vapor deposition, sputtering or the like, and then the mask is removed.

いずれの方法においても,多孔質セラミック焼結体と
膜状素子が,直接密着していることが重要である。
In any method, it is important that the porous ceramic sintered body and the film element are in direct contact with each other.

上述のように多孔質セラミックと膜状素子が直接密着
していることで,膜状素子は温度,湿度などの環境変化
に対して極めて安定になる。
As described above, since the porous ceramic and the membrane element are in direct contact with each other, the membrane element is extremely stable against environmental changes such as temperature and humidity.

ここに膜状素子とは,前記のごとき導電性回路,膜状
抵抗体,膜状コンデンサーなど,基板上に膜状に形成す
る電子部品をいう。また,これらの膜状素子は,電子回
路基板の片面又は両面に形成する。
Here, the film element refers to an electronic component formed in a film on a substrate, such as a conductive circuit, a film resistor, and a film capacitor as described above. Further, these film elements are formed on one side or both sides of the electronic circuit board.

放熱体としては,後述するごとき,セラミック焼結
体,ダイヤモンド,金属膜などがある。また,これらの
放熱体は,多孔質セラミック焼結体に,直接,或いは接
着層を介して接着する。
Examples of the radiator include a ceramic sintered body, diamond, and a metal film as described later. Further, these heat radiators are bonded to the porous ceramic sintered body directly or via an adhesive layer.

即ち,多孔質セラミック焼結体の表面に直接放熱体を
接着する方法としては,セラミックの生成形体に予めざ
くりやパンチングによる開口部を設けておき,一方で準
備しておいた放熱体を該開口部に挿入し,次いでこれら
を焼結することで前記放熱体を焼締め,嵌合する。ま
た,ホットプレス等により,加圧しながら接合する方法
がある。上記放熱体としては,高放熱性セラミック焼結
体であるアルミナ,炭化ケイ素,窒化アルミニウム,酸
化ベリリウムなどのセラミック焼結体がある。
That is, as a method of bonding the heat radiator directly to the surface of the porous ceramic sintered body, an opening is formed in the formed ceramic body by drilling or punching, and the prepared heat radiator is attached to the opening. And then sintering them to heat-tighten the radiator and fit. Further, there is a method of joining while applying pressure by a hot press or the like. Examples of the radiator include ceramic sinters such as alumina, silicon carbide, aluminum nitride, and beryllium oxide, which are ceramic sinters having high heat dissipation.

また,他の方法としては多孔質セラミック焼結体の表
面に,CVDなどにより,高放熱性セラミック例えば,ダイ
ヤモンド,炭化ケイ素,窒化アルミニウムなどの膜状放
熱体を形成する方法がある。更には,溶射,蒸着,スパ
ッタリングにより,各種の金属或いは無機質膜の放熱体
を形成する方法がある。
As another method, there is a method of forming a film-shaped heat radiator such as diamond, silicon carbide, or aluminum nitride on the surface of the porous ceramic sintered body by CVD or the like. Further, there is a method of forming a radiator of various metal or inorganic films by thermal spraying, vapor deposition, or sputtering.

一方,多孔質セラミック焼結体と放熱体とを接着する
接着剤としては,金属或いは/及び無機材料の接着剤が
ある。
On the other hand, as an adhesive for bonding the porous ceramic sintered body and the heat radiator, there is an adhesive of a metal and / or an inorganic material.

かかる接着剤による接着方法としては,セラミック焼
結体に予め,上記接着剤の粉末を塗布しておき,前記放
熱体を接触して配置した後,上記接着剤粉末が溶融する
温度まで,加熱する方法がある。この時,多孔質セラミ
ック焼結体と放熱体とは,その熱膨張率が,近い方が良
いが,そうで無い場合には放熱体を小片として,熱膨張
差を小さくする。或いは,金属と無機材料粉末の割合を
変えて熱膨張率を調節したり,金属或いは/及び無機材
料の層を数段階に変化させて形成し,多孔質セラミック
焼結体と放熱体との中間的な熱膨張率とし,両者の熱応
力を緩和することが好ましい。
As a bonding method using such an adhesive, a powder of the adhesive is applied to a ceramic sintered body in advance, and the heat radiator is placed in contact with the ceramic sintered body, and then heated to a temperature at which the adhesive powder melts. There is a way. At this time, it is better that the thermal expansion coefficient of the porous ceramic sintered body and the heat radiator are close to each other, but if not, the heat radiator is used as a small piece to reduce the difference in thermal expansion. Alternatively, the coefficient of thermal expansion is adjusted by changing the ratio of the metal and the inorganic material powder, or the layer of the metal and / or the inorganic material is changed in several stages to form an intermediate layer between the porous ceramic sintered body and the radiator. It is preferred that the thermal expansion coefficient is set to a suitable value and the thermal stress of both is relaxed.

なお,前記金属あるいは/及び無機材料からなる接着
剤層は,なるべく,緻密質であることが好ましい。この
理由は優れた放熱性を発揮させるためである。そのため
には,気孔率は30%以下であることが好ましい。
The adhesive layer made of the metal and / or inorganic material is preferably as dense as possible. The reason for this is to exhibit excellent heat dissipation. For this purpose, the porosity is preferably 30% or less.

また,上記多孔質セラミック焼結体の材質としては,
コージェライト,アルミナ,窒化アルミニウム,ムライ
ト,チタン酸マグネシウム,チタン酸アルミニウム,二
酸化ケイ素,酸化鉛,酸化亜鉛,酸化ベリリウム,酸化
錫,酸化バリウム,酸化マグネシウム,酸化カルシウム
のいずれか少なくとも1種を主成分とするセラミックス
などがある。この中,コージェライトは,熱膨張率がシ
リコン集積回路のそれに近く,好ましい材料である。
The material of the porous ceramic sintered body is as follows.
Main component is at least one of cordierite, alumina, aluminum nitride, mullite, magnesium titanate, aluminum titanate, silicon dioxide, lead oxide, zinc oxide, beryllium oxide, tin oxide, barium oxide, magnesium oxide, and calcium oxide And the like. Among them, cordierite is a preferable material because its coefficient of thermal expansion is close to that of silicon integrated circuits.

本発明において,前記多孔質セラミック焼結体は,平
均気孔径が0.2μm以上であることが好ましい。この理
由は,平均気孔径が0.2μmよりも小さいと,前記放熱
体と多孔質セラミック焼結体との密着力が低下するから
である。即ち,密着力向上のための楔効果が低下するた
めである。
In the present invention, the porous ceramic sintered body preferably has an average pore diameter of 0.2 μm or more. The reason is that if the average pore diameter is smaller than 0.2 μm, the adhesion between the heat radiator and the porous ceramic sintered body is reduced. That is, the wedge effect for improving the adhesion is reduced.

また,本発明においては,気孔率が5%(容量比)以
上であることが好ましい。この理由は,気孔率が5%よ
り小さいと,前記放熱体と多孔質セラミック焼結体との
接触面積が小さくなり,接着力が低下するからである。
In the present invention, the porosity is preferably 5% (volume ratio) or more. The reason for this is that if the porosity is smaller than 5%, the contact area between the heat radiator and the porous ceramic sintered body becomes small, and the adhesive strength decreases.

しかして,上記のごとく放熱体と膜状素子とを設けた
電子回路基板は,その複数枚を積層状に重ね,これらの
間を前記多孔質中間層により接合して多層体とし,その
後多孔質セラミック焼結体の気孔に樹脂を含浸させて,
多層電子回路基板とする(第1図参照)。
In the electronic circuit board provided with the heat radiator and the film element as described above, a plurality of the heat radiators and the film elements are stacked one on top of another, and the space therebetween is joined by the porous intermediate layer to form a multilayer body. Pores of ceramic sintered body are impregnated with resin,
It is a multilayer electronic circuit board (see FIG. 1).

即ち,上記積層体は,上記電子回路基板の間に多孔質
中間層を介在させて各基板間を接着することにより形成
する。
That is, the laminate is formed by adhering the respective substrates with a porous intermediate layer interposed between the electronic circuit substrates.

上記多孔質中間層としては,ガラス等の無機質又は金
属の多孔質体を用いる。かかる多孔質中間層としては,
比較的融点の低いガラス,或いはセラミック,アルミニ
ウム,金,銀,銅,タングステンなどがある。また,上
記のごとく多孔質状とするためには,例えば粉末状の粒
子を基板面に塗布して,基板を重ね合わせた後,融点以
下の温度で加熱焼結する手段を用いる。また,このよう
に中間層を多孔質とするのは,後工程で多孔質焼結体基
板の中に樹脂を含浸させ易くするためである。
As the porous intermediate layer, an inorganic or metal porous material such as glass is used. As such a porous intermediate layer,
Glass with a relatively low melting point, or ceramic, aluminum, gold, silver, copper, tungsten, or the like is used. In order to form a porous material as described above, for example, a method is used in which powdery particles are applied to the substrate surface, the substrates are superposed, and then heated and sintered at a temperature equal to or lower than the melting point. The reason why the intermediate layer is made porous is to facilitate impregnation of the resin into the porous sintered body substrate in a later step.

また,該多孔質中間層の気孔率は,熱伝導率の低下を
防止する点と,熱膨張差から生ずる応力を緩和する理由
から,5〜50%であることが好ましい。
The porosity of the porous intermediate layer is preferably from 5 to 50% from the viewpoint of preventing a decrease in thermal conductivity and relaxing stress caused by a difference in thermal expansion.

また,かかる多孔質中間層は,電子回路基板の生成形
体を積層して高温に焼成することにより,形成すること
もできる。つまり,各電子回路基板はセラミックででき
ているため,この焼成により両電子回路基板間が焼結し
合って多孔質中間層を形成する。
Further, such a porous intermediate layer can also be formed by laminating formed forms of an electronic circuit board and firing them at a high temperature. That is, since each electronic circuit board is made of ceramic, the two electronic circuit boards are sintered by this firing to form a porous intermediate layer.

なお,上記多孔質中間層として金属を用いる場合,該
中間層に面する基板面上に前記膜状素子がある場合に
は,両者の間に電気絶縁層を介在させる。
When a metal is used as the porous intermediate layer, and when the film-shaped element is on the substrate surface facing the intermediate layer, an electric insulating layer is interposed between the two.

上記焼結体中に含浸させる樹脂としては,エポキシ樹
脂,ポリイミド樹脂,トリアジン樹脂,ポリバラバン酸
樹脂,ポリアミドイミド樹脂,シリコン樹脂,エポキシ
シリコン樹脂,アクリル酸樹脂,メタクリル酸樹脂,ア
ニリン酸樹脂,フェノール樹脂,ウレタン系樹脂,フラ
ン系樹脂,フッ素樹脂などがある。
Examples of the resin to be impregnated in the above sintered body include epoxy resin, polyimide resin, triazine resin, polybalavanic acid resin, polyamide imide resin, silicon resin, epoxy silicon resin, acrylic resin, methacrylic resin, anilic acid resin, and phenol resin. , Urethane-based resins, furan-based resins, and fluororesins.

また,これら樹脂を多孔質焼結体中に含浸させる方法
としては,樹脂を加熱溶融しておき,この中に電子回路
基板の積層体を浸漬する方法がある。また,樹脂を溶媒
に溶かして含浸させる方法,モノマー状態の樹脂を含浸
させた後ポリマー化する方法などがある。この含浸によ
り,多孔質中間層の気孔も上記樹脂により含浸される。
As a method of impregnating the porous sintered body with the resin, there is a method in which the resin is heated and melted, and the laminated body of the electronic circuit board is immersed therein. Further, there are a method of impregnating a resin by dissolving it in a solvent, and a method of impregnating a resin in a monomer state and then polymerizing the resin. By this impregnation, the pores of the porous intermediate layer are also impregnated with the resin.

また,積層体の接着は,実施例に示すごとく,加圧焼
成,多孔質中間層の焼付等により行う。
The bonding of the laminate is performed by pressure baking, baking of a porous intermediate layer, or the like, as shown in the examples.

また,上記のごとくして得た多層電子回路基板の表面
には,絶縁層を設け,その上に更に導体層を形成するこ
ともできる(第4図参照)。
Further, an insulating layer may be provided on the surface of the multilayer electronic circuit board obtained as described above, and a conductor layer may be further formed thereon (see FIG. 4).

上記絶縁層としては,樹脂又は樹脂と無機材料との複
合材を用いる。該樹脂としては,エポキシ樹脂,フェノ
ール樹脂,ポリイミド樹脂などを用いる。樹脂と無機材
料との複合材としては,エポキシ樹脂とガラスファイバ
ー,ガラス粒子入りポリイミド樹脂などを用いる。
As the insulating layer, a resin or a composite material of a resin and an inorganic material is used. As the resin, an epoxy resin, a phenol resin, a polyimide resin, or the like is used. As the composite material of the resin and the inorganic material, epoxy resin, glass fiber, polyimide resin containing glass particles, or the like is used.

上記導体層とは,電子回路導体をいう。該導体層の形
成方法としては,例えば金属箔をラミネートする方法,
蒸着法,スパッタリング法がある。
The conductor layer is an electronic circuit conductor. As a method of forming the conductor layer, for example, a method of laminating a metal foil,
There are a vapor deposition method and a sputtering method.

なお,上記のごとく形成した多層電子回路基板に対し
ては,樹脂を充填した後にスルーホールを形成し,無電
解銅メッキ等で回路間の導通を取ることができる。
The multilayer electronic circuit board formed as described above can be formed with a through hole after filling with a resin, and can be connected to each other by electroless copper plating or the like.

〔作用及び効果〕[Action and effect]

本発明の多層電子回路基板は,各電子回路基板が,多
孔質セラミック焼結体の表面に,膜状素子を直接形成さ
せているため,膜状素子が上記焼結体の粒子の間にくさ
び状に強固に密着,結合している。そのため,膜状素子
が剥離することはない。また,膜状素子が形成されてい
ない部分は,気孔内に樹脂が充填されているので,耐高
湿度性,耐高温度性にも優れている。
In the multilayer electronic circuit board of the present invention, since each electronic circuit board directly forms a film element on the surface of the porous ceramic sintered body, the film element is wedges between the particles of the sintered body. It is tightly adhered and bonded in a shape. Therefore, the film element does not peel off. Further, since the pores are filled with the resin in the portion where the film-shaped element is not formed, it is excellent in high humidity resistance and high temperature resistance.

また,放熱体も,同様に多孔質セラミック焼結体に密
着接合させているため,焼結体の粒子間にくさび状に強
固に結合している。そのため,基板上の膜状素子から発
生する熱を効率良く放熱体に伝熱させることができる。
In addition, since the heat radiator is also closely adhered to the porous ceramic sintered body, the radiator is firmly connected in a wedge shape between the particles of the sintered body. Therefore, the heat generated from the film-shaped element on the substrate can be efficiently transferred to the radiator.

また,樹脂を充填させることで基板全体の強度を増加
させ,割れにくくすると同時に機械加工を容易にし,カ
ケ,チッピング等の加工欠陥を防ぐことができる。ま
た,気体の透過を防ぎ使用環境からの影響を低減するこ
とに効果的である。
In addition, by filling the resin, the strength of the entire substrate is increased, and the substrate is hardly cracked, and at the same time, machining is facilitated, and processing defects such as chipping and chipping can be prevented. It is also effective in preventing gas permeation and reducing the influence from the use environment.

また,積層されている各電子回路基板の間は前記多孔
質中間層によって接着されている。そして,該多孔質中
間層は,無機質又は金属により構成してあるので伝熱性
が良い。それ故,各電子回路基板で発生した熱は多孔質
中間層からも外部へ効率良く放熱される。
Further, the stacked electronic circuit boards are bonded by the porous intermediate layer. Since the porous intermediate layer is made of an inorganic material or a metal, it has good heat conductivity. Therefore, the heat generated in each electronic circuit board is efficiently radiated to the outside also from the porous intermediate layer.

また,このように放熱性に優れているので,本発明の
多層電子回路基板は発熱量の大きいシリコン集積回路や
高抵抗素子を数多く搭載することができ,小型化,高集
積化に対処することができる。また,電源モジュールや
赤外線発生装置等の発熱の大きな装置の電子回路基板と
しても有用である。
Also, because of such excellent heat dissipation, the multilayer electronic circuit board of the present invention can mount a large number of silicon integrated circuits and high resistance elements which generate a large amount of heat, and can cope with miniaturization and high integration. Can be. It is also useful as an electronic circuit board for a device that generates a large amount of heat, such as a power supply module or an infrared ray generator.

したがって,本発明によれば,耐高湿度性,耐高温度
性,放熱性及び機械加工性に優れた,信頼性の高い多層
電子回路基板を提供することができる。
Therefore, according to the present invention, a highly reliable multilayer electronic circuit board excellent in high humidity resistance, high temperature resistance, heat dissipation, and machinability can be provided.

〔実施例〕〔Example〕

第1実施例 本発明の実施例にかかる多層電子回路基板につき,第
1図〜第6図を用いて説明する。
First Embodiment A multilayer electronic circuit board according to an embodiment of the present invention will be described with reference to FIGS.

該多層電子回路基板は,第1図に示すごとく,中央の
電子回路基板52の上下に電子回路基板51,53を積層し,
これらの間に多孔質中間層6を介設して,一体的に接着
し,更にその上下の表面に絶縁層3を介して導体層35を
形成し,8層回路としたものである。各電子回路基板は,
下記のごとく,放熱体を有する。
As shown in FIG. 1, the multilayer electronic circuit board has electronic circuit boards 51 and 53 laminated on and under a central electronic circuit board 52.
Between them, a porous intermediate layer 6 is interposed and integrally bonded, and furthermore, a conductor layer 35 is formed on the upper and lower surfaces via an insulating layer 3 to form an eight-layer circuit. Each electronic circuit board is
It has a radiator as shown below.

上記電子回路基板51は,第2図に示すごとく,基板と
しての多孔質セラミック焼結体11の表側面に,膜状導電
性回路512と膜状抵抗体513を,また裏側面にも同様に膜
状素子を密着形成したものである。また,上記多孔質セ
ラミック焼結体11には,その裏側面にザグリ加工して設
けた凹所16内にガラス接着剤48を介して金属放熱体41を
接合し,また開口部17にはセラミック放熱体42を接合し
ている。更に,多孔質セラミック焼結体11の表側面に
は,金属接着剤49を介して金属放熱体43を接合してい
る。
As shown in FIG. 2, the electronic circuit board 51 has a film-shaped conductive circuit 512 and a film-shaped resistor 513 on the front surface of the porous ceramic sintered body 11 as a substrate, and similarly on the back surface. This is a film-shaped element formed in close contact. A metal radiator 41 is bonded to the porous ceramic sintered body 11 via a glass adhesive 48 in a recess 16 formed by counterbore processing on the back surface of the porous ceramic sintered body 11. The radiator 42 is joined. Further, a metal radiator 43 is joined to the front surface of the porous ceramic sintered body 11 via a metal adhesive 49.

また,上記膜状素子の密着状態は,第3図に示すごと
く,多孔質セラミック焼結体11を構成する多数のセラミ
ック粒子10の間の凹凸表面部分に,膜状導電性回路512,
膜状抵抗体513の下面がくさび状に喰い込んだ状態にあ
る。
As shown in FIG. 3, the close contact state of the film-like element is formed by a film-like conductive circuit 512, a concave-convex surface between a large number of ceramic particles 10 constituting the porous ceramic sintered body 11.
The lower surface of the film-shaped resistor 513 is in a wedge-shaped state.

また,第4図に示すごとく,金属放熱体41を接合して
いる接着剤48も,多孔質セラミック焼結体11のセラミッ
ク粒子10の間に,くさび状に密着接合している。
As shown in FIG. 4, the adhesive 48 for bonding the metal heat radiator 41 is also tightly bonded between the ceramic particles 10 of the porous ceramic sintered body 11 in a wedge shape.

また,第5図に示すごとく,多孔質セラミック焼結体
11の開口部17とセラミック放熱体42の間も,該放熱体42
の側面が上記開口部17のセラミック粒子10の間にくさび
状に密着接合している。
In addition, as shown in FIG.
11 between the opening 17 and the ceramic radiator 42.
Are tightly joined in a wedge-like manner between the ceramic particles 10 in the opening 17.

更に,第6図に示すごとく,金属放熱体43を接合して
いる接着剤49と多孔質セラミック焼結体11との間も,該
接着剤49がセラミック粒子10の間にくさび状に接合して
いる。
Further, as shown in FIG. 6, the adhesive 49 is bonded between the ceramic particles 10 in a wedge-like manner between the adhesive 49 for bonding the metal radiator 43 and the porous ceramic sintered body 11. ing.

また,多孔質セラミック焼結体11の内部においては,
セラミック粒子10の間に形成された気孔内に,積層後に
おいて含浸された樹脂14が充填されている(第3図参
照)。多孔質中間層6の気孔内にも,同様に樹脂が含浸
されている。
Further, inside the porous ceramic sintered body 11,
The pores formed between the ceramic particles 10 are filled with a resin 14 impregnated after lamination (see FIG. 3). Resins are similarly impregnated in the pores of the porous intermediate layer 6.

また,他の電子回路基板52,53においても,上記電子
回路基板51と同様である。即ち,上記の各電子回路基板
51,52,53は,膜状導電性回路512,522,532,膜状抵抗体51
3,523,533を,その表面に形成している。また,各電子
回路基板は,上記のごとく放熱体を有する。また,電子
回路基板51,52,53における膜状導電性回路,膜状抵抗体
の間,更に最表面の導体層35との間には,基板−基板導
通スルーホール55,基板内スルーホール57がそれぞれ設
けてある。
The other electronic circuit boards 52 and 53 are the same as the above-mentioned electronic circuit board 51. That is, each of the above electronic circuit boards
51, 52, 53 are film-shaped conductive circuits 512, 522, 532, and film-shaped resistors 51
3,523,533 are formed on the surface. Further, each electronic circuit board has a radiator as described above. Further, between the film-like conductive circuits and the film-like resistors in the electronic circuit boards 51, 52 and 53, and further between the conductor layer 35 on the outermost surface, the board-to-board conduction through-hole 55, the through-hole 57 in the board, and the like. Are provided respectively.

また,各電子回路基板51,52,53の間には多孔質中間層
6が介在されている。上記多孔質中間層は,セラミック
系材料で構成されている。
A porous intermediate layer 6 is interposed between the electronic circuit boards 51, 52, 53. The porous intermediate layer is made of a ceramic material.

また,該多層電子回路基板は,積層体とした後に,そ
の全体を溶融樹脂中に浸漬して該樹脂を含浸させている
ので,その表面が該樹脂により被覆された状態にある。
In addition, since the multilayer electronic circuit board is immersed in a molten resin and impregnated with the resin after forming the laminate, the surface is in a state of being covered with the resin.

しかして,本実施例にかかる多層電子回路基板は,そ
れを構成する各電子回路基板に密着性良く膜状素子,放
熱体が接合してあり,また各電子回路基板の間には伝熱
性の良い多孔質中間層が配置されている。また,多孔質
セラミック焼結体の気孔内には樹脂が含浸されている。
それ故,該多層電子回路基板は,耐高湿度性,耐高温度
性,放熱性及び機械加工性に優れ,信頼性が高い。
Thus, the multilayer electronic circuit board according to the present embodiment has a film-like element and a heat radiator bonded to each of the electronic circuit boards constituting the multilayer electronic circuit board with good adhesion. A good porous intermediate layer is located. The pores of the porous ceramic sintered body are impregnated with a resin.
Therefore, the multilayer electronic circuit board is excellent in high humidity resistance, high temperature resistance, heat dissipation, and machinability, and has high reliability.

第2実施例 前記第1実施例に示したものと類似の8層回路の多層
電子回路基板(第1図参照)を作製し,テストを行っ
た。
Second Embodiment A multilayer electronic circuit board (see FIG. 1) having an eight-layer circuit similar to that shown in the first embodiment was manufactured and tested.

該多層電子回路基板は,まず電子回路基板Aと電子回
路基板Bとを作製しておき,電子回路基板Aの上下に電
子回路基板B,Bを積層することにより作製した。
The multilayer electronic circuit board was manufactured by first preparing an electronic circuit board A and an electronic circuit board B, and then laminating the electronic circuit boards B and B on and under the electronic circuit board A.

即ち,電子回路基板Aを作製するため,平均粒径が1.
8μmのコージェライト粉末100重量部に対してポリビニ
ールアルコール2重量部,ポリエチレングリコール1重
量部,ステアリン酸0.5重量部及び水100重量部を配合
し,ボールミル中で3時間混合した後,噴霧乾燥した。
That is, the average particle size is 1.
2 parts by weight of polyvinyl alcohol, 1 part by weight of polyethylene glycol, 0.5 parts by weight of stearic acid and 100 parts by weight of water were mixed with 100 parts by weight of cordierite powder of 8 μm, mixed in a ball mill for 3 hours, and spray-dried. .

この乾燥物を適量採取し,金属製押し型を用いて1.0t
/cm2の圧力で成形し,大きさが220mm×250mm×1.2mm,密
度1.5g/cm3(60vol%)のセラミックス生成形体を得
た。
Take an appropriate amount of the dried product and use a metal stamping die for 1.0t.
It was molded under a pressure of / cm 2 to obtain a ceramic forming body having a size of 220 mm × 250 mm × 1.2 mm and a density of 1.5 g / cm 3 (60 vol%).

この生成形体に穴明けをし,20×20mmの開口部を設け
た。
The resulting feature was perforated and provided with a 20 × 20 mm opening.

一方,放熱体42(第2図参照)を作るため,平均粒径
が0.30μmのアルミナ粉末100重量部とポリアクリル酸
エステル12重量部,ポリエステル分散剤1重量部,ジブ
チルフタレート2重量部及び酢酸エチル50重量部を配合
し,ボールミル中で3時間混合した後,シート成形し生
成形体を得た。この生成形体を空気中で1650℃で焼成し
た。
On the other hand, 100 parts by weight of an alumina powder having an average particle size of 0.30 μm, 12 parts by weight of a polyacrylate, 1 part by weight of a polyester dispersant, 2 parts by weight of dibutyl phthalate, and After mixing 50 parts by weight of ethyl and mixing in a ball mill for 3 hours, a sheet was formed to obtain a formed product. The green body was fired at 1650 ° C. in air.

その結果,密度4.02g/cm3,気孔率0.2%の緻密質アル
ミナ焼結体を得た。その後,19.2×19.2mmに切断し,放
熱体42となして,前記コージェライト生成形体の開口部
17に装填した(第2図参照)。
As a result, a dense alumina sintered body having a density of 4.02 g / cm 3 and a porosity of 0.2% was obtained. After that, it is cut to 19.2 x 19.2 mm and used as a heat radiator 42, and the opening of the cordierite forming body
17 (see FIG. 2).

次いで,このコージェライト成形体を空気中,1400℃
で焼成して,多孔質コージェライト焼結体を形成した。
Next, the cordierite compact is placed in air at 1400 ° C.
To form a porous cordierite sintered body.

得られた多孔質コージェライト焼結体は,厚み0.25m
m,密度1.8g/cm3,気孔率30%,平均気孔径3.2μmであっ
た。
The obtained porous cordierite sintered body has a thickness of 0.25 m.
m, density 1.8 g / cm 3 , porosity 30%, and average pore diameter 3.2 μm.

また,前記緻密質アルミナ焼結体からなる放熱体と多
孔質コージェライト焼結体との接合強度は,8.9kg/mm2
極めて強固に接合していた。
Also, the joint strength between the heat radiator made of the dense alumina sintered body and the porous cordierite sintered body was extremely strong, 8.9 kg / mm 2 .

次いで,この多孔質コージェライト焼結体の表面に,
平均粒径11μmの銀−パラジウム粒子を48%含んだ粘度
80Pa・sのペーストを,325メッシュのスクリーンで印刷
を行い,導体回路を形成した。次いで,平均粒径16μm
の酸化ルテニウム粒子を38%含んだ粘度170Pa・sのペ
ーストを,325メッシュのスクリーンで印刷を行い,前記
導体上に薄膜の抵抗体を形成した。
Next, on the surface of this porous cordierite sintered body,
Viscosity containing 48% silver-palladium particles with an average particle size of 11μm
An 80 Pa · s paste was printed on a 325 mesh screen to form a conductive circuit. Next, average particle size 16μm
A paste having a viscosity of 170 Pa · s containing 38% of ruthenium oxide particles was printed on a 325-mesh screen to form a thin-film resistor on the conductor.

以上により,電子回路基板Aを作製した。 Thus, the electronic circuit board A was manufactured.

次に,電子回路基板Bを作製するため,平均粒径が0.
68μmのアルミナ粉末50重量部に対して,平均粒径が0.
32μmのアルミナ粉末50重量部とポリアクリル酸エステ
ル12重量部,ポリエステル分散剤1重量部,ジブチルフ
タレート2重量部及び酢酸エチル50重量部を配合し,ボ
ールミル中で3時間混合した後,シート成形した。
Next, in order to fabricate the electronic circuit board B, the average particle size was set at 0.
For 50 parts by weight of 68 μm alumina powder, the average particle size is 0.
50 parts by weight of 32 μm alumina powder, 12 parts by weight of polyacrylate, 1 part by weight of polyester dispersant, 2 parts by weight of dibutyl phthalate, and 50 parts by weight of ethyl acetate were mixed, mixed in a ball mill for 3 hours, and formed into a sheet. .

この生成形体に20×20mm,深さ0.2mmのざぐりを行い,
凹所16(第2図参照)を形成した。
A counterbore of 20 × 20mm and 0.2mm depth was made on this generated form.
A recess 16 (see FIG. 2) was formed.

次いで,このものを空気中,1550℃で1時間焼成して
多孔質アルミナ焼結体とした。
Next, this was fired in air at 1550 ° C. for 1 hour to obtain a porous alumina sintered body.

該焼結体は,厚み0.45mm,密度2.9g/cm2,気孔率25%,
平均気孔径0.29μmであった。
The sintered body had a thickness of 0.45 mm, a density of 2.9 g / cm 2 , a porosity of 25%,
The average pore diameter was 0.29 μm.

この多孔質アルミナ焼結体の表面に,前記多孔質コー
ジェライト焼結体の表面に印刷したと同様の銀−パラジ
ウム粒子を塗布し回路を形成した。次いで,平均粒径16
μmの酸化ルテニウム粒子を38%含んだ粘度170Pa・s
のペーストを,325メッシュのスクリーンで印刷を行い,
前記導体上に薄膜の抵抗体を形成した。
The same silver-palladium particles as those printed on the surface of the porous cordierite sintered body were applied to the surface of the porous alumina sintered body to form a circuit. Next, the average particle size
170Pa · s containing 38% of ruthenium oxide particles of μm
Is printed on a 325 mesh screen.
A thin film resistor was formed on the conductor.

次いで,前記多孔質アルミナ焼結体のざぐり凹所16
に,接着剤としてのK2O−SiO2−PbO系の平均粒径13μm
のガラス粉末を厚み30μmに置き,その上に放熱体41
(第2図参照)としての42アロイ板(ニッケル−鉄合
金)を置き,加熱し,固定した。なお,42アロイ板の表
面は,クロム酸で粗化してある。
Next, the counterbore recess 16 of the porous alumina sintered body was used.
The average particle size of the K 2 O-SiO 2 -PbO system as an adhesive was 13 μm.
Glass powder with a thickness of 30 μm, and radiator 41
A 42 alloy plate (nickel-iron alloy) was placed, heated, and fixed (see FIG. 2). The surface of the 42 alloy plate was roughened with chromic acid.

以上により,電子回路基板Bを作製した。 Thus, the electronic circuit board B was manufactured.

次に,前記多孔質コージェライト焼結体からなる電子
回路基板A(第2層)と,前記多孔質アルミナ焼結体か
らなる電子回路基板B(第1,第3層)を前記第1図のよ
うに3層に積層した。
Next, an electronic circuit board A (second layer) made of the porous cordierite sintered body and an electronic circuit board B (first and third layers) made of the porous alumina sintered body are shown in FIG. In three layers.

このとき,多孔質中間層6(第1図参照)を形成する
ため,各層間に平均粒径13μmのAl2O3−SiO2−TiO2
セラミック粉末を約100μm塗布し,各焼結体を張り合
わせた。これを空気中で820℃で焼きつけた。この時の
代表的抵抗値は,350Ω/□であった。
At this time, in order to form the porous intermediate layer 6 (see FIG. 1), an Al 2 O 3 —SiO 2 —TiO 2 ceramic powder having an average particle diameter of 13 μm was applied to each layer to a thickness of about 100 μm, and each sintered body was formed. Was stuck. This was baked at 820 ° C. in air. The typical resistance value at this time was 350Ω / □.

この結果,第1,第3層の多孔質アルミナ焼結体にガラ
スを介して接着された放熱体と,多孔質アルミナ焼結体
との密着強度は4.3kg/mm2であり,接着層の気孔率は13
%であった。
As a result, the adhesion strength between the heat radiator bonded to the porous alumina sintered bodies of the first and third layers via glass and the porous alumina sintered body was 4.3 kg / mm 2 , and the adhesive layer Porosity is 13
%Met.

また,多孔質中間層は,平均気孔径,気孔率が5.0μ
m,35%の多孔質層であり,焼結体間の密着度は2.5kg/mm
2で良好な密着性を有していた。
The porous intermediate layer has an average pore diameter and porosity of 5.0μ.
m, 35% porous layer, adhesion between sintered bodies is 2.5kg / mm
2 had good adhesion.

次いで,放熱板を接着するために,この積層体の表裏
面に,まずスパッタリングにより,2×2mmの正方形をし
た95%Sn−5%Pb半田を,縦横各5個づつ14×14mmの正
方形に配列した。次いで,15×15mmの厚さ1mmの放熱用銅
板を,前記半田面に装着して,260℃で加熱して接着し
た。この密着強度は12kg/mm2で,半田は約6%の気孔を
有して接着していた。
Next, to bond the heat sink, on the front and back surfaces of the laminate, first, a 2 x 2 mm square 95% Sn-5% Pb solder was formed by sputtering into 5 x 14 x 14 mm squares. Arranged. Next, a heat-dissipating copper plate of 15 mm × 15 mm and a thickness of 1 mm was mounted on the solder surface, and bonded by heating at 260 ° C. The adhesion strength was 12 kg / mm 2 , and the solder was bonded with about 6% pores.

次いで,前記積層体の表裏に,0.05mmのBTレジン系プ
リプレグと18μmの銅箔を配置し真空プレスを行って表
裏に更に2層の導体層を形成した。
Next, a 0.05 mm BT resin-based prepreg and 18 μm copper foil were arranged on the front and back of the laminate, and vacuum pressing was performed to form two more conductive layers on the front and back.

次いで,直径0.40mmのダイヤモンドドリルで表裏及び
中間層まで穴明けし,同様にして15μmの無電解銅メッ
キを施して導通をとった後,表裏導体層をエッチングに
より回路形成を行った。
Next, holes were drilled to the front and back and the intermediate layer with a diamond drill having a diameter of 0.40 mm, and electroless copper plating was performed in a similar manner to 15 μm to establish conduction, and then the front and back conductor layers were etched to form a circuit.

次に,二液性のエポキシ樹脂を含浸し,硬化して多層
電子回路基板を得た。この含浸は,基板を真空下にお
き,脱泡した樹脂を真空下で含浸し,次いで熱硬化する
方法により行った。
Next, a two-component epoxy resin was impregnated and cured to obtain a multilayer electronic circuit board. This impregnation was performed by placing the substrate under vacuum, impregnating the defoamed resin under vacuum, and then thermally curing.

このようにして得られた多層電子回路基板は8層回路
であり,総厚みは1.55mmで極めて薄いものであった。し
かも,この多層電子回路基板は,1cm2当たり膜状の抵抗
体が35個,コンデンサー素子が8個内蔵された極めて実
装密度の高いものであった。
The multilayer electronic circuit board thus obtained was an eight-layer circuit, and the total thickness was 1.55 mm, which was extremely thin. In addition, this multilayer electronic circuit board had an extremely high mounting density in which 35 film-like resistors and 8 capacitor elements were incorporated per cm 2 .

また,この多層電子回路基板の全体の熱伝導率は8w/m
・Kであり,極めて熱放散性に優れていた。
The overall thermal conductivity of this multilayer electronic circuit board is 8w / m
-K, which was extremely excellent in heat dissipation.

この多層電子回路基板につき,20℃で30秒,260℃で30
秒のオイルディップ繰り返し耐熱試験を実施した。その
結果,500サイクルでも断線,基板間剥離或いは放熱体の
剥離などの不良は何ら発生しなかった。
For this multilayer electronic circuit board, 30 seconds at 20 ° C and 30 seconds at 260 ° C
An oil dip repetition heat resistance test of 2 seconds was performed. As a result, no defect such as disconnection, peeling between substrates or peeling of a heat radiator occurred at 500 cycles.

また,この多層電子回路基板を85℃・85%RHで1000時
間,高温,高湿寿命試験を行ったところ,抵抗値の変化
率は,0.18%で極めて安定であった。
When the multilayer electronic circuit board was subjected to a high-temperature, high-humidity life test at 85 ° C and 85% RH for 1000 hours, the rate of change of the resistance value was extremely stable at 0.18%.

また,前記の多層電子回路基板においては,それぞれ
長さ350mm,幅250mmの基板に,12万穴以上の穴明を行うこ
とができた。このように,本発明の電子回路基板は強度
が高く,機械加工性に優れている。
Further, in the above-mentioned multilayer electronic circuit board, more than 120,000 holes could be drilled on a board having a length of 350 mm and a width of 250 mm. Thus, the electronic circuit board of the present invention has high strength and excellent machinability.

〔比較例〕(Comparative example)

また,比較のために,上記第2実施例において,放熱
体を多孔質セラミック焼結体と直接接続することなく,
また金属あるいは無機材料の接着剤で接着することな
く,単に含浸樹脂で接着した。そして,第2実施例と同
様の多層電子回路基板を製造した。その結果,全体の熱
伝導率は2.6W/m・Kであった。
For comparison, in the second embodiment, the radiator was not directly connected to the porous ceramic sintered body.
In addition, they were simply bonded with an impregnated resin without bonding with a metal or inorganic material adhesive. Then, a multilayer electronic circuit board similar to that of the second embodiment was manufactured. As a result, the overall thermal conductivity was 2.6 W / m · K.

また放熱体を使用しなかった時は全体の熱伝導率は0.
9W/m・Kであった。いずれも,第2実施例の場合に比し
て,放熱性が悪いことが分る。
Also, when no radiator is used, the overall thermal conductivity is 0.
It was 9 W / m · K. In each case, it is understood that the heat dissipation is poor as compared with the case of the second embodiment.

更に,比較のために,上記第2実施例と同様にして多
孔質コージェライト焼結体を製作した後,すぐに同様の
二液性のエポキシ樹脂を含浸し,同時に銅箔を積層して
基板を得た。次いで,エッチングにより回路形成を行っ
た。この時のピール強度は1.8kg/cmで,低かった。
Further, for the sake of comparison, a porous cordierite sintered body was manufactured in the same manner as in the second embodiment, immediately impregnated with the same two-component epoxy resin, and at the same time, a copper foil was laminated on the substrate. I got Next, a circuit was formed by etching. The peel strength at this time was 1.8 kg / cm, which was low.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第6図は第1実施例の多層電子回路基板を示
し,第1図はその断面図,第2図は1つの電子回路基板
の断面図,第3図〜第6図は膜状素子,各放熱体と多孔
質セラミック焼結体との接合状態を示す要部拡大断面図
である。 10……セラミック粒子, 11……多孔質セラミック焼結体, 14……樹脂, 3……絶縁層,35……導体層, 41,42,43……放熱体, 51,52,53……電子回路基板, 512,522,532……膜状導電性回路, 513,523,533……膜状抵抗体素子, 6……多孔質中間層,
1 to 6 show a multilayer electronic circuit board according to a first embodiment, FIG. 1 is a sectional view thereof, FIG. 2 is a sectional view of one electronic circuit board, and FIGS. FIG. 3 is an enlarged sectional view of a main part showing a bonding state between a porous element, a radiator and a porous ceramic sintered body. 10 ... ceramic particles, 11 ... porous ceramic sintered body, 14 ... resin, 3 ... insulating layer, 35 ... conductor layer, 41, 42, 43 ... radiator, 51, 52, 53 ... Electronic circuit board, 512,522,532 …… Film conductive circuit, 513,523,533 …… Film resistor element, 6… Porous intermediate layer,

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質セラミック焼結体の表面に膜状の導
電性回路,抵抗体,コンデンサー等の膜状素子を直接形
成すると共に該多孔質セラミック焼結体に放熱体を接着
した電子回路基板を作製し,その後該電子回路基板を積
層すると共に該電子回路基板の間に無機質又は金属の多
孔質中間層を介在させて接着し,次いで上記多孔質セラ
ミック焼結体の気孔内に樹脂を充填してなることを特徴
とする多層電子回路基板。
An electronic circuit in which a film-like conductive circuit, a resistor, a capacitor or the like is directly formed on a surface of a porous ceramic sintered body and a radiator is bonded to the porous ceramic sintered body. A substrate is manufactured, and thereafter, the electronic circuit boards are laminated, and an inorganic or metal porous intermediate layer is interposed between the electronic circuit boards and bonded. Then, a resin is poured into the pores of the porous ceramic sintered body. A multilayer electronic circuit board characterized by being filled.
【請求項2】第1請求項において,多層電子回路基板
は,その表面に樹脂又は樹脂と無機材料の複合材とから
なる絶縁層を介して,導体層を形成していることを特徴
とする多層電子回路基板。
2. The multilayer electronic circuit board according to claim 1, wherein a conductive layer is formed on the surface of the multilayer electronic circuit board via an insulating layer made of a resin or a composite material of a resin and an inorganic material. Multilayer electronic circuit board.
JP1247048A 1989-08-03 1989-09-22 Multilayer electronic circuit board Expired - Lifetime JP2803755B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1201757A JP2787953B2 (en) 1989-08-03 1989-08-03 Electronic circuit board
JP1247048A JP2803755B2 (en) 1989-09-22 1989-09-22 Multilayer electronic circuit board
US07/556,521 US5144536A (en) 1989-08-03 1990-07-24 Electronic circuit substrate
KR1019900011819A KR100211852B1 (en) 1989-08-03 1990-08-01 Electronic circuit board and fabricating method thereof
DE69008963T DE69008963T2 (en) 1989-08-03 1990-08-02 Electronic circuit substrate.
EP90114875A EP0411639B1 (en) 1989-08-03 1990-08-02 Electronic circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247048A JP2803755B2 (en) 1989-09-22 1989-09-22 Multilayer electronic circuit board

Publications (2)

Publication Number Publication Date
JPH03108796A JPH03108796A (en) 1991-05-08
JP2803755B2 true JP2803755B2 (en) 1998-09-24

Family

ID=17157640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247048A Expired - Lifetime JP2803755B2 (en) 1989-08-03 1989-09-22 Multilayer electronic circuit board

Country Status (1)

Country Link
JP (1) JP2803755B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284836A (en) * 1997-04-08 1998-10-23 Hitachi Ltd Collectively laminated ceramic wiring board and its manufacture
JP4771583B2 (en) * 1999-12-01 2011-09-14 イビデン株式会社 Package substrate
WO2007094123A1 (en) * 2006-02-14 2007-08-23 Murata Manufacturing Co., Ltd. Multilayered ceramic electronic component, multilayered ceramic substrate, and method for manufacturing multilayered ceramic electronic component
JP4862893B2 (en) * 2006-06-02 2012-01-25 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
JP5679688B2 (en) 2010-03-31 2015-03-04 キヤノン株式会社 Liquid discharge head and manufacturing method thereof

Also Published As

Publication number Publication date
JPH03108796A (en) 1991-05-08

Similar Documents

Publication Publication Date Title
KR100211852B1 (en) Electronic circuit board and fabricating method thereof
US7198996B2 (en) Component built-in module and method for producing the same
US6245171B1 (en) Multi-thickness, multi-layer green sheet lamination and method thereof
US6258192B1 (en) Multi-thickness, multi-layer green sheet processing
JP3441368B2 (en) Multilayer wiring board and manufacturing method thereof
EP0535711A2 (en) Method for producing multilayered ceramic substrate
JP2803755B2 (en) Multilayer electronic circuit board
JPS62126694A (en) Multilayer electronic circuit substrate
JP4895448B2 (en) Multilayer wiring board
JP2803754B2 (en) Multilayer electronic circuit board
JP2006210536A (en) Method of manufacturing electronic component and wiring board therewith
JP2803752B2 (en) Multilayer electronic circuit board
JPH02153589A (en) Printed wiring board provided with thick film element
JP2803751B2 (en) Multilayer electronic circuit board
JPH09293968A (en) Method of manufacturing multilayer wiring substrate
JP2003218531A (en) Multilayered wiring board
JP3023492B2 (en) Manufacturing method of composite printed wiring board
JP2001015872A (en) Wiring board insulating sheet and manufacture of wiring board using the same
JP2753741B2 (en) Manufacturing method of electronic circuit board
JP2753743B2 (en) Manufacturing method of electronic circuit board
JP2753744B2 (en) Manufacturing method of electronic circuit board
JP3994795B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP4089356B2 (en) Manufacturing method of multilayer ceramic substrate
JP2007317712A (en) Composite wiring board having built-in component and manufacturing method thereof
JPH1093246A (en) Multilayer wiring board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12