JP2797452B2 - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JP2797452B2
JP2797452B2 JP1154911A JP15491189A JP2797452B2 JP 2797452 B2 JP2797452 B2 JP 2797452B2 JP 1154911 A JP1154911 A JP 1154911A JP 15491189 A JP15491189 A JP 15491189A JP 2797452 B2 JP2797452 B2 JP 2797452B2
Authority
JP
Japan
Prior art keywords
hole
spiral projection
base plate
scroll
fixed scroll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1154911A
Other languages
Japanese (ja)
Other versions
JPH0318680A (en
Inventor
保幸 鈴木
正 木村
浩史 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1154911A priority Critical patent/JP2797452B2/en
Publication of JPH0318680A publication Critical patent/JPH0318680A/en
Application granted granted Critical
Publication of JP2797452B2 publication Critical patent/JP2797452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスクロール圧縮機に関し、更に詳細には容量
制御機能付スクロール圧縮機に関する。
Description: TECHNICAL FIELD The present invention relates to a scroll compressor, and more particularly, to a scroll compressor with a capacity control function.

(従来の技術) 従来、この種のスクロール圧縮機は特開昭63−134894
号公報に開示されているように構成されていた。第4図
には前記公開公報に示されたスクロール圧縮機を全密閉
形冷媒圧縮機に適用した例が示され、この図に基づいて
その構成を説明する。第4図において、1は台板部1aの
下面に渦巻突起1bを備える固定スクロール、2は台板部
2aの上面に渦巻突起2bを備え、また台板部2aの中心部下
部突出した揺動軸部2cを備える揺動スクロール、5は各
渦巻突起1b,2bを組合せて形成された圧縮室、3は各ス
クロール1,2の外周部に形成された吸入口、4は固定ス
クロール1の台板部1aの中心部に設けられた吐出口、6
は上端に形成された大径部6aに偏心穴6bを備える主軸、
7は偏心穴6bに嵌合され、揺動軸部2cを半径方向に支持
する揺動軸受、8,9は主軸6を駆動するモータ・ロータ
及びモータ・ステータ、10は主軸6が駆動したとき揺動
スクロール2が自転しない公転運動をするように規制す
るオルダム継手、11は各構成部材を収容する密閉容器、
12は密閉容器11に固着された吸入管、13は吐出口4から
の圧縮ガスを密閉容器11外に送出すべく固定スクロール
1に固着された吐出管、14は固定スクロール1の台板部
1aに設けられた流体バイパス孔、15は流体バイパス孔14
の周囲に形成された弁座、16は流体バイパス孔14の外側
に設けられた同心円状のスリット、17は同じく台板部1a
に設けられ、固定スクロール1の外周とスリット16を連
通する排出孔、18は円形の板状弁からなるバイパス弁、
19は弁座15の上部を閉塞し且つバイパス弁18のストッパ
となる弁座栓、20は弁座15と弁座栓19の間の弁座空間、
21は弁座栓19の中央に設けられた連通孔、22は三方電磁
弁等(図示せず)の切換えによって吸入圧、吐出圧を導
くため弁座栓19の連通孔21と密閉容器11の配管孔23とに
ロー付等により固定された圧力配管、24はスリット16内
に配設されたコイルバネをそれぞれ示している。このよ
うなスクロール圧縮機では固定スクロール1と揺動スク
ロール2とが組合さって一対の対称な圧縮室5が同時に
複数形成されるので、流体バイパス孔14も少くとも一対
の圧縮室5に対応して対称的な位置に一対形成されてい
る。
(Prior Art) Conventionally, this kind of scroll compressor has been disclosed in Japanese Patent Laid-Open No. 63-134894.
It was configured as disclosed in Japanese Patent Publication No. FIG. 4 shows an example in which the scroll compressor disclosed in the above-mentioned publication is applied to a hermetic refrigerant compressor, and the configuration will be described with reference to FIG. In FIG. 4, reference numeral 1 denotes a fixed scroll having a spiral projection 1b on the lower surface of a base plate portion 1a, and 2 denotes a base plate portion.
A swinging scroll provided with a swirling projection 2b on the upper surface of 2a and a swinging shaft 2c protruding below the center of the base plate 2a, 5 is a compression chamber formed by combining the respective swirling projections 1b and 2b, 3 Is a suction port formed on the outer periphery of each of the scrolls 1 and 2, 4 is a discharge port provided at the center of the base plate 1a of the fixed scroll 1, 6
Is a main shaft having an eccentric hole 6b in a large diameter portion 6a formed at the upper end,
Reference numeral 7 denotes an oscillating bearing which is fitted in the eccentric hole 6b and supports the oscillating shaft portion 2c in the radial direction. Reference numerals 8 and 9 denote motor rotors and motor stators for driving the main shaft 6, and reference numeral 10 denotes when the main shaft 6 is driven. An Oldham coupling that regulates the orbiting scroll 2 so as to perform a revolving motion that does not rotate, a sealed container 11 that accommodates each component,
Reference numeral 12 denotes a suction pipe fixed to the closed container 11, reference numeral 13 denotes a discharge pipe fixed to the fixed scroll 1 for sending the compressed gas from the discharge port 4 out of the closed container 11, and reference numeral 14 denotes a base plate of the fixed scroll 1.
Fluid bypass hole provided in 1a, 15 is a fluid bypass hole 14
, 16 is a concentric slit provided outside the fluid bypass hole 14, and 17 is the base plate portion 1a.
, A discharge hole communicating the outer periphery of the fixed scroll 1 with the slit 16, a bypass valve 18 consisting of a circular plate-shaped valve,
19 is a valve seat plug which closes the upper part of the valve seat 15 and serves as a stopper of the bypass valve 18, 20 is a valve seat space between the valve seat 15 and the valve seat plug 19,
Reference numeral 21 denotes a communication hole provided at the center of the valve seat plug 19, and reference numeral 22 denotes a communication hole 21 of the valve seat plug 19 and the closed container 11 for guiding suction pressure and discharge pressure by switching a three-way solenoid valve or the like (not shown). A pressure pipe fixed to the pipe hole 23 by brazing or the like is shown, and a coil spring 24 disposed in the slit 16 is shown. In such a scroll compressor, since the fixed scroll 1 and the orbiting scroll 2 are combined to form a plurality of symmetrical compression chambers 5 at the same time, the fluid bypass hole 14 also corresponds to at least the pair of compression chambers 5. And a pair is formed at symmetrical positions.

上述した従来のスクロール圧縮機においては、モータ
・ロータ9が回転すると主軸6が回転し、揺動スクロー
ル2はオルダム継手10により自転を阻止されながら公転
する。これにより、吸入管12から吸入された冷媒ガス
は、その一部がモータ・ロータ9及びモータ・ステータ
10を冷却しながら、吸入口3を介して圧縮室5に取込ま
れ、次第に圧縮されて吐出口4から吐出管13に吐出され
る。
In the above-described conventional scroll compressor, when the motor rotor 9 rotates, the main shaft 6 rotates, and the orbiting scroll 2 revolves while being prevented from rotating by the Oldham coupling 10. As a result, a part of the refrigerant gas sucked from the suction pipe 12 becomes the motor rotor 9 and the motor stator.
While cooling 10, it is taken into the compression chamber 5 through the suction port 3, gradually compressed and discharged from the discharge port 4 to the discharge pipe 13.

圧縮機を容量制御をしないで最大能力で運転する場合
は、三方電磁弁等を切換えて圧力配管22に吐出圧を導
く、それにより弁座空間20の圧力が吐出圧となりバイパ
ス弁18に吐出圧が作用してバイパス弁18が下方に押し付
けられて弁座に密着し、流体バイパス孔14とスリット16
はバイパス弁18によって閉鎖され、圧縮室5の流体は流
体バイパス孔14、スリット16、排出孔17を通って吸入空
間と通じる固定スクロール1の外側へ排出されることな
く、吐出孔4から圧縮機外へ吐出される。
When the compressor is operated at the maximum capacity without controlling the capacity, the discharge pressure is guided to the pressure pipe 22 by switching the three-way solenoid valve and the like, whereby the pressure in the valve seat space 20 becomes the discharge pressure and the discharge pressure is supplied to the bypass valve 18. Act, the bypass valve 18 is pressed downward and adheres closely to the valve seat, and the fluid bypass hole 14 and the slit 16
Is closed by a bypass valve 18, and the fluid in the compression chamber 5 is not discharged to the outside of the fixed scroll 1 communicating with the suction space through the fluid bypass hole 14, the slit 16, and the discharge hole 17, and It is discharged outside.

また、圧縮機を容量制御を行なう場合は、三方電磁弁
等の切換えによって圧力配管22に吸入圧を導く、それに
より弁座空間20の圧力が吸入圧となる。流体バイパス孔
14は圧縮室5の圧縮過程の途中に設けられているので、
流体バイパス孔14と連通する圧縮室5の圧力は吸入圧力
よりも高くなっている。また、スリット16内に配設され
たコイルバネ23の弾性力も作用してバイパス弁18が上部
に押し上げられ、弁座栓18に接触して保持され、流体バ
イパス孔14と排出孔17は弁座空間20とスリット16を介し
て連通し、圧縮室5内の流体の一部が流体バイパス孔1
4、スリット16、排出孔17を通って吸入空間と通じる固
定スクロール1の外側へ排出され、圧縮室5内の圧縮容
量が制御される。
Further, when controlling the capacity of the compressor, the suction pressure is led to the pressure pipe 22 by switching the three-way solenoid valve or the like, whereby the pressure in the valve seat space 20 becomes the suction pressure. Fluid bypass hole
14 is provided in the middle of the compression process of the compression chamber 5,
The pressure in the compression chamber 5 communicating with the fluid bypass hole 14 is higher than the suction pressure. In addition, the bypass valve 18 is pushed upward by the elastic force of the coil spring 23 disposed in the slit 16, is held in contact with the valve seat plug 18, and the fluid bypass hole 14 and the discharge hole 17 are in the valve seat space. 20 through the slit 16 and a part of the fluid in the compression chamber 5
4. The air is discharged to the outside of the fixed scroll 1 communicating with the suction space through the slit 16, the discharge hole 17, and the compression capacity in the compression chamber 5 is controlled.

(発明が解決しようとする課題) 上述した従来のスクロール圧縮機においては、流体バ
イパス孔の設ける位置について規定があり、特開昭63−
134894号公報に開示された例では固定スクロールと揺動
スクロールによって流体の閉じ込みが完了して圧縮室が
形成された最上流位置から、圧縮室が吐出口と連通する
直前の位置までの範囲で移動可能であると示されてお
り、また、特開昭57−148089、特開昭60−98193号公報
にそれぞれ開示された例では固定スクロールの最外端の
伸開角をθとしたとき、流体バイパス孔の設けられる位
置を示す伸開角をρとすると、θ−2π<ρ<θの範囲
で一対の流体バイパス孔を設けるようになっている。
(Problems to be Solved by the Invention) In the above-mentioned conventional scroll compressor, there is a regulation on the position where the fluid bypass hole is provided.
In the example disclosed in Japanese Patent Publication No. 134894, in the range from the most upstream position where the compression chamber is formed by the completion of the closing of the fluid by the fixed scroll and the orbiting scroll, and the position immediately before the compression chamber communicates with the discharge port, It is shown to be movable, and, in the examples disclosed in JP-A-57-148089 and JP-A-60-98193, when the extension angle of the outermost end of the fixed scroll is θ, Assuming that the expansion angle indicating the position where the fluid bypass hole is provided is ρ, a pair of fluid bypass holes is provided in the range of θ−2π <ρ <θ.

ところで、容量制御機能付スクロール圧縮機の利点と
して、室外機1台に対して室内機を複数台設置するいわ
ゆるマルチエアコンにおいて、室内側の負荷変動に対し
て室外機すなわち圧縮機が能力を可変して追従して運転
されることにより圧縮機の頻繁な発停を防止し、圧縮動
力損失の発生を防止し、効率のよい運転ができるという
ことにある。しかし、後者のような位置に流体バイパス
孔を設けた場合、例えば伸開角θが6π以上の場合は、
容量制御運転時、圧縮動力損失は少なく性能低下は小さ
いが、大きな能力低下の割合が得られず、圧縮機の頻繁
な発停を防止することが充分でなくなる。
By the way, as an advantage of the scroll compressor with the capacity control function, in a so-called multi air conditioner in which a plurality of indoor units are installed for one outdoor unit, the capacity of the outdoor unit, that is, the compressor, varies with respect to load fluctuation on the indoor side. The following operation prevents the compressor from being frequently started and stopped, prevents the loss of compression power, and enables efficient operation. However, when the fluid bypass hole is provided at the latter position, for example, when the expansion angle θ is 6π or more,
During capacity control operation, the compression power loss is small and the performance decrease is small, but a large capacity reduction ratio cannot be obtained, and it is not enough to prevent frequent start / stop of the compressor.

また、前者のような位置に流体バイパス孔を設けた場
合、同じく伸開角が6π以上の場合を考えると、流体バ
イパス孔の位置を流体の閉じ込みが完了して圧縮室が形
成された時点で吐出口と連通していない完全な圧縮室を
形成する最上流位置のものよりも180゜上流に設けた場
合、容量制御を行なった場合と行なわない場合の能力比
は大きくなるが、それと同時に圧縮動力損失も大きくな
り、容量制御運転時の運転効率が悪化し省エネルギーに
反する場合が生じる 本発明の目的は、かかる従来の問題点を解消するため
になされたもので、容量制御時能力比と損失増加割合の
バランスをとって、容量制御機能の利点を充分生かせる
容量制御機能付のスクロール圧縮機を提供することにあ
る。また、広範囲の容量制御のできるスクロール圧縮機
を提供することにある。
In addition, when the fluid bypass hole is provided at the former position, and when the expansion angle is 6π or more, the position of the fluid bypass hole is changed to the time when the compression of the fluid is completed and the compression chamber is formed. If it is provided 180 ° upstream of the most upstream position that forms a complete compression chamber that is not in communication with the discharge port, the capacity ratio when capacity control is performed and when capacity control is not performed increases, but at the same time The compression power loss also increases, and the operation efficiency during capacity control operation deteriorates and energy conservation may be adversely affected.The purpose of the present invention is to solve such a conventional problem. It is an object of the present invention to provide a scroll compressor with a capacity control function that can take full advantage of the capacity control function by balancing the loss increase ratio. Another object of the present invention is to provide a scroll compressor capable of controlling a wide range of capacity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明のスクロール圧縮機は、台板部の下方に渦巻突
起を設け且つ中心部に吐出口を設けた固定スクロール
と、台板部上に渦巻突起を設け且つ前記固定スクロール
と組合わされて圧縮室を形成し、駆動されると揺動運動
し前記固定スクロールと協働して流体の容積を圧縮する
揺動スクロールと、前記固定スクロールの前記台板部に
設けられ前記圧縮室が前記吐出口と連通する以前に連通
する一対の流体バイパス孔と、前記流体バイパス孔を開
閉するバイパス弁と、該バイパス弁を作動させる手段
と、前記流体バイパス孔からバイパスされた流体を吸入
圧力空間に通じる固定スクロール外へ排出する排出孔と
を含んでなる容量制御機能付のスクロール圧縮機におい
て、前記固定スクロール渦巻突起の最外端の伸開角をθ
1、前記渦巻突起の巻き数をNとしたとき、0.5≦(2n
−1)/(2N−1)≦0.6となるnを求め、前記一対の
流体バイパス孔の第1の孔が伸開角θ2=θ1−(N−
n)×2πの位置の前記渦巻突起の内側の前記台板部に
前記渦巻突起に隣接して設けられ、また第2の孔が伸開
角θ3=θ1−(N−n+1/2)×2πの位置の前記渦
巻突起の外側の前記台板部に前記渦巻突起に隣接して設
けられ、N=3、θ1=6πとしたものである。
The scroll compressor according to the present invention includes a fixed scroll provided with a spiral projection below the base plate and a discharge port in the center, and a compression chamber provided with a spiral projection on the base plate and combined with the fixed scroll. Forming a swinging scroll which, when driven, swings and cooperates with the fixed scroll to compress the volume of the fluid, and the compression chamber provided on the base plate portion of the fixed scroll has the discharge port. A pair of fluid bypass holes that communicate before communication, a bypass valve that opens and closes the fluid bypass hole, means for operating the bypass valve, and a fixed scroll that communicates the fluid bypassed from the fluid bypass hole to the suction pressure space. In the scroll compressor having a capacity control function including a discharge hole for discharging to the outside, the extension angle of the outermost end of the fixed scroll spiral projection is θ.
1. When the number of turns of the spiral projection is N, 0.5 ≦ (2n
−1) / (2N−1) ≦ 0.6 is determined, and the first hole of the pair of fluid bypass holes is expanded angle θ2 = θ1− (N−
n) The base plate portion inside the spiral protrusion at the position of 2 × 2π is provided adjacent to the spiral protrusion, and the second hole has an extension angle θ3 = θ1− (N−n + 1/2) × 2π. At a position adjacent to the spiral projection on the base plate portion outside the spiral projection at the position of N, and N = 3 and θ1 = 6π.

(作用) 本発明のスクロール圧縮機によると、一旦圧縮された
後、吸入空間へ戻され再圧縮されることによる損失分が
加わり、損失増加割合の急に増加する範囲を避けると共
に、能力比を小さくできる。
(Operation) According to the scroll compressor of the present invention, the loss due to being once compressed and then returned to the suction space and recompressed is added, thereby avoiding a range where the loss increase rate suddenly increases and reducing the capacity ratio. Can be smaller.

(実施例) 以下、本発明のスクロール圧縮機を添付図面に示され
た実施例について更に詳細に説明する。
(Embodiment) Hereinafter, a scroll compressor of the present invention will be described in more detail with reference to an embodiment shown in the accompanying drawings.

第1図は本発明の一実施例のスクロール圧縮機による
固定スクロール1と揺動スクロール2の渦巻突起1b,2b
の組合せ状態の横断図面であり、固定スクロール1の台
板部1aを底面として見たもので、14a,14bが一対の流体
バイパス孔であり、固定スクロール1の渦巻突起1bの最
外端の伸開角θ=6π、渦巻突起の巻き数N=3の例
を示している。よって、流体バイパス孔14の第1の孔14
aは0.5≦(2n−1)/(2N−1)≦0.6を満足するnで
決まる伸開角θ=θ−(N−n)×2πの位置の渦
巻突起1bの内側の台板部1aに渦巻突起1bに隣接して、ま
た第2の孔14bは伸開角 の位置の渦巻突起1bの内側の台板部1aに渦巻突起1bに隣
接して設けられている。第2図においては、伸開角θ=
6π,渦巻突起の巻き数N=3の例の場合、0.5≦2n−1
/2N−1≦0.6を満足するnにより定められる流体バイパ
ス孔14a,14bの設置可能範囲(Aが第1の孔設置範囲を
示し、Bが第2の孔設置範囲を示す)を示したものであ
る。
FIG. 1 shows spiral scrolls 1b and 2b of a fixed scroll 1 and an orbiting scroll 2 by a scroll compressor according to an embodiment of the present invention.
The cross-sectional view of the fixed scroll 1 when viewed from the base plate portion 1a of the fixed scroll 1 as a bottom surface, 14a and 14b are a pair of fluid bypass holes, and the outermost end of the spiral projection 1b of the fixed scroll 1 is extended. An example is shown in which the opening angle θ 1 = 6π and the number of turns N of the spiral projection is N = 3. Therefore, the first hole 14 of the fluid bypass hole 14
a is the base plate inside the spiral protrusion 1b at the position of the spread angle θ 2 = θ 1 − (N−n) × 2π determined by n that satisfies 0.5 ≦ (2n−1) / (2N−1) ≦ 0.6. The portion 1a is adjacent to the spiral projection 1b, and the second hole 14b has an extended angle. Is provided adjacent to the spiral projection 1b on the base plate portion 1a inside the spiral projection 1b. In FIG. 2, the extension angle θ =
In the case of 6π, the number of turns of the spiral projection N = 3, 0.5 ≦ 2n−1
/2N-1≦0.6, which indicates the installation possible range of the fluid bypass holes 14a and 14b defined by n (A indicates the first hole installation range, and B indicates the second hole installation range) It is.

第3図は固定スクロール1と揺動スクロール2による
一回転あたりの流体の取込容積50cc、渦巻突起の最外端
の伸開角θ=6π、渦巻突起の巻き数N=3のスクロー
ル圧縮機における第一の流体バイパス孔14の位置による
容量制御ON−OFFによる能力比と、容量制御時の圧縮動
力損失による損失増加割合の関係を示したグラフであ
る。このとき流体バイパス孔14の径はある一定の値とす
る。
FIG. 3 shows a scroll compressor in which the volume of fluid taken in per rotation by the fixed scroll 1 and the orbiting scroll 2 is 50 cc, the outermost angle of the spiral projection is θ = 6π, and the number of turns of the spiral projection is N = 3. 7 is a graph showing a relationship between a capacity ratio by capacity control ON-OFF depending on a position of a first fluid bypass hole 14 and a loss increase rate due to a compression power loss at the time of capacity control. At this time, the diameter of the fluid bypass hole 14 is set to a certain value.

ここで、第1の流体バイパス孔の位置は0.5≦2n−1/2
N−1≦0.6となるnを求め、伸開角θ=θ−(N−
n)×2πの範囲に設けられる。従って、上述の例にお
いては伸開角4π〜3.5πの位置の渦巻突起1bの内側に
渦巻突起1bに隣接して設けられることになる。また、損
失増加割合は、ある運転状態における理論圧縮動力と容
量制御時における圧縮動力損失を求め、(理論圧縮動力
+圧縮動力損失)/理論圧縮動力の比を求めたものであ
る。
Here, the position of the first fluid bypass hole is 0.5 ≦ 2n−1 / 2.
The value of n that satisfies N−1 ≦ 0.6 is obtained, and the spread angle θ 2 = θ 1 − (N−
n) × 2π. Therefore, in the above-described example, the spiral protrusion 1b is provided adjacent to the spiral protrusion 1b at the position of the spread angle of 4π to 3.5π. The loss increase ratio is obtained by calculating the theoretical compression power in a certain operation state and the compression power loss during capacity control, and calculating the ratio of (theoretical compression power + compression power loss) / theoretical compression power.

第3図のグラフにおいて、第1の流体バイパス孔の位
置を4πとすれば能力比は約0.6、また損失増加割合は
約1.2、同じく3.5πとすれば能力比は約0.5、損失増加
割合は約1.24となっている。第3図のグラフからもわか
るように能力比は第1の流体バイパス孔の位置に対して
ほぼ線形に変化しているが、損失増加割合は第1の流体
バイパス孔の位置が約3.5πより小さくなった付近から
立上がりが急となり、増加の割合が大きくなっているこ
とを示している。容量制御機能のメリットは負荷の変動
に対して圧縮機の能力を可変にし効率の良い運転を行な
うことにあり、損失増加割合の急に増加する範囲に第1
の流体バイパス孔を設けることは避けなければならな
い。また第1の流体バイパス孔を5πの位置に設けた場
合、圧縮機の能力比が約0.8となり、負荷の変動に対し
て圧縮機が充分追従出来ず圧縮機が発停を繰返してしま
う。よって、本実施例で示したように流体バイパス孔の
設置範囲を限定することにより能力比と損失増加割合の
バランスのとれた容量制御機能のメリットを充分生かせ
る圧縮機が得られる。
In the graph of FIG. 3, if the position of the first fluid bypass hole is 4π, the capacity ratio is about 0.6, the loss increase rate is about 1.2, and if the position is 3.5π, the capacity ratio is about 0.5, and the loss increase rate is about 0.5. It is about 1.24. As can be seen from the graph of FIG. 3, the capacity ratio changes almost linearly with respect to the position of the first fluid bypass hole, but the loss increase rate is smaller than that of the position of the first fluid bypass hole of about 3.5π. The rise becomes steep from the vicinity of the decrease, indicating that the rate of increase is increasing. The advantage of the capacity control function is that the capacity of the compressor is varied with respect to load fluctuations and efficient operation is performed.
The provision of a fluid bypass hole must be avoided. Further, when the first fluid bypass hole is provided at the position of 5π, the capacity ratio of the compressor becomes about 0.8, and the compressor cannot sufficiently follow the fluctuation of the load, and the compressor repeatedly starts and stops. Therefore, as shown in the present embodiment, by limiting the installation range of the fluid bypass hole, it is possible to obtain a compressor that can fully utilize the merit of the capacity control function that balances the capacity ratio and the loss increase rate.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明のスクロール圧縮機は、容
量制御機能付のスクロール圧縮機において、固定スクロ
ール渦巻突起の最外端の伸開角をθ1、前記渦巻突起の
巻き数をNとしたとき、0.5≦(2n−1)/(2N−1)
≦0.6となるnを求め、一対の流体バイパス孔の第1の
孔が伸開角θ2=θ1−(N−n)×2πの位置の前記
渦巻突起の内側の台板部に前記渦巻突起に隣接して設け
られ、また第2の孔が伸開角θ3=θ1−(N−n+1/
2)×2πの位置の前記渦巻突起の外側の前記台板部に
前記渦巻突起に隣接して設けられ、N=3、θ1=6π
としたので、一旦圧縮された後、吸入空間へ戻され再圧
縮されることによる損失分が加わり、損失増加割合の急
に増加する範囲を避けると共に、能力比を小さくでき、
能力比と損失増加割合のバランスのとれた容量制御機能
のメリットを生かせる圧縮機が得られる。
As described above, in the scroll compressor of the present invention, in the scroll compressor with the capacity control function, when the outermost angle of the outermost end of the fixed scroll spiral projection is θ1, and the number of turns of the spiral spiral projection is N, 0.5 ≦ (2n-1) / (2N-1)
≤0.6 is determined, and the first hole of the pair of fluid bypass holes is provided on the base plate portion inside the spiral protrusion at the position of the expansion angle θ2 = θ1− (N−n) × 2π. The second hole is provided adjacently, and the extension angle θ3 = θ1− (N−n + 1 /
2) N = 3, θ1 = 6π, provided adjacent to the spiral projection on the base plate portion outside the spiral projection at a position of × 2π.
Therefore, once compressed, the loss due to being returned to the suction space and recompressed is added, avoiding the range where the loss increase rate suddenly increases, and reducing the capacity ratio,
It is possible to obtain a compressor that can take advantage of the capacity control function that balances the capacity ratio and the loss increase rate.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係るスクロール圧縮機の固
定スクロールと揺動スクロールの渦巻突起の組合せ状態
の横断面図、第2図は固定スクロールの台板部に流体バ
イパス孔の設置範囲を示す横断面図、第3図は第1の流
体バイパス孔の位置による容量制御時の能力比と損失増
加割合の関係を示すグラフ、第4図は従来容量制御機能
付スクロール圧縮機の縦断面図である。 1……固定スクロール、1a……台板部、1b……渦巻突
起、2……揺動スクロール、2b……渦巻突起、14a……
第1の流体バイパス孔、14b……第2の流体バイパス
孔。 なお、各図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a cross-sectional view of a combination state of a fixed scroll and a swirling projection of an orbiting scroll of a scroll compressor according to one embodiment of the present invention, and FIG. 2 is an installation range of a fluid bypass hole in a base plate portion of the fixed scroll. FIG. 3 is a graph showing the relationship between the capacity ratio and the rate of loss increase during capacity control depending on the position of the first fluid bypass hole, and FIG. 4 is a longitudinal section of a scroll compressor with a conventional capacity control function. FIG. 1 ... fixed scroll, 1a ... base plate, 1b ... spiral projection, 2 ... swinging scroll, 2b ... spiral projection, 14a ...
1st fluid bypass hole, 14b ... 2nd fluid bypass hole. In the drawings, the same reference numerals indicate the same or corresponding parts.

フロントページの続き (56)参考文献 特開 昭57−148089(JP,A) 特開 昭60−98193(JP,A) 特開 昭63−134894(JP,A) (58)調査した分野(Int.Cl.6,DB名) F04C 18/02 311Continuation of the front page (56) References JP-A-57-148089 (JP, A) JP-A-60-98193 (JP, A) JP-A-63-134894 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) F04C 18/02 311

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】台板部の下方に渦巻突起を設け且つ中心部
に吐出口を設けた固定スクロールと、台板部上に渦巻突
起を設け且つ前記固定スクロールと組合わされて圧縮室
を形成し、駆動されると揺動運動し前記固定スクロール
と協働して流体の容積を圧縮する揺動スクロールと、前
記固定スクロールの前記台板部に設けられ前記圧縮室が
前記吐出口と連通する以前に連通する一対の流体バイパ
ス孔と、前記流体バイパス孔を開閉するバイパス弁と、
該バイパス弁を作動させる手段と、前記流体バイパス孔
からバイパスされた流体を吸入圧力空間に通じる固定ス
クロール外へ排出する排出孔とを含んでなる容量制御機
能付のスクロール圧縮機において、前記固定スクロール
渦巻突起の最外端の伸開角をθ1、前記渦巻突起の巻き
数をNとしたとき、0.5≦(2n−1)/(2N−1)≦0.6
となるnを求め、前記一対の流体バイパス孔の第1の孔
が伸開角θ2=θ1−(N−n)×2πの位置の前記渦
巻突起の内側の前記台板部に前記渦巻突起に隣接して設
けられ、また第2の孔が伸開角θ3=θ1−(N−n+
1/2)×2πの位置の前記渦巻突起の外側の前記台板部
に前記渦巻突起に隣接して設けられ、N=3、θ1=6
πとしたことを特徴とするスクロール圧縮機。
A fixed scroll provided with a spiral projection below the base plate portion and a discharge port at a center portion; and a spiral projection provided on the base plate portion and combined with the fixed scroll to form a compression chamber. And a oscillating scroll that oscillates when driven and compresses the volume of fluid in cooperation with the fixed scroll, and before the compression chamber provided on the base plate portion of the fixed scroll communicates with the discharge port. A pair of fluid bypass holes communicating with the, a bypass valve for opening and closing the fluid bypass hole,
A scroll compressor having a capacity control function, comprising: means for operating the bypass valve; and a discharge hole for discharging the fluid bypassed from the fluid bypass hole to the outside of the fixed scroll communicating with the suction pressure space. When the extension angle of the outermost end of the spiral projection is θ1 and the number of turns of the spiral projection is N, 0.5 ≦ (2n−1) / (2N−1) ≦ 0.6
Is obtained, and the first hole of the pair of fluid bypass holes is provided on the base plate portion inside the spiral projection at the position of the expansion angle θ2 = θ1− (N−n) × 2π. The second hole is provided adjacently and the divergence angle θ3 = θ1− (N−n +
1/2) × 2π, provided on the base plate portion outside the spiral projection at a position adjacent to the spiral projection, N = 3, θ1 = 6
A scroll compressor characterized by π.
JP1154911A 1989-06-15 1989-06-15 Scroll compressor Expired - Lifetime JP2797452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1154911A JP2797452B2 (en) 1989-06-15 1989-06-15 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1154911A JP2797452B2 (en) 1989-06-15 1989-06-15 Scroll compressor

Publications (2)

Publication Number Publication Date
JPH0318680A JPH0318680A (en) 1991-01-28
JP2797452B2 true JP2797452B2 (en) 1998-09-17

Family

ID=15594656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1154911A Expired - Lifetime JP2797452B2 (en) 1989-06-15 1989-06-15 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2797452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102273608B1 (en) * 2014-11-24 2021-07-06 엘지전자 주식회사 Scroll compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148089A (en) * 1981-03-09 1982-09-13 Sanden Corp Scroll type compressor
JPS6098193A (en) * 1983-11-01 1985-06-01 Sanden Corp Scroll type compressor
JP2631649B2 (en) * 1986-11-27 1997-07-16 三菱電機株式会社 Scroll compressor

Also Published As

Publication number Publication date
JPH0318680A (en) 1991-01-28

Similar Documents

Publication Publication Date Title
JP4242661B2 (en) Rotary compressor
JP3194076B2 (en) Scroll type fluid machine
CN113279958A (en) Scroll compressor having a discharge port
JPS63140884A (en) Air conditioner with scroll compressor
US7059344B2 (en) Discharge valve mechanism for variable displacement compressor
WO2012114455A1 (en) Scroll compressor
JPS63134894A (en) Scroll compressor
JP2007154761A (en) Scroll compressor
EP3048304B1 (en) Scroll compressor
KR100315954B1 (en) Compressor
CN113994098B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
WO1999039104A1 (en) Variable displacement compressor
WO2020196002A1 (en) Scroll compressor
JP2797452B2 (en) Scroll compressor
JPH0791384A (en) Scroll compressor
JP6632784B2 (en) Scroll compressor
JPS6111488A (en) Scroll type compressor
JP2858903B2 (en) Scroll compressor
JP2824476B2 (en) Air conditioner with scroll compressor driven by inverter
WO2023203947A1 (en) Fluid compressor
JPH06167285A (en) Scroll compressor
JPH04234591A (en) Scroll compressor
CN100455802C (en) Vortex compressor with soakage regulator
JP2023135072A (en) Scroll-type compressor
JP4044793B2 (en) Scroll compressor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070703

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

EXPY Cancellation because of completion of term