JP2798358B2 - Method for producing polymer composite in which fine particles are dispersed - Google Patents
Method for producing polymer composite in which fine particles are dispersedInfo
- Publication number
- JP2798358B2 JP2798358B2 JP25461794A JP25461794A JP2798358B2 JP 2798358 B2 JP2798358 B2 JP 2798358B2 JP 25461794 A JP25461794 A JP 25461794A JP 25461794 A JP25461794 A JP 25461794A JP 2798358 B2 JP2798358 B2 JP 2798358B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- metal
- layer
- polymer layer
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は微粒子を分散させた高分
子複合物の製造方法に係り、詳しくはナイロン11から
なる高分子を熱分解した後に冷却して再生高分子を作製
し、この再生高分子から得られた高分子層の表面に金属
を密着した後に、この高分子層を加熱して金属あるいは
金属酸化物の微粒子を高分子層中に分散させる高分子複
合物の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer composite in which fine particles are dispersed, and more particularly, to a method for producing a polymer composite from nylon 11.
The polymer is thermally decomposed and then cooled to produce a regenerated polymer. After a metal is adhered to the surface of the polymer layer obtained from the regenerated polymer, the polymer layer is heated to form a metal or metal oxide. The present invention relates to a method for producing a polymer composite in which fine particles of a substance are dispersed in a polymer layer.
【0002】[0002]
【従来の技術】今日、金属あるいは金属酸化物の微粒子
−高分子複合物の製造方法として、高分子を真空蒸着し
て得られた熱力学的に準安定構造を有する高分子層に真
空蒸着して得られた金属層を積層した後、この高分子層
を熱力学的に安定させることによって金属層の金属を超
微粒子化させることが提案され、特開平3−27306
0号公報に開示されている。2. Description of the Related Art Today, as a method for producing a metal-metal oxide fine particle-polymer composite, a polymer layer having a thermodynamically metastable structure obtained by vacuum-depositing a polymer is vacuum-deposited. It has been proposed that, after laminating the obtained metal layers, the polymer layer is thermodynamically stabilized to make the metal of the metal layer ultrafine.
No. 0 discloses this.
【0003】あるいは、他の方法としては、特開平4−
356529号公報に記載されているように、高分子を
加熱して低粘度の液体とし、これを100℃/秒以上の
冷却速度で超冷却して熱力学的に準安定構造を有する高
分子層を作製し、この高分子の表面に金属層を密着した
後、該融解温度以下で加熱して高分子層を安定化させる
ことで金属層の金属を微粒子化して高分子層内に分散さ
せる方法がある。このようにして得られた高分子複合物
は、例えば有機溶剤に溶解してペーストとし、これをセ
ラミックス基材上へ塗布することによって電極、配線、
回路等を作製していた。[0003] Alternatively, another method is disclosed in
As described in JP-A-356529, a polymer is heated to form a low-viscosity liquid, which is supercooled at a cooling rate of 100 ° C./sec or more, and a polymer layer having a thermodynamically metastable structure. A method in which a metal layer is adhered to the surface of the polymer, and then heated at a temperature equal to or lower than the melting temperature to stabilize the polymer layer so that the metal of the metal layer is finely divided and dispersed in the polymer layer. There is. The polymer composite obtained in this manner is, for example, dissolved in an organic solvent to form a paste, and the paste is applied to a ceramic substrate to form an electrode, wiring,
Circuits and the like were being manufactured.
【0004】また、一方、金属だけでなく有機色素も同
様に熱力学的に準安定構造を有する高分子層に色素蒸着
膜を作製した後、高分子層を熱処理することによって1
分子から数分子のクラスターとして高分子中に分散させ
ていた。この色素分子を分散させた高分子複合物は光学
フィルター、非線型光学素子等に応用されようとしてい
る。On the other hand, not only metals but also organic dyes are similarly thermodynamically prepared by forming a dye-deposited film on a polymer layer having a metastable structure and then subjecting the polymer layer to heat treatment.
It was dispersed in the polymer as a cluster of molecules to several molecules. The polymer composite in which the dye molecules are dispersed is going to be applied to optical filters, non-linear optical elements and the like.
【0005】[0005]
【発明が解決しようとする課題】上記高分子複合物を作
製する過程で、熱力学的に準安定構造を有する高分子層
を作製する必要がある。真空蒸着や金型に流し込んで急
冷固化する方法が実験的にも容易でしかも確実に実施で
きるところから一般的であった。しかし、このような方
法では、熱力学的に準安定構造を有する高分子層や高分
子複合物を短時間に多量に生産することはできない大き
な問題があった。本発明は、このような問題点を改善す
るものであり、熱力学的に準安定構造を有するナイロン
11の再生高分子を多量に回収し、この再生高分子を用
いて金属あるいは金属酸化物の微粒子を高分子層中に分
散させることができる高分子複合物の製造方法を提供す
ることを目的とする。In the process of preparing the above-mentioned polymer composite, it is necessary to prepare a polymer layer having a thermodynamically metastable structure. A method of vacuum solidification and rapid cooling and solidification by pouring into a mold has been generally used because it can be easily and experimentally performed. However, such a method has a serious problem in that a large amount of a polymer layer or a polymer composite having a thermodynamically metastable structure cannot be produced in a short time. The present invention has been made to solve such a problem, and a nylon having a thermodynamically metastable structure is provided.
A method for producing a polymer composite which can recover a large amount of the regenerated polymer of No. 11 and disperse metal or metal oxide fine particles in the polymer layer using the regenerated polymer. I do.
【0006】[0006]
【課題を解決するための手段】即ち、本発明の微粒子を
分散させた高分子複合物の製造方法においては、減圧下
にある閉鎖した空間でナイロン11からなる高分子材料
を熱分解して気化し、この気化物を該空間の非加熱領域
で冷却固化することで熱力学的に準安定構造を有するペ
ースト状のナイロン11の再生高分子を回収し、この再
生高分子から得られた薄膜の高分子層の表面に真空蒸着
により得られた金属層を付着した後、高分子層を加熱し
て金属層から微粒子化した金属あるいは金属酸化物の微
粒子を高分子層内に分散させる方法にある。That is, in the method of the present invention for producing a polymer composite in which fine particles are dispersed, a polymer material made of nylon 11 is thermally decomposed in a closed space under reduced pressure. Paix However, having a thermodynamically metastable structure by cooling and solidifying the vapor product in a non-heated region of the space
The recycled polymer of nylon 11 in the form of a paste is recovered , and a metal layer obtained by vacuum evaporation is adhered to the surface of the polymer layer of the thin film obtained from the recycled polymer. There is a method of dispersing fine particles of metal or metal oxide from the layer into the polymer layer.
【0007】[0007]
【0008】本発明方法の第1の工程は、図1に示す装
置により再生高分子を作製する。この再生高分子の製造
装置1は高分子材料を熱分解した後に冷却固化するガラ
ス管2、高分子材料を加熱する加熱炉3、そしてガラス
管2内を減圧にする減圧装置4からなっている。In the first step of the method of the present invention, a regenerated polymer is produced using the apparatus shown in FIG. The apparatus 1 for producing a recycled polymer comprises a glass tube 2 for thermally decomposing and solidifying a polymer material, and a heating furnace 3 for heating the polymer material, and a pressure reducing device 4 for reducing the pressure inside the glass tube 2. .
【0009】上記ガラス管2は電気炉からなる加熱炉3
に挿入され、ナイロン11のペレットからなる高分子材
料5を入れた容器6を加熱するようになっている。ガラ
ス管2の両端領域は加熱炉3から左右に突出して露出
し、一方の端部7は栓等の開閉器8により開閉可能にな
り、高分子材料5を容器6に入れる挿入口になってい
る。また他方の端部10は、ガラス管2内を減圧にする
ために配管11を連結している。この管11は開閉弁1
2、トラップ13、ロータリーポンプ14からなる減圧
装置4に連結している。The glass tube 2 is a heating furnace 3 composed of an electric furnace.
To heat a container 6 containing a polymer material 5 composed of nylon 11 pellets. Both end regions of the glass tube 2 project right and left from the heating furnace 3 and are exposed, and one end 7 can be opened and closed by a switch 8 such as a stopper, and serves as an insertion port for putting the polymer material 5 into the container 6. I have. The other end 10 is connected to a pipe 11 to reduce the pressure inside the glass tube 2. This pipe 11 is an on-off valve 1
2, a trap 13 and a rotary pump 14 connected to a decompression device 4.
【0010】まずガラス管2の開閉器8を開けた後、ガ
イド棒(図示せず)により容器6を入口まで移動させて
高分子材料5を容器6に入れ、そして容器6をガイド棒
により加熱領域まで押し込んで設置する。その後、開閉
器8を閉じ開閉弁12を開放してロータリーポンプ14
の作動により、ガラス管2内を10-2〜10-4torr
まで減圧し、これを維持する。そして、加熱炉3によっ
て高分子材料5を熱分解するまで加熱して気化させた
後、気化物を加熱炉3から突出したガラス管2の空冷領
域17で付着させ、再生高分子19を回収する。First, after the switch 8 of the glass tube 2 is opened, the container 6 is moved to the inlet by a guide rod (not shown), the polymer material 5 is put into the container 6, and the container 6 is heated by the guide rod. Push down to the area and install. Thereafter, the switch 8 is closed, the on-off valve 12 is opened, and the rotary pump 14 is opened.
, The inside of the glass tube 2 is 10 −2 to 10 −4 torr.
Reduce pressure and maintain. Then, the polymer material 5 is heated and vaporized by the heating furnace 3 until the polymer material 5 is thermally decomposed, and then the vaporized substance is adhered to the air-cooled region 17 of the glass tube 2 protruding from the heating furnace 3 to recover the regenerated polymer 19. .
【0011】得られたナイロン11の再生高分子19
は、分子量1,000〜5,000の低粘度のペースト
状あるいは硬度の小さい柔軟な固形物状の高分子であ
り、熱力学的に準安定構造を有する材料になっている。
これは元の高分子材料の分子量に比べて1/10〜1/
100程度にかなり小さくなっている。また再生高分子
19は、溶剤を含んでいないために室温雰囲気下に放置
しても粘度等に変化を起こさない。Regenerated polymer 19 of nylon 11 obtained
Is a low-viscosity paste-like polymer having a molecular weight of 1,000 to 5,000 or a soft solid material having a small hardness, and is a material having a thermodynamically metastable structure.
This is 1/10 to 1/1 / of the molecular weight of the original polymer material.
It is quite small, about 100. Further, since the regenerated polymer 19 does not contain a solvent, it does not change in viscosity or the like even when left in an atmosphere at room temperature.
【0012】[0012]
【0013】次いで、第2工程として図2に示すよう
に、再生高分子19をガラス等に基材20上に設置した
後に、ロールで押し付けて厚さ0.005〜0.1mm
の薄膜の高分子層21を作製する。このように高分子層
21を薄膜にするのは、後述するように金属もしくは金
属酸化物の微粒子を全体にわたって均一に分散させるた
めである。Next, as shown in FIG. 2, as a second step, the recycled polymer 19 is placed on a substrate 20 on glass or the like, and then pressed with a roll to a thickness of 0.005 to 0.1 mm.
A thin polymer layer 21 is prepared. The reason why the polymer layer 21 is formed into a thin film is to uniformly disperse metal or metal oxide fine particles throughout as described later.
【0014】続いて、基材20上に設置された再生高分
子からなる高分子層21は、図3に示すようにその表面
に金属層23を密着させる工程へ移される。この工程で
は真空蒸着装置によって金属を高分子層21表面に蒸着
させるか、もしくは金属箔、金属板を直接高分子層21
に密着させる等の方法で金属層23を高分子層21に積
層させる。その金属材料としては金、銀、白金、銅、
鉄、ニッケル、コバルト、スズ、亜鉛、セリウム、イッ
トリウム等であり、特に限定されない。Subsequently, the polymer layer 21 made of the regenerated polymer placed on the base material 20 is moved to a step of bringing the metal layer 23 into close contact with the surface as shown in FIG. In this step, a metal is vapor-deposited on the surface of the polymer layer 21 by a vacuum vapor deposition device, or a metal foil or a metal plate is directly
The metal layer 23 is laminated on the polymer layer 21 by, for example, bringing the polymer layer into close contact with the polymer layer 21. Gold, silver, platinum, copper,
Iron, nickel, cobalt, tin, zinc, cerium, yttrium and the like are not particularly limited.
【0015】金属層22と高分子層21とを密着した積
層物24を加熱し、高分子層21を安定状態へ移行さ
せ、高分子複合物26を得る。この工程では前記金属層
付の高分子層21を恒温槽中で高分子材料の融解温度以
下において加熱する。その結果、図4に示されるように
金属層22の金属は、粒径1,000nm以下、好まし
くは300nm以下、より好ましくは100nm以下の
金属もしくは金属酸化物の微粒子25となって高分子層
21内へ拡散浸透し、この状態は高分子層21が完全に
緩和するまで続く。高分子層21に付着している金属層
22はその厚さも減少して最終的に無くなる。The laminate 24 in which the metal layer 22 and the polymer layer 21 are in close contact with each other is heated to shift the polymer layer 21 to a stable state, thereby obtaining a polymer composite 26. In this step, the polymer layer 21 with the metal layer is heated in a thermostat at a temperature lower than the melting temperature of the polymer material. As a result, as shown in FIG. 4, the metal of the metal layer 22 becomes fine particles 25 of a metal or metal oxide having a particle size of 1,000 nm or less, preferably 300 nm or less, more preferably 100 nm or less. This state continues until the polymer layer 21 is completely relaxed. The thickness of the metal layer 22 adhering to the polymer layer 21 also decreases and eventually disappears.
【0016】前記微粒子25が金属酸化物の場合には、
それはCu2 O、Fe3 O4 、ZnO、Y2 O3 等であ
る。When the fine particles 25 are a metal oxide,
It is Cu 2 O, Fe 3 O 4 , ZnO, Y 2 O 3 or the like.
【0017】尚、この工程で高分子層21を加熱する
と、高分子層21が金属もしくは金属酸化物の微粒子2
5との相互作用で固有の着色を示し、金属もしくは金属
酸化物の微粒子25が高分子層21内へ浸透しているこ
とがわかる。また、この色は金属もしくは金属酸化物の
種類、金属もしくは金属酸化物の微粒子径、高分子の種
類により変化しうる。このようにして得られた高分子複
合物26は、図4に示すように微粒子25が独立した状
態で分離分散している。When the polymer layer 21 is heated in this step, the polymer layer 21 is coated with fine particles 2 of metal or metal oxide.
5 shows an intrinsic coloring due to the interaction with 5, and it can be seen that the fine particles 25 of metal or metal oxide have penetrated into the polymer layer 21. Also, this color can vary depending on the type of metal or metal oxide, the particle size of the metal or metal oxide, and the type of polymer. In the polymer composite 26 thus obtained, the fine particles 25 are separated and dispersed independently as shown in FIG.
【0018】[0018]
【実施例】次に、本発明を具体的な実施例により更に詳
細に説明する。 実施例1 ナイロン11のポリマーペレット10gをガラス管の入
口付近に移動させた容器に入れた後、この容器をガイド
棒で加熱領域まで移動させ、入口を栓で閉じた。そし
て、開閉弁を開いてロータリーポンプを作動させてガラ
ス管内を10-3torrまで減圧にし、これを維持し
た。加熱炉を400°Cまで上昇させてナイロン11を
熱分解して気化させ、気化物を加熱炉から突出したガラ
ス管の空冷領域に徐々に付着させて茶褐色のペースト状
の再生高分子7gを得た。収率は70%であった。Next, the present invention will be described in more detail with reference to specific examples. Example 1 After 10 g of nylon 11 polymer pellets were placed in a container moved near the entrance of a glass tube, the container was moved to a heating area with a guide rod, and the entrance was closed with a stopper. Then, the on-off valve was opened and the rotary pump was operated to reduce the pressure inside the glass tube to 10 −3 torr, and this was maintained. The heating furnace is heated to 400 ° C. to pyrolyze and vaporize the nylon 11, and the vaporized substance is gradually attached to the air-cooled region of the glass tube protruding from the heating furnace to obtain 7 g of a brownish paste-like regenerated polymer. Was. The yield was 70%.
【0019】次いで、この再生高分子をガラス基材上に
載せると、ロールで押し付けて厚さ約100μmの薄膜
の高分子層を作製した。Next, when this regenerated polymer was placed on a glass substrate, it was pressed with a roll to form a thin polymer layer having a thickness of about 100 μm.
【0020】この高分子層を積層したガラス基材を真空
蒸着装置内に投入し、金を電子ビームにより加熱融解し
て10-4〜10-6torrの真空下で蒸着を行い、高分
子層の上に金蒸着膜を付着した後に、ガラス基材を真空
蒸着装置から取り出した。そして、これを120℃に設
定した恒温槽中に30分間放置して高分子複合物を得
た。The glass substrate on which the polymer layer is laminated is put into a vacuum deposition apparatus, and gold is heated and melted by an electron beam to perform deposition under a vacuum of 10 -4 to 10 -6 torr. After depositing a gold deposition film on the glass substrate, the glass substrate was taken out of the vacuum deposition apparatus. This was left in a thermostat set at 120 ° C. for 30 minutes to obtain a polymer composite.
【0021】得られた高分子複合物の表面の色、及びこ
の複合物をX線回析法によって得られる回析ピークの半
値幅からシェラーの式より微粒子のサイズを求めた。こ
の結果、上記高分子複合物の表面の色は、赤色であり、
微粒子のサイズは1〜5nmであった。From the color of the surface of the obtained polymer composite and the half width of the diffraction peak obtained by X-ray diffraction of this composite, the size of the fine particles was determined by Scherrer's formula. As a result, the color of the surface of the polymer composite is red,
The size of the fine particles was 1 to 5 nm.
【0022】また、前記高分子層の上に金蒸着膜を付着
した試料と、これを加熱した後の試料を入射角1.0°
の薄膜X線回折装置(理学電機社製RINT1200)
を用いて、X線回折パターンを測定した。その結果を図
5に示す。Further, a sample having a gold vapor-deposited film adhered on the polymer layer and a sample after heating the sample were placed at an incident angle of 1.0 °.
Thin film X-ray diffractometer (RINT1200 manufactured by Rigaku Corporation)
Was used to measure the X-ray diffraction pattern. The result is shown in FIG.
【0023】このX線回折パターンにおいて、熱処理前
は高分子層と金蒸着膜との積層物であり、熱処理後はこ
の積層物を120℃で30分恒温槽に放置して熱処理し
た後の複合物を示す。これによると熱処理前のパターン
では、金及びナイロン11の回折ピークが出現してお
り、ナイロン11の高分子層に金属の蒸着膜を積層した
構成であることを示している。また、熱処理後のパター
ンはナイロン11の構造が変化し、熱処理によって緩和
していることがわかる。そして、金の回折ピーク幅(半
価幅)が大きくなっているところから、金が微粒子化し
てナイロン11中に分散していることを示している。In this X-ray diffraction pattern, the composite before heat treatment was a laminate of a polymer layer and a gold vapor-deposited film, and after the heat treatment, the laminate was left in a thermostat at 120 ° C. for 30 minutes and heat-treated. Indicates an object. According to this, in the pattern before the heat treatment, diffraction peaks of gold and nylon 11 appeared, indicating that the structure was such that a metal vapor deposition film was laminated on the polymer layer of nylon 11. Further, it can be seen that the pattern after the heat treatment changed the structure of the nylon 11 and was relaxed by the heat treatment. And, from where the diffraction peak width (half-value width) of gold is large, it indicates that gold is finely divided and dispersed in nylon 11.
【0024】また、図6は熱処理した後の複合物の光吸
収スペクトルを示すものであり、金微粒子のコロイド吸
収が見られ、金が微粒子化していることが判る。FIG. 6 shows the light absorption spectrum of the composite after the heat treatment. The colloidal absorption of the fine gold particles can be seen, and it can be seen that gold is finely divided.
【0025】実施例2 実施例1で得られた高分子層を積層したガラス基材を真
空蒸着装置内に投入し、銅を電子ビームにより加熱融解
して10-4〜10-6torrの真空下で蒸着を行い、高
分子層の上に銅蒸着膜を付着した後に、ガラス基材を真
空蒸着装置から取り出した。そして、これを120℃に
設定した恒温槽中に30分間放置して高分子複合物を得
た。Example 2 A glass substrate on which a polymer layer obtained in Example 1 was laminated was put into a vacuum evaporation apparatus, and copper was heated and melted by an electron beam to obtain a vacuum of 10 -4 to 10 -6 torr. The glass substrate was taken out from the vacuum deposition apparatus after performing vapor deposition underneath and attaching a copper vapor deposition film on the polymer layer. This was left in a thermostat set at 120 ° C. for 30 minutes to obtain a polymer composite.
【0026】得られた高分子複合物の表面の色は、青緑
色であり、微粒子はCu2 Oで、そのサイズは1〜10
nmであった。The color of the surface of the obtained polymer composite is blue-green, the fine particles are Cu 2 O, and the size thereof is 1 to 10
nm.
【0027】実施例3 実施例1で得られた高分子層を積層したガラス基材を真
空蒸着装置内に投入し、銀を電子ビームにより加熱融解
して10-4〜10-6torrの真空下で蒸着を行い、高
分子層の上に銀蒸着膜を付着した後に、ガラス基材を真
空蒸着装置から取り出した。そして、これを120℃に
設定した恒温槽中に30分間放置して高分子複合物を得
た。Example 3 The glass substrate on which the polymer layer obtained in Example 1 was laminated was put into a vacuum evaporation apparatus, and silver was heated and melted by an electron beam to obtain a vacuum of 10 -4 to 10 -6 torr. The glass substrate was taken out of the vacuum evaporation apparatus after vapor deposition was performed below and a silver evaporation film was attached on the polymer layer. This was left in a thermostat set at 120 ° C. for 30 minutes to obtain a polymer composite.
【0028】得られた高分子複合物の表面の色は、黄色
であり、微粒子のサイズは1〜5nmであった。The color of the surface of the obtained polymer composite was yellow, and the size of the fine particles was 1 to 5 nm.
【0029】[0029]
【発明の効果】以上のように本発明の微粒子を分散させ
た高分子複合物の製造方法では、減圧下にある閉鎖した
空間でナイロン11からなる高分子を加熱により熱分解
して気体にし、この気体を該空間の非加熱領域で固化す
ることで再生高分子を回収し、この再生高分子から得ら
れた高分子層の表面に金属層を密着した後、高分子層を
加熱して金属層から微粒子化した金属あるいは金属酸化
物の微粒子を高分子層内に均一に分散させることができ
ることはむろん、上記製造方法では多くの熱力学的に準
安定な構造を有する再生高分子を多量に生産することが
できる。特に、再生高分子がペースト状であると、所定
の厚みを有する高分子層の作製が容易になる。As described above, in the method for producing a polymer composite in which fine particles are dispersed according to the present invention, a polymer made of nylon 11 is thermally decomposed into gas by heating in a closed space under reduced pressure. The regenerated polymer is recovered by solidifying this gas in the non-heating area of the space, and a metal layer is adhered to the surface of the polymer layer obtained from the regenerated polymer, and then the polymer layer is heated to form a metal. Of course, fine particles of metal or metal oxide from the layer can be uniformly dispersed in the polymer layer, but in the above-mentioned production method, a large amount of regenerated polymer having a thermodynamically metastable structure can be produced in a large amount. Can be produced. In particular, when the regenerated polymer is in a paste form, it becomes easy to produce a polymer layer having a predetermined thickness.
【図1】本発明に係る製造方法に使用する再生高分子を
作製する装置の概略図を示す。FIG. 1 shows a schematic view of an apparatus for producing a regenerated polymer used in the production method according to the present invention.
【図2】本発明に係る製造方法の工程であり、再生高分
子からなる薄膜の高分子層を基材上に作製した状態を示
す断面図である。FIG. 2 is a cross-sectional view showing a step of a manufacturing method according to the present invention, in which a polymer layer of a thin film made of a regenerated polymer is formed on a base material.
【図3】本発明に係る製造方法の工程であり、高分子層
の表面に金属層を密着した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a step of the manufacturing method according to the present invention and showing a state in which a metal layer is adhered to the surface of the polymer layer.
【図4】本発明に係る製造方法によって得られた高分子
複合物を断面図である。FIG. 4 is a cross-sectional view of a polymer composite obtained by the production method according to the present invention.
【図5】熱処理前の高分子層と金蒸着膜との積層物と高
分子層とこの積層物を熱処理した後の高分子複合物のX
線回折パターンを示す。FIG. 5 shows a laminate of a polymer layer and a gold vapor-deposited film before heat treatment, a polymer layer, and X of a polymer composite after heat treatment of the laminate.
3 shows a line diffraction pattern.
【図6】高分子層と金蒸着膜との積層物を熱処理した後
の高分子複合物の光吸収スペクトルを示す。FIG. 6 shows a light absorption spectrum of a polymer composite after heat treatment of a laminate of a polymer layer and a gold vapor-deposited film.
1 再生高分子の製造装置 2 ガラス管 3 加熱炉 4 減圧装置 5 高分子材料 6 容器 17 空冷領域 19 再生高分子 21 高分子層 23 金属層 25 微粒子 26 高分子複合物 DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of regenerated polymer 2 Glass tube 3 Heating furnace 4 Decompression device 5 Polymer material 6 Container 17 Air-cooled area 19 Regenerated polymer 21 Polymer layer 23 Metal layer 25 Fine particles 26 Polymer composite
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C08K 3/00 - 3/40 C08F 2/00 C08J 3/00,5/18────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C08K 3/00-3/40 C08F 2/00 C08J 3/00, 5/18
Claims (1)
1からなる高分子材料を熱分解して気化し、この気化物
を該空間の非加熱領域で冷却固化することで熱力学的に
準安定構造を有するペースト状の再生高分子を回収し、
この再生高分子から得られた薄膜の高分子層の表面に真
空蒸着により得られた金属層を付着した後、高分子層を
加熱して金属層から微粒子化した金属あるいは金属酸化
物の微粒子を高分子層内に分散させることを特徴とする
微粒子を分散させた高分子複合物の製造方法。1. Nylon 1 in a closed space under reduced pressure
The polymer material consisting of 1 is thermally decomposed and vaporized, and the vaporized product is cooled and solidified in a non-heating region of the space to recover a thermodynamically metastable paste-like regenerated polymer,
After attaching a metal layer obtained by vacuum evaporation to the surface of the polymer layer of the thin film obtained from the regenerated polymer, the polymer layer is heated to remove fine particles of metal or metal oxide from the metal layer. A method for producing a polymer composite in which fine particles are dispersed, wherein the polymer composite is dispersed in a polymer layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25461794A JP2798358B2 (en) | 1994-09-21 | 1994-09-21 | Method for producing polymer composite in which fine particles are dispersed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25461794A JP2798358B2 (en) | 1994-09-21 | 1994-09-21 | Method for producing polymer composite in which fine particles are dispersed |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0892415A JPH0892415A (en) | 1996-04-09 |
JP2798358B2 true JP2798358B2 (en) | 1998-09-17 |
Family
ID=17267529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25461794A Expired - Fee Related JP2798358B2 (en) | 1994-09-21 | 1994-09-21 | Method for producing polymer composite in which fine particles are dispersed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2798358B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4576947B2 (en) * | 2004-09-21 | 2010-11-10 | 株式会社デンソー | Manufacturing method of composite material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0699585B2 (en) * | 1989-11-24 | 1994-12-07 | 三ツ星ベルト株式会社 | Polymer composite having fine particles dispersed therein and method for producing the same |
-
1994
- 1994-09-21 JP JP25461794A patent/JP2798358B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0892415A (en) | 1996-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5966580A (en) | Process for making a thin film using a metal paste | |
JP2561537B2 (en) | Metal paste and manufacturing method thereof | |
EP0449309B9 (en) | Method of making metalic thin film | |
US6911385B1 (en) | Interface layer for the fabrication of electronic devices | |
DE112008001037T5 (en) | Film forming process, heat conducting element, power module, vehicle inverter and vehicle | |
EP3347303A1 (en) | Method for producing structured surfaces | |
JP3030309B2 (en) | Thin film manufacturing equipment | |
DE1950126A1 (en) | Process for applying insulating films and electronic components | |
JP2798358B2 (en) | Method for producing polymer composite in which fine particles are dispersed | |
DE2457888A1 (en) | COMPOSITE FILMS MADE OF METALS AND POLYMERS | |
AT10749U1 (en) | PROCESS FOR PREPARING CLATHRATE COMPOUNDS | |
WO2015022143A1 (en) | Method for deposition of thermoelectric material | |
JP2848521B2 (en) | Production equipment for regenerated polymer with thermodynamically metastable structure | |
EP3658698B1 (en) | Method of manufacturing a single phase intermetallic compound film | |
JP2004190089A (en) | Method for manufacturing inorganic-nanoparticle fusion or accretion structure, and fusion or accretion structure | |
WO2012095311A1 (en) | Method for producing a silicon layer | |
DE3228584C2 (en) | ||
JP2982055B2 (en) | Method for producing fine metal particles of gold, silver or copper | |
JP2535303B2 (en) | Ultra fine particle dispersed glass and its manufacturing method | |
DE69706290T2 (en) | POLARIZING GLASSES WITH INTEGRATED NON-POLARIZING ZONES | |
JP2678336B2 (en) | Method for producing ultrafine particle-dispersed glassy material | |
JP2623421B2 (en) | Method for producing polymer composite in which fine particles of metal sulfide are dispersed | |
Veith | Precursorchemistry with metalalkoxides and their use for nano-scaled materials | |
JP2611888B2 (en) | Method for producing polymer composite in which fine particles are dispersed | |
JP2691215B2 (en) | Ceramic composite film and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |