WO2020196002A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2020196002A1
WO2020196002A1 PCT/JP2020/011352 JP2020011352W WO2020196002A1 WO 2020196002 A1 WO2020196002 A1 WO 2020196002A1 JP 2020011352 W JP2020011352 W JP 2020011352W WO 2020196002 A1 WO2020196002 A1 WO 2020196002A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
discharge space
discharge port
scroll compressor
scroll
Prior art date
Application number
PCT/JP2020/011352
Other languages
French (fr)
Japanese (ja)
Inventor
今井 哲也
泰造 佐藤
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to CN202080021439.6A priority Critical patent/CN113631816B/en
Priority to US17/438,832 priority patent/US11867173B2/en
Priority to DE112020001389.8T priority patent/DE112020001389T5/en
Publication of WO2020196002A1 publication Critical patent/WO2020196002A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the present invention relates to a scroll compressor that compresses a working fluid in a compression chamber formed between laps of both scrolls by revolving a movable scroll with respect to a fixed scroll.
  • this type of scroll compressor has a compression mechanism consisting of a fixed scroll having a spiral wrap on the surface of the end plate and a movable scroll having a spiral wrap on the surface of the end plate, and the laps of each scroll are opposed to each other.
  • a compression chamber is formed between the laps, and the movable scroll is revolved around the fixed scroll to compress the working fluid (refrigerant) in the compression chamber (see, for example, Patent Document 1). ).
  • Patent Document 1 a relief passage connecting the discharge space (the discharge chamber of Document 1) and the discharge passage is formed, and a relief valve that opens the valve by a differential pressure is provided in this relief passage. Further, the relief passage is opened in the discharge space (discharge chamber) below the discharge hole (discharge port in the literature), and the liquid accumulated in the discharge space (discharge chamber) is discharged to the discharge passage.
  • a muffler chamber for reducing pulsation and an oil separator described in Patent Document 1 are arranged between a normal discharge space and a discharge port. Then, the working fluid discharged from the discharge hole of the fixed scroll into the discharge space reaches the discharge port after passing through these oil separators and muffler chambers.
  • Patent Document 1 has a structure in which the relief passage is opened below the discharge hole and the liquid accumulated in the discharge space is discharged to the discharge passage, the above-mentioned effect of reducing the pressure loss is expected. Can not.
  • the present invention has been made to solve such conventional technical problems, and to provide a scroll compressor capable of effectively reducing a pressure loss in a path from a discharge space to a discharge port.
  • the purpose is to provide a scroll compressor capable of effectively reducing a pressure loss in a path from a discharge space to a discharge port.
  • the scroll compressor of the present invention is provided in a housing with a compression mechanism consisting of a fixed scroll and a movable scroll in which spiral wraps are formed so as to face each other on each surface of each end plate, and the movable scroll revolves with respect to the fixed scroll.
  • a compression mechanism consisting of a fixed scroll and a movable scroll in which spiral wraps are formed so as to face each other on each surface of each end plate, and the movable scroll revolves with respect to the fixed scroll.
  • a differential pressure valve that opens accordingly is provided, and the relief passage is characterized by opening into the discharge space above the discharge hole.
  • the scroll compressor according to the second aspect of the present invention includes a muffler chamber located between the discharge space and the discharge port and formed in a housing so as to communicate with the discharge space, and the relief passage passes through the muffler chamber. It is characterized in that the discharge space and the discharge port are communicated with each other without any problem.
  • the scroll compressor according to the third aspect of the present invention includes the oil separator configured in the discharge space in the above invention, and the working fluid discharged from the discharge hole flows into the muffler chamber after passing through the oil separator and also has a relief passage. Is characterized in that the discharge space and the discharge port are communicated with each other without passing through the oil separator and the muffler chamber.
  • the scroll compressor according to the invention of claim 4 includes an oil separator configured in the discharge space according to the invention of claim 2, and the working fluid discharged from the discharge hole flows into the muffler chamber after passing through the oil separator.
  • the relief passage is characterized in that the working fluid outlet of the oil separator and the discharge port are communicated with each other without passing through the muffler chamber.
  • the scroll compressor according to claim 5 is characterized in that, in each of the above inventions, the differential pressure valve opens when the pressure in the discharge space becomes higher than the pressure in the discharge port and the difference between them reaches a predetermined value PD1. ..
  • the scroll compressor of the invention of claim 6 is provided in the discharge hole in the above invention, and includes a discharge valve that opens when the differential pressure between the compression chamber and the discharge space reaches a predetermined value PD2, and the predetermined value PD1 is a predetermined value PD2. It is characterized by being larger.
  • a relief passage is formed in which a discharge space for discharging the working fluid from the discharge hole of the fixed scroll and a discharge port for discharging the working fluid to the outside of the housing are communicated with each other, and the discharge space and the discharge port are formed in this relief passage. Since a differential pressure valve that opens according to the differential pressure is provided and the relief passage is opened in the discharge space above the discharge hole, the discharge space is as described in claims 2 to 4 under the high volume flow rate condition of the working fluid. It becomes possible to effectively reduce the pressure loss in the muffler chamber provided between the and the discharge port and the oil separator formed in the discharge space, and improve the efficiency.
  • the degree of freedom in designing the muffler chamber is increased, the discharge pulsation under low speed conditions can be effectively reduced. Further, by setting the condition for opening the differential pressure valve as in claim 5 and 6, the pressure loss can be smoothly reduced.
  • FIG. 1 is a cross-sectional view of a scroll compressor 1 of an embodiment to which the present invention is applied.
  • the scroll compressor 1 of this embodiment is used, for example, in the refrigerant circuit R (FIG. 3) of the vehicle air conditioner, and sucks, compresses, and discharges the refrigerant as the working fluid of the vehicle air conditioner.
  • This is a so-called inverter-integrated scroll compressor including an electric motor 2, an inverter 3 for operating the electric motor 2, and a compression mechanism 4 driven by the electric motor 2.
  • the scroll compressor 1 of the embodiment includes a main housing 6 that houses an electric motor 2 and an inverter 3 inside, a compression mechanism housing 7 that houses a compression mechanism 4 inside, an inverter cover 8, and a compression mechanism cover 9. It has.
  • the main housing 6, the compression mechanism housing 7, the inverter cover 8, and the compression mechanism cover 9 are all made of metal (made of aluminum in the embodiment), and they are integrally joined to the scroll compressor 1.
  • Housing 11 is configured. That is, the compression mechanism cover 9 constitutes a part of the housing 11.
  • the main housing 6 is composed of a tubular peripheral wall portion 6A and a partition wall portion 6B.
  • the partition wall portion 6B is a partition wall that partitions the inside of the main housing 6 into a motor accommodating portion 12 accommodating the electric motor 2 and an inverter accommodating portion 13 accommodating the inverter 3.
  • One end surface of the inverter accommodating portion 13 is open, and this opening is closed by the inverter cover 8 after the inverter 3 is accommodated.
  • the other end surface of the motor accommodating portion 12 is also open, and this opening is closed by the compression mechanism housing 7 after the electric motor 2 is accommodated.
  • the partition wall portion 6B is provided with a support portion 16 for supporting one end portion (the end portion on the opposite side of the compression mechanism 4) of the rotating shaft 14 of the electric motor 2.
  • the compression mechanism housing 7 has an opening on the side opposite to the main housing 6, and this opening is closed by the compression mechanism cover 9 after the compression mechanism 4 is accommodated.
  • the compression mechanism housing 7 is composed of a tubular peripheral wall portion 7A and a frame portion 7B on one end side (main housing 6 side) thereof, and the compression mechanism 4 is contained in a space partitioned by the peripheral wall portion 7A and the frame portion 7B. Is housed.
  • the frame portion 7B forms a partition wall that separates the inside of the main housing 6 from the inside of the compression mechanism housing 7.
  • the frame portion 7B is provided with a through hole 17 through which the other end of the rotating shaft 14 of the electric motor 2 (the end on the compression mechanism 4 side) is inserted, and the through hole 17 is provided on the compression mechanism 4 side.
  • a front bearing 18 as a bearing member that supports the other end of the rotating shaft 14 is fitted.
  • Reference numeral 19 denotes a sealing material that seals the outer peripheral surface of the rotating shaft 14 and the inside of the compression mechanism housing 7 at the through hole 17.
  • the electric motor 2 is composed of a stator 25 around which a coil 35 is wound and a rotor 30. Then, for example, the direct current from the vehicle battery (not shown) is converted into a three-phase alternating current by the inverter 3 and supplied to the coil 35 of the electric motor 2, so that the rotor 30 is rotationally driven. ing.
  • a suction port (not shown) is formed in the main housing 6, and after the refrigerant sucked from the suction port passes through the main housing 6, the outside of the compression mechanism 4 in the compression mechanism housing 7 will be described later. It is sucked into the suction unit 37. As a result, the electric motor 2 is cooled by the intake refrigerant. Further, the refrigerant compressed by the compression mechanism 4 is discharged into the discharge space 27 as described later, and then finally outside the housing 11 from the discharge port 51 formed in the compression mechanism cover 9, that is, the refrigerant circuit R. It is configured to be discharged to.
  • the compression mechanism 4 is composed of a fixed scroll 21 and a movable scroll 22.
  • the fixed scroll 21 integrally includes a disk-shaped end plate 23 and an involute-shaped or spiral wrap 24 having a curved line similar thereto standing on the surface (one surface) of the end plate 23.
  • the surface of the end plate 23 on which the wrap 24 is erected is fixed to the compression mechanism housing 7 with the frame portion 7B side as the side.
  • a discharge hole 26 is formed in the center of the end plate 23 of the fixed scroll 21, and the discharge hole 26 communicates with the discharge space 27 in the compression mechanism cover 9.
  • Reference numeral 28 denotes a discharge valve provided in the opening on the back surface (the other surface) side of the end plate 23 of the discharge hole 26. The discharge valve 28 opens when the pressure in the compression chamber 34 becomes higher than the pressure in the discharge space 27 and their differential pressure reaches a predetermined value PD2, and communicates the discharge hole 26 with the discharge space 27.
  • the movable scroll 22 is a scroll that revolves and turns with respect to the fixed scroll 21, and is a disk-shaped end plate 31 and an involute shape erected on the surface (one surface) of the end plate 31 or an approximation thereof.
  • a spiral wrap 32 made of a curved line and a boss portion 33 protruding from the center of the back surface (the other surface) of the end plate 31 are integrally provided.
  • the movable scroll 22 is arranged so that the lap 32 faces the lap 24 of the fixed scroll 21 and meshes with each other with the protruding direction of the lap 32 as the fixed scroll 21 side, and the compression chamber 34 is provided between the laps 24 and 32. To form.
  • the lap 32 of the movable scroll 22 faces the lap 24 of the fixed scroll 21, and the tip of the lap 32 is in contact with the surface of the end plate 23, and the tip of the lap 24 is in contact with the surface of the end plate 31.
  • the other end of the rotating shaft 14, that is, the end on the movable scroll 22 side, is provided with a drive protrusion 48 that protrudes at a position eccentric from the axis of the rotating shaft 14.
  • An eccentric bush 36 is attached to the drive projection 48, and is provided at the other end of the rotating shaft 14 eccentrically from the axial center of the rotating shaft 14.
  • the eccentric bush 36 is attached to the drive projection 48 at a position eccentric from the axial center of the eccentric bush 36, and the eccentric bush 36 is fitted to the boss portion 33 of the movable scroll 22. Then, when the rotating shaft 14 is rotated together with the rotor 30 of the electric motor 2, the movable scroll 22 is configured to revolve and rotate with respect to the fixed scroll 21 without rotating.
  • Reference numeral 49 denotes a balance weight attached to the outer peripheral surface of the rotating shaft 14 on the movable scroll 22 side of the front bearing 18.
  • the eccentric direction and the contact position of each of the laps 24 and 32 move while rotating, and the compression chamber 34 sucking the refrigerant from the above-mentioned suction portion 37 on the outside. Gradually shrinks while moving inward. As a result, the refrigerant is compressed and finally discharged from the central discharge hole 26 to the discharge space 27 via the discharge valve 28.
  • 38 is an annular thrust plate.
  • the thrust plate 38 is for partitioning the back pressure chamber 39 formed on the back surface side of the end plate 31 of the movable scroll 22 and the suction portion 37 as the suction pressure region outside the compression mechanism 4 in the compression mechanism housing 7. It is located outside the boss portion 33 and is interposed between the frame portion 7B and the movable scroll 22.
  • Reference numeral 41 denotes a sealing material attached to the back surface of the end plate 31 of the movable scroll 22 and abutting against the thrust plate 38, and the back pressure chamber 39 and the suction portion 37 are partitioned by the sealing material 41 and the thrust plate 38.
  • 42 is a sealing material that is attached to the surface of the frame portion 7B on the thrust plate 38 side, abuts on the outer peripheral portion of the thrust plate 38, and seals between the frame portion 7B and the thrust plate 38.
  • reference numeral 43 denotes a back pressure passage formed from the compression mechanism cover 9 to the compression mechanism housing 7, and an orifice 44 is installed in the back pressure passage 43.
  • the back pressure passage 43 communicates the oil outlet 53A of the oil separator 52 configured in the discharge space 27 of the compression mechanism cover 9 with the back pressure chamber 39, whereby the back pressure chamber is as shown by an arrow in FIG.
  • the 39 is configured to be supplied with oil having a discharge pressure adjusted by reducing the pressure at the orifice 44.
  • the pressure (back pressure) in the back pressure chamber 39 causes a back pressure load that presses the movable scroll 22 against the fixed scroll 21. Due to this back pressure load, the movable scroll 22 is pressed against the fixed scroll 21 against the compression reaction force from the compression chamber 34 of the compression mechanism 4, and the contact between the laps 24 and 32 and the end plates 31 and 23 is maintained and compressed.
  • the refrigerant can be compressed in the chamber 34.
  • an oil passage 46 extending in the axial direction is formed in the rotating shaft 14, and a pressure adjusting valve 47 is provided in the oil passage 46 located on the support portion 16 side.
  • the oil passage 46 communicates the back pressure chamber 39 with the inside of the main housing 6 (suction pressure region), and the oil flowing into the back pressure chamber 39 from the back pressure passage 43 flows into the oil passage 46 and is the main.
  • the pressure regulating valve 47 opens when the pressure (back pressure) in the back pressure chamber 39 reaches the maximum value, and functions so that the back pressure does not rise any more.
  • the oil separator 52 is configured in the discharge space 27.
  • the oil separator 52 is integrally formed with the compression mechanism cover 9, and has an oil separation portion 54 having an oil separation space 53 inside, and an upper portion of the oil separation space 53 inserted into the oil separation portion 54 from above.
  • the lower end refrigerant outlet (working fluid outlet) 56A is formed so as to face the side surface of the oil separation cylinder 56 and the oil separation cylinder 56 opened in the oil separation space 53, other than the oil separator 52. It is composed of two communication holes 57 and 57 that communicate the discharge space 27 and the oil separation space 53, and the lower end of the oil separation space 53 is the oil outlet 53A described above.
  • a plurality of muffler chambers 61, 62, 63 and a discharge port chamber 64 are configured around the discharge space 27, and the muffler chamber 61 and the muffler chamber 62 are throttled.
  • the muffler chamber 62 and the muffler chamber 63 are communicated by the throttle portion 67
  • the muffler chamber 63 and the discharge port chamber 64 are communicated by the throttle portion 68
  • the first muffler chamber 61 and the oil separator are communicated with each other.
  • the upper part of the oil separation cylinder 56 of 52 is communicated with the communication passage 69.
  • the discharge port chamber 64 is communicated with the discharge port 51 to form a part of the discharge port 51.
  • a relief passage 71 is formed in the compression mechanism cover 9, and a differential pressure valve 74 composed of a ball valve 72 and a compression spring 73 is provided in the relief passage 71.
  • One end of the relief passage 71 opens to the discharge space 27 above the discharge hole 26 of the fixed scroll 21, and the other end opens to the discharge port chamber 64, whereby the discharge space 27 and the discharge port chamber 64 (discharge port). It communicates with 51).
  • P1 in FIG. 2 is the position of the discharge hole 26 of FIG.
  • the compression spring 73 of the differential pressure valve 74 always presses the ball valve 72 against the valve seat (formed in the relief passage 71) to close the relief passage 71 (the differential pressure valve 74 is closed), but the discharge space.
  • the pressure of 27 becomes higher than the pressure of the discharge port chamber 64 (discharge port 51) and their differential pressure reaches a predetermined value PD1
  • the ball valve 72 separates from the valve seat against the spring force of the compression spring 73.
  • the relief passage 71 is opened (the differential pressure valve 74 is opened).
  • the predetermined value PD1 of the differential pressure that the differential pressure valve 74 opens is larger than the predetermined value PD2 of the differential pressure between the compression chamber 34 and the discharge space 27 that the discharge valve 28 opens, and the spring force of the compression spring 73. Is set.
  • the flow of the refrigerant from the compression mechanism 4 to the refrigerant circuit R will be described next with reference to FIG.
  • the discharge valve 28 opens and the refrigerant is discharged from the discharge hole 26. It is discharged to 27. It is assumed that the differential pressure valve 74 is closed under a normal operating state in which the volumetric flow rate of the refrigerant (discharged gas) is relatively low.
  • the oil in the refrigerant is separated by the centrifugal force at this time, and the separated oil is supplied from the oil outlet 53A to the back pressure chamber 39 as described above via the back pressure passage 43 and the orifice 44.
  • the refrigerant from which the oil has been separated flows into the oil separation cylinder 56 from the refrigerant outlet 56A, and flows into the muffler chamber 61 via the communication passage 69. Then, the refrigerant circuit R flows into the discharge port chamber 64 in sequence through the throttle portion 66, the muffler chamber 62, the throttle portion 67, the muffler chamber 63, and the throttle portion 68, and finally from the discharge port 51 to the outside of the housing 11. (Flow on the upper side of FIG. 3).
  • the amount of oil flowing out to the refrigerant circuit R is suppressed by the oil separator 52, and the pulsation of the refrigerant discharged to the refrigerant circuit R by the muffler chambers 61 to 63 and the throttle portions 66 to 68 is reduced.
  • pressure loss occurs by passing through the oil separator 52 and the muffler chambers 61 to 63, and the efficiency is lowered.
  • the relief passage 71 and the differential pressure valve 74 described above are provided. That is, the pressure loss becomes large under the high volume flow rate condition as described above, the pressure in the discharge space 27 rises more than the pressure in the discharge port chamber 64 (discharge port 51), and the differential pressure between them becomes the predetermined value described above.
  • the differential pressure valve 74 opens to open the relief passage 71, and the discharge space 27 and the discharge port chamber 64 (discharge port 51) do not pass through the oil separator 52 and the muffler chambers 61 to 63. That is, they are bypassed and communicated.
  • the refrigerant in the discharge space 27 bypasses the oil separator 52 and the muffler chambers 61 to 63 and flows into the discharge port chamber 64 (discharge port 51).
  • the pressure loss in the 52 and the muffler chambers 61 to 63 is effectively reduced, and the efficiency is improved.
  • the degree of freedom in designing the muffler chambers 61 to 63 is increased, the discharge pulsation under low speed conditions can be effectively reduced.
  • the above-mentioned predetermined value PD1 in which the differential pressure valve 74 opens is made larger than the above-mentioned predetermined value PD2 in which the discharge valve 28 opens, so that the pressure loss can be smoothly reduced.
  • the discharge space 27 and the discharge port chamber 64 are communicated with each other by the relief passage 71 provided with the differential pressure valve 74, but the present invention is not limited to this, and is shown by a broken line in FIG.
  • the refrigerant outlet (working fluid outlet) 56A or the communication passage 69 of the oil separation cylinder 56 from which the refrigerant flows out from the oil separator 52 and the discharge port chamber 64 (discharge port 51) are communicated with each other by the relief passage 71. It may be.
  • the refrigerant in the discharge space 27 bypasses the muffler chambers 61 to 63 and flows into the discharge port chamber 64 (discharge port 51), so that the muffler chambers 61 to 63 The pressure loss in is effectively reduced.
  • the present invention is applied to the scroll compressor used in the refrigerant circuit of the air conditioner for vehicles, but the present invention is not limited to this, and the present invention is effective for the scroll compressor used in the refrigerant circuit of various refrigerating devices. Is. Further, in the embodiment, the present invention is applied to a so-called inverter-integrated scroll compressor, but the present invention is not limited to this, and the present invention can also be applied to a normal scroll compressor not integrally provided with an inverter.

Abstract

[Problem] To provide a scroll compressor with which it is possible for a pressure loss in a pathway extending from a discharge space to a discharge port to be reduced effectively. [Solution] This scroll compressor is provided with a discharge space 27 formed in a compressing mechanism cover 9 of a housing 11, a discharge hole 26 which is formed in a fixed scroll 21 and which discharges compressed refrigerant into the discharge space, a discharge port 51 for discharging the refrigerant to the outside of the housing, a relief passage 71 providing communication between the discharge space and the discharge port, and a differential pressure valve 74 which is provided in the relief passage and which opens in accordance with a pressure difference between the discharge space and the discharge port, wherein the relief passage opens in the discharge space above the discharge hole.

Description

スクロール圧縮機Scroll compressor
 本発明は、固定スクロールに対して可動スクロールを公転旋回運動させることにより、両スクロールのラップ間に形成された圧縮室で作動流体を圧縮するスクロール圧縮機に関する。 The present invention relates to a scroll compressor that compresses a working fluid in a compression chamber formed between laps of both scrolls by revolving a movable scroll with respect to a fixed scroll.
 従来よりこの種スクロール圧縮機は、鏡板の表面に渦巻き状のラップを備えた固定スクロールと、鏡板の表面に渦巻き状のラップを備えた可動スクロールから成る圧縮機構を備え、各スクロールのラップを対向させてラップ間に圧縮室を形成し、固定スクロールに対して可動スクロールを公転旋回運動させることにより、圧縮室で作動流体(冷媒)を圧縮するように構成されている(例えば、特許文献1参照)。 Conventionally, this type of scroll compressor has a compression mechanism consisting of a fixed scroll having a spiral wrap on the surface of the end plate and a movable scroll having a spiral wrap on the surface of the end plate, and the laps of each scroll are opposed to each other. A compression chamber is formed between the laps, and the movable scroll is revolved around the fixed scroll to compress the working fluid (refrigerant) in the compression chamber (see, for example, Patent Document 1). ).
 また、特許文献1では吐出空間(文献1の吐出チャンバ)と吐出通路を連通するリリーフ通路を形成し、このリリーフ通路に差圧で開弁するリリーフ弁を設けていた。更に、リリーフ通路は吐出孔(文献の吐出ポート)より下側で吐出空間(吐出チャンバ)に開口するようにし、吐出空間(吐出チャンバ)に溜まった液体を吐出通路に排出するようにしていた。 Further, in Patent Document 1, a relief passage connecting the discharge space (the discharge chamber of Document 1) and the discharge passage is formed, and a relief valve that opens the valve by a differential pressure is provided in this relief passage. Further, the relief passage is opened in the discharge space (discharge chamber) below the discharge hole (discharge port in the literature), and the liquid accumulated in the discharge space (discharge chamber) is discharged to the discharge passage.
特開2010-151060号公報JP-A-2010-151060
 ここで、この種スクロール圧縮機には通常吐出空間と吐出ポートの間に、脈動を低減するためのマフラ室や、前記特許文献1にも記載されたオイルセパレータが配置される。そして、固定スクロールの吐出孔から吐出空間に吐出された作動流体は、これらオイルセパレータやマフラ室を経た後、吐出ポートに至ることになる。 Here, in this type of scroll compressor, a muffler chamber for reducing pulsation and an oil separator described in Patent Document 1 are arranged between a normal discharge space and a discharge port. Then, the working fluid discharged from the discharge hole of the fixed scroll into the discharge space reaches the discharge port after passing through these oil separators and muffler chambers.
 そのため、特に吐出孔から吐出される作動流体(吐出ガス)の高体積流量条件においては、オイルセパレータやマフラ室を通過することによる圧力損失が発生し、効率が低下してしまう問題がある。この点について、前述した特許文献1では吐出孔より下側でリリーフ通路を開口させ、吐出空間に溜まった液体を吐出通路に排出する構造であるため、上記のような圧力損失の低減効果は期待できない。 Therefore, there is a problem that pressure loss occurs due to passing through the oil separator and the muffler chamber, and the efficiency is lowered, especially under the high volume flow rate condition of the working fluid (discharge gas) discharged from the discharge hole. Regarding this point, since the above-mentioned Patent Document 1 has a structure in which the relief passage is opened below the discharge hole and the liquid accumulated in the discharge space is discharged to the discharge passage, the above-mentioned effect of reducing the pressure loss is expected. Can not.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、吐出空間から吐出ポートに至る経路における圧力損失を効果的に低減することができるスクロール圧縮機を提供することを目的とする。 The present invention has been made to solve such conventional technical problems, and to provide a scroll compressor capable of effectively reducing a pressure loss in a path from a discharge space to a discharge port. The purpose.
 本発明のスクロール圧縮機は、各鏡板の各表面にそれぞれ渦巻き状のラップが対向して形成された固定スクロール及び可動スクロールから成る圧縮機構をハウジング内に備え、可動スクロールを固定スクロールに対して公転旋回運動させることにより、両スクロールの各ラップ間に形成された圧縮室で作動流体を圧縮するものであって、ハウジング内に形成された吐出空間と、固定スクロールに形成され、圧縮された作動流体を吐出空間に吐出する吐出孔と、作動流体をハウジング外に吐出する吐出ポートと、吐出空間と吐出ポートを連通するリリーフ通路と、このリリーフ通路に設けられ、吐出空間と吐出ポートの差圧に応じて開く差圧弁を備え、リリーフ通路は、吐出孔より上側において吐出空間に開口することを特徴とする。 The scroll compressor of the present invention is provided in a housing with a compression mechanism consisting of a fixed scroll and a movable scroll in which spiral wraps are formed so as to face each other on each surface of each end plate, and the movable scroll revolves with respect to the fixed scroll. By rotating the scroll, the working fluid is compressed in the compression chamber formed between the laps of both scrolls, and the discharge space formed in the housing and the working fluid formed and compressed in the fixed scroll. A discharge hole for discharging the working fluid to the discharge space, a discharge port for discharging the working fluid to the outside of the housing, a relief passage for communicating the discharge space and the discharge port, and a relief passage provided in the relief passage to reduce the pressure difference between the discharge space and the discharge port A differential pressure valve that opens accordingly is provided, and the relief passage is characterized by opening into the discharge space above the discharge hole.
 請求項2の発明のスクロール圧縮機は、上記発明において吐出空間と吐出ポートの間に位置してそれらを連通するようにハウジング内に形成されたマフラ室を備え、リリーフ通路は、マフラ室を経ること無く、吐出空間と吐出ポートを連通することを特徴とする。 The scroll compressor according to the second aspect of the present invention includes a muffler chamber located between the discharge space and the discharge port and formed in a housing so as to communicate with the discharge space, and the relief passage passes through the muffler chamber. It is characterized in that the discharge space and the discharge port are communicated with each other without any problem.
 請求項3の発明のスクロール圧縮機は、上記発明において吐出空間に構成されたオイルセパレータを備え、吐出孔から吐出された作動流体は、オイルセパレータを経た後、マフラ室に流入すると共に、リリーフ通路は、オイルセパレータ及びマフラ室を経ること無く、吐出空間と吐出ポートを連通することを特徴とする。 The scroll compressor according to the third aspect of the present invention includes the oil separator configured in the discharge space in the above invention, and the working fluid discharged from the discharge hole flows into the muffler chamber after passing through the oil separator and also has a relief passage. Is characterized in that the discharge space and the discharge port are communicated with each other without passing through the oil separator and the muffler chamber.
 請求項4の発明のスクロール圧縮機は、請求項2の発明において吐出空間に構成されたオイルセパレータを備え、吐出孔から吐出された作動流体は、オイルセパレータを経た後、マフラ室に流入すると共に、リリーフ通路は、マフラ室を経ること無く、オイルセパレータの作動流体出口と吐出ポートを連通することを特徴とする。 The scroll compressor according to the invention of claim 4 includes an oil separator configured in the discharge space according to the invention of claim 2, and the working fluid discharged from the discharge hole flows into the muffler chamber after passing through the oil separator. The relief passage is characterized in that the working fluid outlet of the oil separator and the discharge port are communicated with each other without passing through the muffler chamber.
 請求項5の発明のスクロール圧縮機は、上記各発明において差圧弁は、吐出空間の圧力が吐出ポートの圧力より高くなり、それらの差が所定値PD1に達した場合に開くことを特徴とする。 The scroll compressor according to claim 5 is characterized in that, in each of the above inventions, the differential pressure valve opens when the pressure in the discharge space becomes higher than the pressure in the discharge port and the difference between them reaches a predetermined value PD1. ..
 請求項6の発明のスクロール圧縮機は、上記発明において吐出孔に設けられ、圧縮室と吐出空間の差圧が所定値PD2に達した場合に開く吐出バルブを備え、所定値PD1は所定値PD2より大きいことを特徴とする。 The scroll compressor of the invention of claim 6 is provided in the discharge hole in the above invention, and includes a discharge valve that opens when the differential pressure between the compression chamber and the discharge space reaches a predetermined value PD2, and the predetermined value PD1 is a predetermined value PD2. It is characterized by being larger.
 本発明によれば、固定スクロールの吐出孔から作動流体が吐出される吐出空間と、作動流体をハウジング外に吐出する吐出ポートを連通するリリーフ通路形成し、このリリーフ通路に吐出空間と吐出ポートの差圧に応じて開く差圧弁を設け、リリーフ通路を、吐出孔より上側において吐出空間に開口するようにしたので、作動流体の高体積流量条件において、請求項2乃至請求項4の如く吐出空間と吐出ポートの間に設けられるマフラ室や、吐出空間に構成されるオイルセパレータにおける圧力損失を効果的に低減し、効率の改善を図ることができるようになる。 According to the present invention, a relief passage is formed in which a discharge space for discharging the working fluid from the discharge hole of the fixed scroll and a discharge port for discharging the working fluid to the outside of the housing are communicated with each other, and the discharge space and the discharge port are formed in this relief passage. Since a differential pressure valve that opens according to the differential pressure is provided and the relief passage is opened in the discharge space above the discharge hole, the discharge space is as described in claims 2 to 4 under the high volume flow rate condition of the working fluid. It becomes possible to effectively reduce the pressure loss in the muffler chamber provided between the and the discharge port and the oil separator formed in the discharge space, and improve the efficiency.
 また、マフラ室の設計に自由度が増すため、低速条件での吐出脈動も効果的に低減することができるようになる。更に、請求項5や請求項6の如く差圧弁が開く条件を設定することで、円滑に圧力損失の低減を図ることができるようになるものである。 In addition, since the degree of freedom in designing the muffler chamber is increased, the discharge pulsation under low speed conditions can be effectively reduced. Further, by setting the condition for opening the differential pressure valve as in claim 5 and 6, the pressure loss can be smoothly reduced.
本発明を適用した一実施形態のスクロール圧縮機の断面図である。It is sectional drawing of the scroll compressor of one Embodiment to which this invention was applied. 図1のスクロール圧縮機の圧縮機構カバーの正面図である。It is a front view of the compression mechanism cover of the scroll compressor of FIG. 図1のスクロール圧縮機の圧縮機構から冷媒回路に至る冷媒(作動流体)の流れを説明する図である。It is a figure explaining the flow of the refrigerant (working fluid) from the compression mechanism of the scroll compressor of FIG. 1 to the refrigerant circuit.
 以下、本発明の一実施の形態について、図面に基づき詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は本発明を適用した一実施例のスクロール圧縮機1の断面図である。この実施例のスクロール圧縮機1は、例えば車両用空気調和装置の冷媒回路R(図3)に使用され、車両用空気調和装置の作動流体としての冷媒を吸入し、圧縮して吐出するものであり、電動モータ2と、この電動モータ2を運転するためのインバータ3と、電動モータ2によって駆動される圧縮機構4とを備えた所謂インバータ一体型のスクロール圧縮機である。 FIG. 1 is a cross-sectional view of a scroll compressor 1 of an embodiment to which the present invention is applied. The scroll compressor 1 of this embodiment is used, for example, in the refrigerant circuit R (FIG. 3) of the vehicle air conditioner, and sucks, compresses, and discharges the refrigerant as the working fluid of the vehicle air conditioner. This is a so-called inverter-integrated scroll compressor including an electric motor 2, an inverter 3 for operating the electric motor 2, and a compression mechanism 4 driven by the electric motor 2.
 実施例のスクロール圧縮機1は、電動モータ2及びインバータ3をその内側に収容するメインハウジング6と、圧縮機構4をその内側に収容する圧縮機構ハウジング7と、インバータカバー8と、圧縮機構カバー9を備えている。そして、これらメインハウジング6と、圧縮機構ハウジング7と、インバータカバー8と、圧縮機構カバー9は何れも金属製(実施例ではアルミニウム製)であり、それらが一体的に接合されてスクロール圧縮機1のハウジング11が構成されている。即ち、圧縮機構カバー9はハウジング11の一部を構成する。 The scroll compressor 1 of the embodiment includes a main housing 6 that houses an electric motor 2 and an inverter 3 inside, a compression mechanism housing 7 that houses a compression mechanism 4 inside, an inverter cover 8, and a compression mechanism cover 9. It has. The main housing 6, the compression mechanism housing 7, the inverter cover 8, and the compression mechanism cover 9 are all made of metal (made of aluminum in the embodiment), and they are integrally joined to the scroll compressor 1. Housing 11 is configured. That is, the compression mechanism cover 9 constitutes a part of the housing 11.
 メインハウジング6は、筒状の周壁部6Aと仕切壁部6Bとから構成されている。この仕切壁部6Bは、メインハウジング6内を、電動モータ2を収容するモータ収容部12とインバータ3を収容するインバータ収容部13とに仕切る隔壁である。このインバータ収容部13は一端面が開口しており、この開口はインバータ3が収容された後、インバータカバー8によって閉塞される。 The main housing 6 is composed of a tubular peripheral wall portion 6A and a partition wall portion 6B. The partition wall portion 6B is a partition wall that partitions the inside of the main housing 6 into a motor accommodating portion 12 accommodating the electric motor 2 and an inverter accommodating portion 13 accommodating the inverter 3. One end surface of the inverter accommodating portion 13 is open, and this opening is closed by the inverter cover 8 after the inverter 3 is accommodated.
 モータ収容部12も他端面が開口しており、この開口は電動モータ2が収容された後、圧縮機構ハウジング7によって閉塞される。仕切壁部6Bには電動モータ2の回転軸14の一端部(圧縮機構4とは反対側の端部)を支持するための支持部16が突設されている。 The other end surface of the motor accommodating portion 12 is also open, and this opening is closed by the compression mechanism housing 7 after the electric motor 2 is accommodated. The partition wall portion 6B is provided with a support portion 16 for supporting one end portion (the end portion on the opposite side of the compression mechanism 4) of the rotating shaft 14 of the electric motor 2.
 圧縮機構ハウジング7は、メインハウジング6とは反対側が開口しており、この開口は圧縮機構4が収容された後、圧縮機構カバー9によって閉塞される。圧縮機構ハウジング7は、筒状の周壁部7Aと、その一端側(メインハウジング6側)のフレーム部7Bとから構成され、これら周壁部7Aとフレーム部7Bで区画される空間内に圧縮機構4が収容される。フレーム部7Bはメインハウジング6内と圧縮機構ハウジング7内を仕切る隔壁を成す。 The compression mechanism housing 7 has an opening on the side opposite to the main housing 6, and this opening is closed by the compression mechanism cover 9 after the compression mechanism 4 is accommodated. The compression mechanism housing 7 is composed of a tubular peripheral wall portion 7A and a frame portion 7B on one end side (main housing 6 side) thereof, and the compression mechanism 4 is contained in a space partitioned by the peripheral wall portion 7A and the frame portion 7B. Is housed. The frame portion 7B forms a partition wall that separates the inside of the main housing 6 from the inside of the compression mechanism housing 7.
 また、フレーム部7Bには電動モータ2の回転軸14の他端部(圧縮機構4側の端部)を挿通する貫通孔17が開設されており、この貫通孔17の圧縮機構4側には、回転軸14の他端部を支持する軸受部材としてのフロントベアリング18が嵌合されている。また、19は貫通孔17部分にて回転軸14の外周面と圧縮機構ハウジング7内とをシールするシール材である。 Further, the frame portion 7B is provided with a through hole 17 through which the other end of the rotating shaft 14 of the electric motor 2 (the end on the compression mechanism 4 side) is inserted, and the through hole 17 is provided on the compression mechanism 4 side. A front bearing 18 as a bearing member that supports the other end of the rotating shaft 14 is fitted. Reference numeral 19 denotes a sealing material that seals the outer peripheral surface of the rotating shaft 14 and the inside of the compression mechanism housing 7 at the through hole 17.
 電動モータ2は、コイル35が巻装されたステータ25と、ロータ30から構成されている。そして、例えば車両のバッテリ(図示せず)からの直流電流がインバータ3により三相交流電流に変換され、電動モータ2のコイル35に給電されることで、ロータ30が回転駆動されるよう構成されている。 The electric motor 2 is composed of a stator 25 around which a coil 35 is wound and a rotor 30. Then, for example, the direct current from the vehicle battery (not shown) is converted into a three-phase alternating current by the inverter 3 and supplied to the coil 35 of the electric motor 2, so that the rotor 30 is rotationally driven. ing.
 また、メインハウジング6には、図示しない吸入ポートが形成されており、吸入ポートから吸入された冷媒は、メインハウジング6内を通過した後、圧縮機構ハウジング7内の圧縮機構4の外側の後述する吸入部37に吸入される。これにより、電動モータ2は吸入冷媒により冷却される。また、圧縮機構4にて圧縮された冷媒は、後述する如く吐出空間27に吐出された後、最終的に圧縮機構カバー9に形成された吐出ポート51からハウジング11の外、即ち、冷媒回路Rに吐出される構成とされている。 Further, a suction port (not shown) is formed in the main housing 6, and after the refrigerant sucked from the suction port passes through the main housing 6, the outside of the compression mechanism 4 in the compression mechanism housing 7 will be described later. It is sucked into the suction unit 37. As a result, the electric motor 2 is cooled by the intake refrigerant. Further, the refrigerant compressed by the compression mechanism 4 is discharged into the discharge space 27 as described later, and then finally outside the housing 11 from the discharge port 51 formed in the compression mechanism cover 9, that is, the refrigerant circuit R. It is configured to be discharged to.
 圧縮機構4は、固定スクロール21と可動スクロール22から構成されている。固定スクロール21は、円盤状の鏡板23と、この鏡板23の表面(一方の面)に立設されたインボリュート状、又は、これに近似した曲線から成る渦巻き状のラップ24を一体に備えており、このラップ24が立設された鏡板23の表面をフレーム部7B側として圧縮機構ハウジング7に固定されている。固定スクロール21の鏡板23の中央には吐出孔26が形成されており、この吐出孔26は圧縮機構カバー9内の吐出空間27に連通している。28は吐出孔26の鏡板23の背面(他方の面)側の開口に設けられた吐出バルブである。この吐出バルブ28は圧縮室34の圧力が吐出空間27の圧力より高くなり、それらの差圧が所定値PD2に達した場合に開き、吐出孔26と吐出空間27を連通する。 The compression mechanism 4 is composed of a fixed scroll 21 and a movable scroll 22. The fixed scroll 21 integrally includes a disk-shaped end plate 23 and an involute-shaped or spiral wrap 24 having a curved line similar thereto standing on the surface (one surface) of the end plate 23. The surface of the end plate 23 on which the wrap 24 is erected is fixed to the compression mechanism housing 7 with the frame portion 7B side as the side. A discharge hole 26 is formed in the center of the end plate 23 of the fixed scroll 21, and the discharge hole 26 communicates with the discharge space 27 in the compression mechanism cover 9. Reference numeral 28 denotes a discharge valve provided in the opening on the back surface (the other surface) side of the end plate 23 of the discharge hole 26. The discharge valve 28 opens when the pressure in the compression chamber 34 becomes higher than the pressure in the discharge space 27 and their differential pressure reaches a predetermined value PD2, and communicates the discharge hole 26 with the discharge space 27.
 可動スクロール22は、固定スクロール21に対して公転旋回運動するスクロールであり、円盤状の鏡板31と、この鏡板31の表面(一方の面)に立設されたインボリュート状、又は、これに近似した曲線から成る渦巻き状のラップ32と、鏡板31の背面(他方の面)の中央に突出形成されたボス部33を一体に備えている。この可動スクロール22は、ラップ32の突出方向を固定スクロール21側としてラップ32が固定スクロール21のラップ24に対向し、相互に向かい合って噛み合うように配置され、各ラップ24、32間に圧縮室34を形成する。 The movable scroll 22 is a scroll that revolves and turns with respect to the fixed scroll 21, and is a disk-shaped end plate 31 and an involute shape erected on the surface (one surface) of the end plate 31 or an approximation thereof. A spiral wrap 32 made of a curved line and a boss portion 33 protruding from the center of the back surface (the other surface) of the end plate 31 are integrally provided. The movable scroll 22 is arranged so that the lap 32 faces the lap 24 of the fixed scroll 21 and meshes with each other with the protruding direction of the lap 32 as the fixed scroll 21 side, and the compression chamber 34 is provided between the laps 24 and 32. To form.
 即ち、可動スクロール22のラップ32は、固定スクロール21のラップ24と対向し、ラップ32の先端が鏡板23の表面に接し、ラップ24の先端が鏡板31の表面に接するように噛み合う。回転軸14の他端部、即ち、可動スクロール22側の端部には、当該回転軸14の軸心から偏心した位置にて突出する駆動突起48が設けられている。そして、この駆動突起48には偏心ブッシュ36が取り付けられ、回転軸14の他端部において当該回転軸14の軸心から偏心して設けられている。 That is, the lap 32 of the movable scroll 22 faces the lap 24 of the fixed scroll 21, and the tip of the lap 32 is in contact with the surface of the end plate 23, and the tip of the lap 24 is in contact with the surface of the end plate 31. The other end of the rotating shaft 14, that is, the end on the movable scroll 22 side, is provided with a drive protrusion 48 that protrudes at a position eccentric from the axis of the rotating shaft 14. An eccentric bush 36 is attached to the drive projection 48, and is provided at the other end of the rotating shaft 14 eccentrically from the axial center of the rotating shaft 14.
 この場合、偏心ブッシュ36は当該偏心ブッシュ36の軸心から偏心した位置にて駆動突起48に取り付けられ、この偏心ブッシュ36は可動スクロール22のボス部33に嵌合されている。そして、電動モータ2のロータ30と共に回転軸14が回転されると、可動スクロール22は自転すること無く、固定スクロール21に対して公転旋回運動するように構成されている。尚、49はフロントベアリング18より可動スクロール22側の回転軸14の外周面に取り付けられたバランスウエイトである。 In this case, the eccentric bush 36 is attached to the drive projection 48 at a position eccentric from the axial center of the eccentric bush 36, and the eccentric bush 36 is fitted to the boss portion 33 of the movable scroll 22. Then, when the rotating shaft 14 is rotated together with the rotor 30 of the electric motor 2, the movable scroll 22 is configured to revolve and rotate with respect to the fixed scroll 21 without rotating. Reference numeral 49 denotes a balance weight attached to the outer peripheral surface of the rotating shaft 14 on the movable scroll 22 side of the front bearing 18.
 可動スクロール22は固定スクロール21に対して偏心して公転旋回するため、各ラップ24、32の偏心方向と接触位置は回転しながら移動し、外側の前述した吸入部37から冷媒を吸入した圧縮室34は、内側に向かって移動しながら次第に縮小していく。これにより冷媒は圧縮されていき、最終的に中央の吐出孔26から吐出バルブ28を経て吐出空間27に吐出される。 Since the movable scroll 22 revolves eccentrically with respect to the fixed scroll 21, the eccentric direction and the contact position of each of the laps 24 and 32 move while rotating, and the compression chamber 34 sucking the refrigerant from the above-mentioned suction portion 37 on the outside. Gradually shrinks while moving inward. As a result, the refrigerant is compressed and finally discharged from the central discharge hole 26 to the discharge space 27 via the discharge valve 28.
 図1において38は円環状のスラストプレートである。このスラストプレート38は、可動スクロール22の鏡板31の背面側に形成された背圧室39と、圧縮機構ハウジング7内の圧縮機構4の外側の吸入圧領域としての吸入部37とを区画するためのものであり、ボス部33の外側に位置してフレーム部7Bと可動スクロール22の間に介設されている。41は可動スクロール22の鏡板31の背面に取り付けられてスラストプレート38に当接するシール材であり、このシール材41とスラストプレート38により背圧室39と吸入部37とが区画される。 In FIG. 1, 38 is an annular thrust plate. The thrust plate 38 is for partitioning the back pressure chamber 39 formed on the back surface side of the end plate 31 of the movable scroll 22 and the suction portion 37 as the suction pressure region outside the compression mechanism 4 in the compression mechanism housing 7. It is located outside the boss portion 33 and is interposed between the frame portion 7B and the movable scroll 22. Reference numeral 41 denotes a sealing material attached to the back surface of the end plate 31 of the movable scroll 22 and abutting against the thrust plate 38, and the back pressure chamber 39 and the suction portion 37 are partitioned by the sealing material 41 and the thrust plate 38.
 尚、42はフレーム部7Bのスラストプレート38側の面に取り付けられてスラストプレート38の外周部に当接し、フレーム部7Bとスラストプレート38間をシールするシール材である。 Note that 42 is a sealing material that is attached to the surface of the frame portion 7B on the thrust plate 38 side, abuts on the outer peripheral portion of the thrust plate 38, and seals between the frame portion 7B and the thrust plate 38.
 また、図1において、43は圧縮機構カバー9から圧縮機構ハウジング7に渡って形成された背圧通路であり、この背圧通路43内にはオリフィス44が取り付けられている。背圧通路43は圧縮機構カバー9の吐出空間27内に構成されたオイルセパレータ52のオイル出口53Aと背圧室39とを連通しており、これにより、図1中矢印で示す如く背圧室39にオリフィス44で減圧調整された吐出圧のオイルが供給されるように構成されている。 Further, in FIG. 1, reference numeral 43 denotes a back pressure passage formed from the compression mechanism cover 9 to the compression mechanism housing 7, and an orifice 44 is installed in the back pressure passage 43. The back pressure passage 43 communicates the oil outlet 53A of the oil separator 52 configured in the discharge space 27 of the compression mechanism cover 9 with the back pressure chamber 39, whereby the back pressure chamber is as shown by an arrow in FIG. The 39 is configured to be supplied with oil having a discharge pressure adjusted by reducing the pressure at the orifice 44.
 この背圧室39内の圧力(背圧)により、可動スクロール22を固定スクロール21に押し付ける背圧荷重が生じる。この背圧荷重により、圧縮機構4の圧縮室34からの圧縮反力に抗して可動スクロール22が固定スクロール21に押し付けられ、ラップ24、32と鏡板31、23との接触が維持され、圧縮室34で冷媒を圧縮可能となる。 The pressure (back pressure) in the back pressure chamber 39 causes a back pressure load that presses the movable scroll 22 against the fixed scroll 21. Due to this back pressure load, the movable scroll 22 is pressed against the fixed scroll 21 against the compression reaction force from the compression chamber 34 of the compression mechanism 4, and the contact between the laps 24 and 32 and the end plates 31 and 23 is maintained and compressed. The refrigerant can be compressed in the chamber 34.
 一方、回転軸14内には軸方向に渡るオイル通路46が形成されており、オイル通路46内には、支持部16側に位置して圧力調整弁47が設けられている。オイル通路46は背圧室39とメインハウジング6内(吸入圧領域)とを連通しており、背圧通路43から背圧室39内に流入したオイルは、オイル通路46内に流入してメインハウジング6内に流出するが、圧力調整弁47は背圧室39内の圧力(背圧)が最大値となった場合に開放し、それ以上背圧が上昇しないように機能する。 On the other hand, an oil passage 46 extending in the axial direction is formed in the rotating shaft 14, and a pressure adjusting valve 47 is provided in the oil passage 46 located on the support portion 16 side. The oil passage 46 communicates the back pressure chamber 39 with the inside of the main housing 6 (suction pressure region), and the oil flowing into the back pressure chamber 39 from the back pressure passage 43 flows into the oil passage 46 and is the main. Although it flows out into the housing 6, the pressure regulating valve 47 opens when the pressure (back pressure) in the back pressure chamber 39 reaches the maximum value, and functions so that the back pressure does not rise any more.
 次に、図1と図2を参照しながら、ハウジング11の一部を構成する前述した圧縮機構カバー9の詳細構造について説明する。前述した如く吐出空間27内にはオイルセパレータ52が構成されている。このオイルセパレータ52は、圧縮機構カバー9に一体に構成され、内部にオイル分離空間53が構成されたオイル分離部54と、このオイル分離部54内に上から挿入されてオイル分離空間53の上部を封止すると共に、下端の冷媒出口(作動流体出口)56Aがオイル分離空間53内にて開口したオイル分離筒56と、このオイル分離筒56の側面に対向して形成され、オイルセパレータ52以外の吐出空間27とオイル分離空間53とを連通する二つの連通孔57、57から構成され、オイル分離空間53の下端が前述したオイル出口53Aとされている。 Next, the detailed structure of the above-mentioned compression mechanism cover 9 that constitutes a part of the housing 11 will be described with reference to FIGS. 1 and 2. As described above, the oil separator 52 is configured in the discharge space 27. The oil separator 52 is integrally formed with the compression mechanism cover 9, and has an oil separation portion 54 having an oil separation space 53 inside, and an upper portion of the oil separation space 53 inserted into the oil separation portion 54 from above. The lower end refrigerant outlet (working fluid outlet) 56A is formed so as to face the side surface of the oil separation cylinder 56 and the oil separation cylinder 56 opened in the oil separation space 53, other than the oil separator 52. It is composed of two communication holes 57 and 57 that communicate the discharge space 27 and the oil separation space 53, and the lower end of the oil separation space 53 is the oil outlet 53A described above.
 また、圧縮機構カバー9内には、吐出空間27の周囲に位置して、複数のマフラ室61、62、63と、吐出ポート室64が構成されており、マフラ室61とマフラ室62は絞り部66にて連通され、マフラ室62とマフラ室63は絞り部67にて連通され、マフラ室63と吐出ポート室64は絞り部68にて連通されており、最初のマフラ室61とオイルセパレータ52のオイル分離筒56の上部が連通路69にて連通されている。また、吐出ポート室64は吐出ポート51に連通されてこの吐出ポート51の一部を構成する。 Further, in the compression mechanism cover 9, a plurality of muffler chambers 61, 62, 63 and a discharge port chamber 64 are configured around the discharge space 27, and the muffler chamber 61 and the muffler chamber 62 are throttled. The muffler chamber 62 and the muffler chamber 63 are communicated by the throttle portion 67, the muffler chamber 63 and the discharge port chamber 64 are communicated by the throttle portion 68, and the first muffler chamber 61 and the oil separator are communicated with each other. The upper part of the oil separation cylinder 56 of 52 is communicated with the communication passage 69. Further, the discharge port chamber 64 is communicated with the discharge port 51 to form a part of the discharge port 51.
 更に、本発明では圧縮機構カバー9にリリーフ通路71が形成されており、このリリーフ通路71内にはボール弁72と圧縮バネ73から成る差圧弁74が設けられている。リリーフ通路71の一端は固定スクロール21の吐出孔26より上側において吐出空間27に開口しており、他端は吐出ポート室64に開口し、これにより、吐出空間27と吐出ポート室64(吐出ポート51)とを連通する。尚、図2中にP1で示すのは図1の吐出孔26の位置である。 Further, in the present invention, a relief passage 71 is formed in the compression mechanism cover 9, and a differential pressure valve 74 composed of a ball valve 72 and a compression spring 73 is provided in the relief passage 71. One end of the relief passage 71 opens to the discharge space 27 above the discharge hole 26 of the fixed scroll 21, and the other end opens to the discharge port chamber 64, whereby the discharge space 27 and the discharge port chamber 64 (discharge port). It communicates with 51). In addition, what is shown by P1 in FIG. 2 is the position of the discharge hole 26 of FIG.
 また、差圧弁74の圧縮バネ73は、常にはボール弁72を弁座(リリーフ通路71に形成されている)に押し付けてリリーフ通路71を閉じているが(差圧弁74が閉)、吐出空間27の圧力が吐出ポート室64(吐出ポート51)の圧力より高くなり、それらの差圧が所定値PD1に達した場合、圧縮バネ73のバネ力に抗してボール弁72が弁座から離間してリリーフ通路71を開く(差圧弁74が開く)ように構成されている。 Further, the compression spring 73 of the differential pressure valve 74 always presses the ball valve 72 against the valve seat (formed in the relief passage 71) to close the relief passage 71 (the differential pressure valve 74 is closed), but the discharge space. When the pressure of 27 becomes higher than the pressure of the discharge port chamber 64 (discharge port 51) and their differential pressure reaches a predetermined value PD1, the ball valve 72 separates from the valve seat against the spring force of the compression spring 73. The relief passage 71 is opened (the differential pressure valve 74 is opened).
 ここで、差圧弁74が開く差圧の上記所定値PD1は、前述した吐出バルブ28が開く圧縮室34と吐出空間27との差圧の所定値PD2より大きくなるように圧縮バネ73のバネ力が設定されているものとする。 Here, the predetermined value PD1 of the differential pressure that the differential pressure valve 74 opens is larger than the predetermined value PD2 of the differential pressure between the compression chamber 34 and the discharge space 27 that the discharge valve 28 opens, and the spring force of the compression spring 73. Is set.
 以上の構成で、次に圧縮機構4から冷媒回路Rへの冷媒の流れを図3を参照しながら説明する。前述した如き固定スクロール21に対する可動スクロール22の旋回により冷媒が圧縮され、圧縮室34と吐出空間27の差圧が所定値PD2に達すると、吐出バルブ28が開いて吐出孔26から冷媒が吐出空間27に吐出される。尚、冷媒(吐出ガス)の体積流量が比較的低い通常の運転状態では、差圧弁74は閉じているものとする。 With the above configuration, the flow of the refrigerant from the compression mechanism 4 to the refrigerant circuit R will be described next with reference to FIG. When the refrigerant is compressed by the rotation of the movable scroll 22 with respect to the fixed scroll 21 as described above and the differential pressure between the compression chamber 34 and the discharge space 27 reaches the predetermined value PD2, the discharge valve 28 opens and the refrigerant is discharged from the discharge hole 26. It is discharged to 27. It is assumed that the differential pressure valve 74 is closed under a normal operating state in which the volumetric flow rate of the refrigerant (discharged gas) is relatively low.
 このようにして吐出空間27に流入した冷媒(オイルを含む)は、連通孔57、57からオイルセパレータ52のオイル分離空間53内に流入し、オイル分離筒56の周囲を旋回する。このときの遠心力により冷媒中のオイルが分離され、分離されたオイルはオイル出口53Aから背圧通路43、オリフィス44を経て前述した如く背圧室39に供給される。 The refrigerant (including oil) that has flowed into the discharge space 27 in this way flows into the oil separation space 53 of the oil separator 52 from the communication holes 57 and 57, and swirls around the oil separation cylinder 56. The oil in the refrigerant is separated by the centrifugal force at this time, and the separated oil is supplied from the oil outlet 53A to the back pressure chamber 39 as described above via the back pressure passage 43 and the orifice 44.
 一方、オイルが分離された冷媒は、冷媒出口56Aからオイル分離筒56内に流入し、連通路69を経てマフラ室61に流入する。そして、絞り部66、マフラ室62、絞り部67、マフラ室63、絞り部68を順次経て、吐出ポート室64内に流入し、最終的に吐出ポート51からハウジング11の外である冷媒回路Rに吐出される(図3の上側の流れ)。 On the other hand, the refrigerant from which the oil has been separated flows into the oil separation cylinder 56 from the refrigerant outlet 56A, and flows into the muffler chamber 61 via the communication passage 69. Then, the refrigerant circuit R flows into the discharge port chamber 64 in sequence through the throttle portion 66, the muffler chamber 62, the throttle portion 67, the muffler chamber 63, and the throttle portion 68, and finally from the discharge port 51 to the outside of the housing 11. (Flow on the upper side of FIG. 3).
 上記オイルセパレータ52により冷媒回路Rに流出するオイル量が抑制され、各マフラ室61~63、絞り部66~68により冷媒回路Rに吐出される冷媒の脈動が低減されることになるが、吐出孔26から吐出される冷媒(吐出ガス)の高体積流量条件においては、これらオイルセパレータ52やマフラ室61~63を通過することで圧力損失が発生し、効率が低下してしまうようになる。 The amount of oil flowing out to the refrigerant circuit R is suppressed by the oil separator 52, and the pulsation of the refrigerant discharged to the refrigerant circuit R by the muffler chambers 61 to 63 and the throttle portions 66 to 68 is reduced. Under the high volume flow rate condition of the refrigerant (discharged gas) discharged from the hole 26, pressure loss occurs by passing through the oil separator 52 and the muffler chambers 61 to 63, and the efficiency is lowered.
 そのため、本発明では前述したリリーフ通路71と差圧弁74を設けている。即ち、上記のような高体積流量条件にて圧力損失が大きくなり、吐出空間27の圧力が吐出ポート室64(吐出ポート51)の圧力より大きく上昇して、それらの差圧が前述した所定値PD1に達した場合、差圧弁74が開いてリリーフ通路71を開通し、吐出空間27と吐出ポート室64(吐出ポート51)とを、オイルセパレータ52及び各マフラ室61~63を経ること無く、即ち、それらをバイパスして連通する。 Therefore, in the present invention, the relief passage 71 and the differential pressure valve 74 described above are provided. That is, the pressure loss becomes large under the high volume flow rate condition as described above, the pressure in the discharge space 27 rises more than the pressure in the discharge port chamber 64 (discharge port 51), and the differential pressure between them becomes the predetermined value described above. When it reaches PD1, the differential pressure valve 74 opens to open the relief passage 71, and the discharge space 27 and the discharge port chamber 64 (discharge port 51) do not pass through the oil separator 52 and the muffler chambers 61 to 63. That is, they are bypassed and communicated.
 これにより、吐出空間27内の冷媒は、オイルセパレータ52及び各マフラ室61~63を経ること無く、それらをバイパスして吐出ポート室64(吐出ポート51)に流入するようになるので、オイルセパレータ52やマフラ室61~63における圧力損失が効果的に低減され、効率が改善されるようになる。また、マフラ室61~63の設計に自由度が増すため、低速条件での吐出脈動も効果的に低減することができるようになる。更に、実施例では差圧弁74が開く前述した所定値PD1を、吐出バルブ28が開く前述した所定値PD2より大きくしているので、円滑に圧力損失の低減を図ることができるようになる。 As a result, the refrigerant in the discharge space 27 bypasses the oil separator 52 and the muffler chambers 61 to 63 and flows into the discharge port chamber 64 (discharge port 51). The pressure loss in the 52 and the muffler chambers 61 to 63 is effectively reduced, and the efficiency is improved. Further, since the degree of freedom in designing the muffler chambers 61 to 63 is increased, the discharge pulsation under low speed conditions can be effectively reduced. Further, in the embodiment, the above-mentioned predetermined value PD1 in which the differential pressure valve 74 opens is made larger than the above-mentioned predetermined value PD2 in which the discharge valve 28 opens, so that the pressure loss can be smoothly reduced.
 尚、上記実施例では差圧弁74が設けられたリリーフ通路71により吐出空間27と吐出ポート室64(吐出ポート51)とを連通するようにしたが、それに限らず、図3中に破線で示す如く、オイルセパレータ52から冷媒が流出するオイル分離筒56の冷媒出口(作動流体出口)56A、若しくは、連通路69と、吐出ポート室64(吐出ポート51)とを、リリーフ通路71により連通するようにしてもよい。 In the above embodiment, the discharge space 27 and the discharge port chamber 64 (discharge port 51) are communicated with each other by the relief passage 71 provided with the differential pressure valve 74, but the present invention is not limited to this, and is shown by a broken line in FIG. As described above, the refrigerant outlet (working fluid outlet) 56A or the communication passage 69 of the oil separation cylinder 56 from which the refrigerant flows out from the oil separator 52 and the discharge port chamber 64 (discharge port 51) are communicated with each other by the relief passage 71. It may be.
 それによっても、吐出空間27内の冷媒は、各マフラ室61~63を経ること無く、それらをバイパスして吐出ポート室64(吐出ポート51)に流入するようになるので、マフラ室61~63における圧力損失が効果的に低減されるようになる。 As a result, the refrigerant in the discharge space 27 bypasses the muffler chambers 61 to 63 and flows into the discharge port chamber 64 (discharge port 51), so that the muffler chambers 61 to 63 The pressure loss in is effectively reduced.
 尚、実施例では車両用空気調和装置の冷媒回路に使用されるスクロール圧縮機に本発明を適用したが、それに限らず、各種冷凍装置の冷媒回路で使用されるスクロール圧縮機に本発明は有効である。また、実施例では所謂インバータ一体型のスクロール圧縮機に本発明を適用したが、それに限らず、インバータを一体に備えない通常のスクロール圧縮機にも適用可能である。 In the embodiment, the present invention is applied to the scroll compressor used in the refrigerant circuit of the air conditioner for vehicles, but the present invention is not limited to this, and the present invention is effective for the scroll compressor used in the refrigerant circuit of various refrigerating devices. Is. Further, in the embodiment, the present invention is applied to a so-called inverter-integrated scroll compressor, but the present invention is not limited to this, and the present invention can also be applied to a normal scroll compressor not integrally provided with an inverter.
 1 スクロール圧縮機
 4 圧縮機構
 6 メインハウジング(ハウジング11の一部)
 7 圧縮機構ハウジング(ハウジング11の一部)
 9 圧縮機構カバー(ハウジング11の一部)
 11 ハウジング
 21 固定スクロール
 22 可動スクロール
 23、31 鏡板
 24、32 ラップ
 26 吐出孔
 27 吐出空間
 28 吐出バルブ
 34 圧縮室
 51 吐出ポート
 52 オイルセパレータ
 61~63 マフラ室
 64 吐出ポート室(吐出ポートの一部)
 69 連通路
 71 リリーフ通路
 74 差圧弁
1 Scroll compressor 4 Compression mechanism 6 Main housing (part of housing 11)
7 Compression mechanism housing (part of housing 11)
9 Compression mechanism cover (part of housing 11)
11 Housing 21 Fixed scroll 22 Movable scroll 23, 31 End plate 24, 32 Wrap 26 Discharge hole 27 Discharge space 28 Discharge valve 34 Compression chamber 51 Discharge port 52 Oil separator 61-63 Muffler chamber 64 Discharge port chamber (part of discharge port)
69 Continuous passage 71 Relief passage 74 Differential pressure valve

Claims (6)

  1.  各鏡板の各表面にそれぞれ渦巻き状のラップが対向して形成された固定スクロール及び可動スクロールから成る圧縮機構をハウジング内に備え、前記可動スクロールを前記固定スクロールに対して公転旋回運動させることにより、両スクロールの前記各ラップ間に形成された圧縮室で作動流体を圧縮するスクロール圧縮機において、
     前記ハウジング内に形成された吐出空間と、
     前記固定スクロールに形成され、圧縮された前記作動流体を前記吐出空間に吐出する吐出孔と、
     前記作動流体を前記ハウジング外に吐出する吐出ポートと、
     前記吐出空間と前記吐出ポートを連通するリリーフ通路と、
     該リリーフ通路に設けられ、前記吐出空間と前記吐出ポートの差圧に応じて開く差圧弁を備え、
     前記リリーフ通路は、前記吐出孔より上側において前記吐出空間に開口することを特徴とするスクロール圧縮機。
    A compression mechanism consisting of a fixed scroll and a movable scroll formed with spiral wraps facing each other on each surface of each end plate is provided in the housing, and the movable scroll is revolved and swirled with respect to the fixed scroll. In a scroll compressor that compresses the working fluid in a compression chamber formed between the laps of both scrolls.
    The discharge space formed in the housing and
    A discharge hole formed in the fixed scroll and discharging the compressed working fluid into the discharge space,
    A discharge port that discharges the working fluid to the outside of the housing,
    A relief passage that communicates the discharge space with the discharge port,
    A differential pressure valve provided in the relief passage and opened according to the differential pressure between the discharge space and the discharge port is provided.
    A scroll compressor characterized in that the relief passage opens into the discharge space above the discharge hole.
  2.  前記吐出空間と前記吐出ポートの間に位置してそれらを連通するように前記ハウジング内に形成されたマフラ室を備え、
     前記リリーフ通路は、前記マフラ室を経ること無く、前記吐出空間と前記吐出ポートを連通することを特徴とする請求項1に記載のスクロール圧縮機。
    A muffler chamber located between the discharge space and the discharge port and formed in the housing so as to communicate with the discharge space is provided.
    The scroll compressor according to claim 1, wherein the relief passage communicates between the discharge space and the discharge port without passing through the muffler chamber.
  3.  前記吐出空間に構成されたオイルセパレータを備え、
     前記吐出孔から吐出された前記作動流体は、前記オイルセパレータを経た後、前記マフラ室に流入すると共に、
     前記リリーフ通路は、前記オイルセパレータ及び前記マフラ室を経ること無く、前記吐出空間と前記吐出ポートを連通することを特徴とする請求項2に記載のスクロール圧縮機。
    An oil separator configured in the discharge space is provided.
    The working fluid discharged from the discharge hole flows into the muffler chamber after passing through the oil separator, and also
    The scroll compressor according to claim 2, wherein the relief passage communicates between the discharge space and the discharge port without passing through the oil separator and the muffler chamber.
  4.  前記吐出空間に構成されたオイルセパレータを備え、
     前記吐出孔から吐出された前記作動流体は、前記オイルセパレータを経た後、前記マフラ室に流入すると共に、
     前記リリーフ通路は、前記マフラ室を経ること無く、前記オイルセパレータの作動流体出口と前記吐出ポートを連通することを特徴とする請求項2に記載のスクロール圧縮機。
    An oil separator configured in the discharge space is provided.
    The working fluid discharged from the discharge hole flows into the muffler chamber after passing through the oil separator, and also
    The scroll compressor according to claim 2, wherein the relief passage communicates with the working fluid outlet of the oil separator and the discharge port without passing through the muffler chamber.
  5.  前記差圧弁は、前記吐出空間の圧力が前記吐出ポートの圧力より高くなり、それらの差が所定値PD1に達した場合に開くことを特徴とする請求項1乃至請求項4のうちの何れかに記載のスクロール圧縮機。 The differential pressure valve is any one of claims 1 to 4, wherein the differential pressure valve opens when the pressure in the discharge space becomes higher than the pressure in the discharge port and the difference between them reaches a predetermined value PD1. Scroll compressor described in.
  6.  前記吐出孔に設けられ、前記圧縮室と前記吐出空間の差圧が所定値PD2に達した場合に開く吐出バルブを備え、
     前記所定値PD1は前記所定値PD2より大きいことを特徴とする請求項5に記載のスクロール圧縮機。
    A discharge valve provided in the discharge hole and opened when the differential pressure between the compression chamber and the discharge space reaches a predetermined value PD2 is provided.
    The scroll compressor according to claim 5, wherein the predetermined value PD1 is larger than the predetermined value PD2.
PCT/JP2020/011352 2019-03-22 2020-03-16 Scroll compressor WO2020196002A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080021439.6A CN113631816B (en) 2019-03-22 2020-03-16 Scroll compressor having a discharge port
US17/438,832 US11867173B2 (en) 2019-03-22 2020-03-16 Scroll compressor
DE112020001389.8T DE112020001389T5 (en) 2019-03-22 2020-03-16 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-054525 2019-03-22
JP2019054525A JP7280727B2 (en) 2019-03-22 2019-03-22 scroll compressor

Publications (1)

Publication Number Publication Date
WO2020196002A1 true WO2020196002A1 (en) 2020-10-01

Family

ID=72558151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011352 WO2020196002A1 (en) 2019-03-22 2020-03-16 Scroll compressor

Country Status (5)

Country Link
US (1) US11867173B2 (en)
JP (1) JP7280727B2 (en)
CN (1) CN113631816B (en)
DE (1) DE112020001389T5 (en)
WO (1) WO2020196002A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115370572A (en) * 2022-09-21 2022-11-22 上海海立新能源技术有限公司 Oil separation cover and scroll compressor
CN116928096B (en) * 2023-08-11 2024-03-15 广州市光裕汽车空调制造有限公司 High-speed high-torque automobile air conditioner scroll compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151060A (en) * 2008-12-25 2010-07-08 Toyota Industries Corp Scroll compressor
JP2018112130A (en) * 2017-01-12 2018-07-19 サンデンホールディングス株式会社 Compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866887B2 (en) * 2008-08-29 2012-02-01 日立アプライアンス株式会社 Scroll compressor
JP2010065635A (en) * 2008-09-12 2010-03-25 Hitachi Appliances Inc Scroll compressor
JP6738170B2 (en) 2016-03-15 2020-08-12 サンデン・オートモーティブコンポーネント株式会社 Scroll compressor
JP2017172427A (en) * 2016-03-23 2017-09-28 サンデン・オートモーティブコンポーネント株式会社 Scroll-type compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151060A (en) * 2008-12-25 2010-07-08 Toyota Industries Corp Scroll compressor
JP2018112130A (en) * 2017-01-12 2018-07-19 サンデンホールディングス株式会社 Compressor

Also Published As

Publication number Publication date
US11867173B2 (en) 2024-01-09
JP2020153339A (en) 2020-09-24
CN113631816B (en) 2023-03-17
CN113631816A (en) 2021-11-09
DE112020001389T5 (en) 2021-12-09
US20220136500A1 (en) 2022-05-05
JP7280727B2 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
US6749404B2 (en) Scroll compressors
US11047386B2 (en) Scroll compressor with bypass portions
JP7280726B2 (en) scroll compressor
WO2020196002A1 (en) Scroll compressor
WO2017159393A1 (en) Scroll compressor
CN113994098B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP3170111B2 (en) Scroll compressor
KR102553485B1 (en) High-pressure type scroll compressor
JP4604968B2 (en) Scroll compressor
WO2020189602A1 (en) Scroll compressor
WO2023203947A1 (en) Fluid compressor
JP2018159285A (en) Scroll type compressor
JP6755123B2 (en) Compressor
CN114810587B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP2020148114A (en) Scroll compressor
JPS6258094A (en) Horizontal scroll compressor
WO2022064947A1 (en) Scroll-type compressor
WO2022070527A1 (en) Hermetic electric compressor
US20240026881A1 (en) Scroll compressor
WO2022202092A1 (en) Scroll-type compressor
WO2024042986A1 (en) Electric compressor
JP2001329975A (en) Scroll compressor
WO2018021058A1 (en) Scroll compressor
JP2024046195A (en) Electric Compressor
JP2022152796A (en) scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779033

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20779033

Country of ref document: EP

Kind code of ref document: A1