JP2795950B2 - Inverter optical transmission device - Google Patents

Inverter optical transmission device

Info

Publication number
JP2795950B2
JP2795950B2 JP2037248A JP3724890A JP2795950B2 JP 2795950 B2 JP2795950 B2 JP 2795950B2 JP 2037248 A JP2037248 A JP 2037248A JP 3724890 A JP3724890 A JP 3724890A JP 2795950 B2 JP2795950 B2 JP 2795950B2
Authority
JP
Japan
Prior art keywords
phase
signal
circuit
switching
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2037248A
Other languages
Japanese (ja)
Other versions
JPH03243138A (en
Inventor
洋 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2037248A priority Critical patent/JP2795950B2/en
Publication of JPH03243138A publication Critical patent/JPH03243138A/en
Application granted granted Critical
Publication of JP2795950B2 publication Critical patent/JP2795950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、定電圧定周波出力のインバータ装置に係
り、特にインバータの位相制御に適用する制御信号の光
伝送方式を改良したインバータ装置の光伝送装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a constant voltage / constant frequency output inverter device, and in particular, improves an optical transmission system of a control signal applied to inverter phase control. The invention relates to an optical transmission device for an inverter device.

(従来の技術) 第4図は従来の並列制御信号の光伝送機能を備えた無
停電電源装置の並列運転システムの一例を示すブロック
図である。第4図は2台の無停電電源装置CV1,CV2の出
力を接続した共通母線と直送商用電源との切換回路を具
備した切換装置CHGより構成される商用同期並列システ
ムと呼ばれるもので、無停電電源システムの並列冗長運
転に加え、直送商用電源との無瞬断切換機能を設けた信
頼性の高いシステム構成である。
(Prior Art) FIG. 4 is a block diagram showing an example of a conventional parallel operation system of an uninterruptible power supply having an optical transmission function of a parallel control signal. FIG. 4 shows a commercial synchronous parallel system comprising a switching device CHG having a switching circuit for switching between a common bus connecting the outputs of two uninterruptible power supply devices CV1 and CV2 and a direct power commercial power supply. In addition to the parallel redundant operation of the power supply system, it is a highly reliable system configuration that has a function of instantaneous interruption switching with the direct power commercial power supply.

第4図において、1は商用電源、2A,2Bは整流器、3A,
3Bは変換された直流電力を再び交流に変換するインバー
タ、4A,4Bはインバータ用変圧器、5A,5Bは交流フィルタ
回路、6A,6Bは商用電源停電時電力を供給する蓄電池で
ある。無停電電源装置CV1,CV2の出力は共通母線CBで接
続され、直送電源7との切換回路8をへて、負荷9へ電
力を供給する。並列制御の重要な技術ポイントの一つで
あるインバータの電圧と位相は以下のように制御され
る。無停電電源装置の出力電流検出器10A,10Bの偏差と
出力電圧より有効電力偏差検出器11A,11Bにて有効電力
偏差ΔPA,ΔPB、無効電力偏差検出器12A,12Bにて無効電
力偏差ΔQA、ΔQBを検出する。有効電力偏差ΔPA,ΔPB
はPLL回路13A,13Bにマイナループで割り込ませ偏差分を
補正するように位相制御を行なうと共に一方無効電力偏
差ΔQA、ΔQBは電圧制御回路14A,14Bに割込ませて無停
電電源装置の出力電圧の電圧差によって生じる負荷分担
のアンバランスを補正する。
In FIG. 4, 1 is a commercial power supply, 2A and 2B are rectifiers, 3A and
3B is an inverter that converts the converted DC power back to AC, 4A and 4B are inverter transformers, 5A and 5B are AC filter circuits, and 6A and 6B are storage batteries that supply power during a commercial power failure. Outputs of the uninterruptible power supply devices CV1 and CV2 are connected by a common bus CB, and supply power to a load 9 via a switching circuit 8 with a direct power supply 7. The voltage and phase of the inverter, which is one of the important technical points of parallel control, is controlled as follows. Active power deviations ΔP A , ΔP B at active power deviation detectors 11A, 11B and reactive power deviations at reactive power deviation detectors 12A, 12B, based on the deviation of output current detectors 10A, 10B and output voltage of the UPS. ΔQ A and ΔQ B are detected. Active power deviation ΔP A , ΔP B
Performs a phase control so as to correct the deviation by interrupting the PLL circuits 13A and 13B with a minor loop, while the reactive power deviations ΔQ A and ΔQ B are interrupted by the voltage control circuits 14A and 14B to output the uninterruptible power supply. The load imbalance caused by the voltage difference is corrected.

電圧基準発生回路15A,15BはPLL回路13A,13Bで設定さ
れる位相基準と電圧制御回路14A,14Bで設定される電圧
指令によって振幅を設定される正弦波電圧基準信号を発
生し、PWM制御回路16A,16Bをへてインバータ回路3A,3B
を駆動する。
Voltage reference generation circuits 15A and 15B generate a sine wave voltage reference signal whose amplitude is set by a phase reference set by PLL circuits 13A and 13B and a voltage command set by voltage control circuits 14A and 14B, and a PWM control circuit. Inverter circuit 3A, 3B through 16A, 16B
Drive.

PLL回路の13A,13Bの一実施例を第5図に示す。位相基
準信号PHOとイバータ位相に同期したインバータ位相信
号INVFBを位相差検出器17にて検出し有効偏差ΔPを割
込ませてローパスフィルタ18を介して電圧制御発振器19
にて正弦波出力の整数倍の周波数をもったクロック信号
CPSに変換する。電圧制御発振器19にて発生したクロッ
ク信号CPSは電圧基準発生回路15での位相を決める基準
クロックとすると共に分周器20にて分周されてインバー
タ位相信号INVFBとなり、位相差検出器17にフィードバ
ックされる。
FIG. 5 shows an embodiment of the PLL circuits 13A and 13B. The phase difference detector 17 detects an inverter phase signal INVFB synchronized with the phase reference signal PHO and the inverter phase, interrupts the effective deviation ΔP, and outputs a voltage-controlled oscillator 19 through a low-pass filter 18.
A clock signal with a frequency that is an integral multiple of the sine wave output at
Convert to CPS. The clock signal CPS generated by the voltage controlled oscillator 19 is used as a reference clock for determining the phase in the voltage reference generating circuit 15 and is also frequency-divided by the frequency divider 20 to become an inverter phase signal INVFB, which is fed back to the phase difference detector 17. Is done.

前述した位相基準信号PHOは第4図のような商用同期
システムにおいて直送商用電源7に同期しており、この
同期制御は前述した第5図と同一構成の切換装置内のPL
L回路13にて行なう。直送商用電源7に異常が生じた場
合、無停電電源装置CV1,CV2内には内部発振回路21A,21B
を内蔵しており、位相基準切換回路22A,22Bでバックア
ップを行なう。位相基準切換回路22A,22Bの位相基準切
換指令信号CHA,CHBは切換装置CHGの直送電源同期制御監
視回路23にて検出し、無停電電源装置CV1,CV2に伝達さ
れる。
The above-mentioned phase reference signal PHO is synchronized with the direct power commercial power supply 7 in the commercial synchronous system as shown in FIG. 4, and this synchronous control is performed by the PL in the switching device having the same configuration as that of FIG.
Performed by the L circuit 13. If an abnormality occurs in the direct power commercial power supply 7, the internal oscillation circuits 21A and 21B are provided in the uninterruptible power supply units CV1 and CV2.
And backup is performed by the phase reference switching circuits 22A and 22B. The phase reference switching command signals CHA and CHB of the phase reference switching circuits 22A and 22B are detected by the direct power supply synchronous control monitoring circuit 23 of the switching device CHG and transmitted to the uninterruptible power supply devices CV1 and CV2.

以上述べた第4図の商用同期並列システムにおいて
は、直送電源に同期した位相信号PHA,PHB、直送電源異
常時送信された位相信号PHA,PHBと内部発振回路で発生
する内部パルス信号PHIA,PHIBと切換る位相基準切換指
令信号CHA,CHBの2種類を切換装置から無停電電源装置
に送信する。
In the commercial synchronous parallel system of FIG. 4 described above, the phase signals PHA and PHB synchronized with the direct power supply, the phase signals PHA and PHB transmitted when the direct power supply is abnormal, and the internal pulse signals PHIA and PHIB generated by the internal oscillation circuit are used. And two types of phase reference switching command signals CHA and CHB are transmitted from the switching device to the uninterruptible power supply.

第4図においては、信号の伝送に高速性を要求される
ことから制御信号の伝送に光で絶縁する方式を採用して
いる。24C〜24Fは光送信器、25C〜25Fは光ファイバ、26
C〜26Fは光受信器である。
In FIG. 4, since a high speed is required for signal transmission, a system in which light is insulated for control signal transmission is employed. 24C ~ 24F is optical transmitter, 25C ~ 25F is optical fiber, 26
C to 26F are optical receivers.

(発明が解決しようとする課題) 以上述べたような無停電電源装置の位相同期制御信号
の光伝送方式は従来用いられていたパルストランス絶縁
を用いた伝送方式に比べ配線経路等で受ける外部からの
影響、例えばノイズに対する信頼性が上がるというメリ
ットがあるが、以下のような問題点もある。
(Problems to be Solved by the Invention) The optical transmission system of the phase synchronization control signal of the uninterruptible power supply as described above is more externally received on a wiring path and the like than the conventional transmission system using pulse transformer insulation. , For example, there is a merit that reliability against noise is increased, but there are also the following problems.

一つは光伝送機器が高価で無停電電源装置の並列台数
が増えると、光伝送のためのコストがアップし、また外
部に設けた切換指令発生手段である切換装置CHGに光フ
ァイバが集中するため配線のために盤内構造設計の制約
が多くなるという問題がある。また位相基準切換指令CH
A,CHBは無停電電源装置の通常の運転モードである直送
電源正常時は信号を送信せず常時オフとなる。光伝送機
器は所定のデューティをもったパルス列信号での適用が
最適で、常時オフとした場合パルス列信号を伝送して適
用する場合に比べ必ずしも発光素子等の寿命、伝達特性
等信頼性を向上することにはならない。さらに、通常時
の伝送系に異常を生じても検知できず、本来の動作すべ
き時に信号が伝送されなければ、位相基準信号の切換に
不具合を生じ、最悪の場合システムダウンに至る可能性
がある。
One is that optical transmission equipment is expensive and the number of uninterruptible power supplies increases in parallel, so the cost for optical transmission increases, and optical fibers concentrate on the switching device CHG, which is a switching command generation means provided outside. Therefore, there is a problem that restrictions on the internal structure design are increased due to wiring. Also, phase reference switching command CH
A and CHB are always off without sending a signal when the direct power supply is normal, which is the normal operation mode of the UPS. Optical transmission equipment is optimally applied with a pulse train signal having a predetermined duty, and when turned off at all times, the reliability of the light emitting element and the like is not necessarily improved compared to the case where the pulse train signal is transmitted and applied. It doesn't matter. Furthermore, even if an error occurs in the transmission system during normal operation, it cannot be detected, and if the signal is not transmitted when it should be operating normally, a failure may occur in switching the phase reference signal, and in the worst case, the system may go down. is there.

本発明の目的は、前記インバータ装置の位相制御同期
信号の光伝送方式において、光ファイバの本数の増加に
よりコストアップ、作業性の悪化という問題と、常時オ
フ状態で有事のみ光信号を伝送するような適用方法に対
する信頼性の問題に鑑みてなされたもので、伝送系の信
頼性を確保しながら、伝送装置のコストダウン、部品削
減を図ることができるインバータ装置の光伝送装置を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical transmission system for transmitting a phase control synchronization signal of the inverter device, in which the number of optical fibers is increased to increase the cost, the workability is deteriorated, and the optical signal is transmitted only in an emergency state in an always off state. The present invention has been made in view of the problem of reliability of various application methods, and provides an optical transmission device of an inverter device that can reduce the cost and components of the transmission device while ensuring the reliability of the transmission system. is there.

[発明の構成] (課題を解決するための手段) 本発明はこの目的を達成するために、直送商用電源等
外部より与えられる周波数基準信号と同期した位相制御
信号を発生する同期制御回路と、位相同期制御の異常検
出回路を具備したインバータ装置の外部へ設けた切換装
置から各インバータ装置へ伝送する位相基準信号と位相
基準切換指令の2種類の信号を同一の光ファイバで伝送
するようにし、常時位相基準信号を伝送しながら外部の
位相同期制御異常により発生する位相基準切換指令を重
畳させ、インバータ装置側内部の位相制御手段に切換る
ようにしたものである。
[Means for Solving the Problems] In order to achieve this object, the present invention provides a synchronization control circuit for generating a phase control signal synchronized with a frequency reference signal supplied from outside such as a direct power commercial power supply, Two types of signals, a phase reference signal and a phase reference switching command, to be transmitted to each inverter device from a switching device provided outside the inverter device having an abnormality detection circuit for phase synchronization control are transmitted by the same optical fiber, A phase reference switching command generated due to an external phase synchronization control abnormality is superimposed while constantly transmitting a phase reference signal, and is switched to phase control means inside the inverter device.

(作 用) 本発明においては、切換装置CHGから各無停電電源装
置へ伝送する位相基準信号PHを伝送するパルス列の光信
号に位相基準切換指令信号を重畳させるようにし、送信
するパルス信号の立上りまたは立下りのタイミングで位
相基準信号情報を、またパルス幅にて位相基準切換指令
情報を送信するようにしたので、一本の光信号で従来の
2種類の光伝送方式と同等の機能を実現し、光ファイバ
削減による装置のコストダウンを図ることができると共
に、位相基準切換指令信号のように常時信号が伝送され
ない信号について常時パルス信号を光ファイバに伝達す
るように構成したので伝送部の信頼性を高めることがで
きる。
(Operation) In the present invention, the phase reference switching command signal is superimposed on the optical signal of the pulse train transmitting the phase reference signal PH transmitted from the switching device CHG to each uninterruptible power supply, and the rising edge of the transmitted pulse signal Alternatively, the phase reference signal information is transmitted at the falling timing and the phase reference switching command information is transmitted at the pulse width, so that a single optical signal realizes the same function as the conventional two types of optical transmission systems. In addition, it is possible to reduce the cost of the apparatus by reducing the number of optical fibers, and to always transmit a pulse signal to the optical fiber for a signal that is not always transmitted, such as a phase reference switching command signal. Can be enhanced.

(実施例) 以下本発明の一実施例を第1図を参照して説明する。
第1図において、第4図と同一要素には同一符号をつけ
その説明は省略する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIG.
In FIG. 1, the same elements as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.

第1図において、28は送信信号発生器、24A,24Bは送
信器、25A,25Bはライトガイド、26A,26Bは受信器、29A,
29Bは受信信号判別回路である。
In FIG. 1, 28 is a transmission signal generator, 24A and 24B are transmitters, 25A and 25B are light guides, 26A and 26B are receivers, 29A,
29B is a reception signal discrimination circuit.

第2図は、受信信号判別回路29の一実施例で、30はタ
イマ回路、31は論理積回路、21は内部発振器、32は分周
器、33は論理和回路、34はパルス幅判別回路である。
FIG. 2 shows an embodiment of the received signal discriminating circuit 29, in which 30 is a timer circuit, 31 is an AND circuit, 21 is an internal oscillator, 32 is a frequency divider, 33 is an OR circuit, and 34 is a pulse width discriminating circuit. It is.

また、切換装置より送信される位相情報と制御回路情
報を含んだ伝送パルス信号はPW受信信号判別回路より出
力される。位相信号はPH、内部発振器にて発生する内部
パルス信号はPHI、PLL回路の位相基準はPHOである。
The transmission pulse signal including the phase information and the control circuit information transmitted from the switching device is output from the PW reception signal determination circuit. The phase signal is PH, the internal pulse signal generated by the internal oscillator is PHI, and the phase reference of the PLL circuit is PHO.

第2図に示す受信信号判別回路29は切換装置CHG内送
信信号発生回路28より送信器24A,24B、光ファイバ25A,2
5Bを介して位相情報である伝送パルス信号PWを受信器26
にて入力し、PLL回路13へ位相信号PHを出力するもので
あるが、位相信号の急変を防止するための機能と伝送パ
ルス信号喪失時のバックアップ回路を設けている。
The received signal discriminating circuit 29 shown in FIG. 2 is transmitted from the transmitting signal generating circuit 28 in the switching device CHG to the transmitters 24A and 24B and the optical fibers 25A and 2A.
The transmission pulse signal PW, which is the phase information, is
, And outputs a phase signal PH to the PLL circuit 13. A function for preventing a sudden change in the phase signal and a backup circuit when the transmission pulse signal is lost are provided.

30はタイマ回路で位相信号入力後、システムの周波数
許容範囲で決まる所定時間、論理積回路31を介して次の
位相基準信号の入力を禁止する。一方内部発振器21にて
発生されるクロックパルス信号を分周器32により(1/
N)に分周しシステム出力周波数のクロック信号を発生
するが、その際分周器32の出力と伝送パルス信号PWとの
論理和を論理和回路でとり、その論理和回路の出力で分
周器32をリセットする。これにより、常時位相基準PHと
ほぼ同期した内部パルス信号PH1を発生することができ
る。また、分周器32の分周比Nを大きくする程位相精度
は向上する。分周器32の出力と前記論理積回路31の出力
を論理和回路33を介してPLL回路13の位相信号PHとする
ことにより、切換盤CHGからの伝送パルス信号PWが突然
なくなっても位相信号PHを確保することができる。
Reference numeral 30 denotes a timer circuit for prohibiting the input of the next phase reference signal via the AND circuit 31 for a predetermined time determined by the allowable frequency range of the system after the input of the phase signal. On the other hand, the clock pulse signal generated by the internal oscillator 21 is divided by the frequency divider 32 into (1/1 /
N) to generate a clock signal of the system output frequency. At this time, an OR of the output of the frequency divider 32 and the transmission pulse signal PW is obtained by an OR circuit, and the output is output from the OR circuit. Reset the container 32. As a result, the internal pulse signal PH1 almost constantly synchronized with the phase reference PH can be generated. In addition, as the frequency division ratio N of the frequency divider 32 is increased, the phase accuracy is improved. By setting the output of the frequency divider 32 and the output of the AND circuit 31 as the phase signal PH of the PLL circuit 13 via the OR circuit 33, even if the transmission pulse signal PW from the switching board CHG suddenly disappears, the phase signal PH can be secured.

一方受信器にて受信した位送パルス信号PWはパルス幅
判別回路34に入力され送信側で設定された所定値以上の
パルス幅の信号が入力された時に位相基準切換指令CHを
位相基準切換回路22に送信する。
On the other hand, the phase shift pulse signal PW received by the receiver is input to the pulse width discriminating circuit 34, and when a signal having a pulse width equal to or larger than a predetermined value set on the transmitting side is input, the phase reference switching command CH is transmitted to the phase reference switching circuit. Send to 22.

以上の動作を第3図のタイムチャートに示す。位相パ
ルス信号PWのパルス幅が所定値を超えると位相基準切換
指令CHにより位相制御信号PHOは切換装置CHGより送信さ
れる伝送パルス信号PWから内部発振器で決定される内部
パルス信号PH1に切換る。位相ずれは第3図の位相基準
切換指令CH発生前の位相基準PHと内部パルス信号の時間
差Δθで決まるが前述した分周器32のクリア操作により
Δθは非常に小さく問題なく切換えることができる。
The above operation is shown in the time chart of FIG. When the pulse width of the phase pulse signal PW exceeds a predetermined value, the phase control signal PHO switches from the transmission pulse signal PW transmitted from the switching device CHG to the internal pulse signal PH1 determined by the internal oscillator according to the phase reference switching command CH. The phase shift is determined by the time difference Δθ between the phase reference PH before the generation of the phase reference switching command CH in FIG. 3 and the internal pulse signal, but Δθ is very small by the above-described clear operation of the frequency divider 32 and can be switched without any problem.

以上インバータ装置が2台の場合について説明したが
台数が1台または3台以上でも本発明を実施できるもの
である。また外部に設けた位相同期制御回路を具備した
切換装置から送信する位相制御信号は直送商用電源に同
期した信号で説明したが各インバータ装置の共通の基準
信号として商用電源位相と無関係であっても本発明を適
用できる。またインバータ装置の無停電電源装置でなく
とも位相を同期させて運転する例えば可変周波数電源装
置でも適用することが可能である。
The case where the number of the inverter devices is two has been described above, but the present invention can be implemented with one or three or more inverter devices. Also, the phase control signal transmitted from the switching device having an externally provided phase synchronization control circuit has been described as a signal synchronized with the direct power commercial power supply. The present invention can be applied. Further, the present invention can be applied not only to the uninterruptible power supply device of the inverter device but also to, for example, a variable frequency power supply device that operates in a synchronized phase.

[発明の効果] 以上説明したように、外部に設けた位相同期制御手段
を具備した切換装置から複数台のインバータ装置へ同期
制御の位相信号と、切換装置側位相同期制御の異常によ
る位相制御切換指令の異なる2信号を同一の光伝送経路
に重畳させ、分割して伝送する場合と同等の機能を達成
できるように構成したので、伝送に用いる光ファイバの
本数を1/2にすることができコストダウンが図られると
共に常時パルス列信号を光ファイバにて伝送することに
より常時オフの信号の伝送形態をなくしたので光伝送シ
ステムの信頼性を向上することができる。
[Effects of the Invention] As described above, a phase signal for synchronization control from a switching device having an externally provided phase synchronization control means to a plurality of inverter devices and a phase control switching due to an abnormality in the phase synchronization control on the switching device side. Since two signals with different commands are superimposed on the same optical transmission path and the function equivalent to the case of split transmission is achieved, the number of optical fibers used for transmission can be halved. The cost can be reduced, and the transmission form of the always-off signal can be eliminated by constantly transmitting the pulse train signal through the optical fiber, so that the reliability of the optical transmission system can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の無停電電源装置の並列システムの光伝
送方式の一実施例を示すブロック図、第2図は第1図の
受信信号判別回路の一実施例を示すブロック図、第3図
は受信判別回路の動作を説明するためのタイムチャー
ト、第4図は従来の無停電電源装置の並列システムの光
伝送方式の一実施例を示すブロック図、第5図は第4図
のPLL回路の一実施例を示すブロック図である。 CV1,CV2……無停電電源装置、 CH……切換装置、1……商用電源、 2A,2B……整流器、3A,3B……インバータ、 4A,4B……インバータ用変圧器、 5A,5B……交流フィルタ回路、 6A,6B……蓄電池、7……直送商用電源、 8……切換回路、9……負荷、 10A,10B……出力電流検出器、 11A,11B……有効電力偏差検出器、 12A,12B……無効電力偏差検出器、 13A,13B,13C……PLL回路、 14A,14B……電圧制御回路、 15A,15B……電圧基準発生回路、 16A,16B……PWM制御回路、 21A,21B……内部発振回路、 22A,22B……位相基準切換回路、 23……直送電源同期制御監視回路、 24A〜24F……光送信器、 25A,25B……光ファイバ、 26A〜26F……光受信器、 28……送信信号発生回路、 29A,29B……受信信号判別回路。
FIG. 1 is a block diagram showing an embodiment of an optical transmission system of a parallel system of an uninterruptible power supply according to the present invention, FIG. 2 is a block diagram showing an embodiment of a reception signal discriminating circuit of FIG. FIG. 4 is a time chart for explaining the operation of the reception discriminating circuit. FIG. 4 is a block diagram showing an embodiment of an optical transmission system of a parallel system of a conventional uninterruptible power supply, and FIG. 5 is a PLL shown in FIG. FIG. 3 is a block diagram illustrating an example of a circuit. CV1, CV2… Uninterruptible power supply, CH… Switching device, 1… Commercial power supply, 2A, 2B …… Rectifier, 3A, 3B …… Inverter, 4A, 4B …… Inverter transformer, 5A, 5B… ... AC filter circuit, 6A, 6B ... storage battery, 7 ... direct power commercial power supply, 8 ... switching circuit, 9 ... load, 10A, 10B ... output current detector, 11A, 11B ... active power deviation detector , 12A, 12B… reactive power deviation detector, 13A, 13B, 13C… PLL circuit, 14A, 14B… voltage control circuit, 15A, 15B… voltage reference generation circuit, 16A, 16B… PWM control circuit, 21A, 21B ... internal oscillation circuit, 22A, 22B ... phase reference switching circuit, 23 ... direct power supply synchronous control and monitoring circuit, 24A to 24F ... optical transmitter, 25A, 25B ... optical fiber, 26A to 26F ... ... Optical receiver, 28 ... Transmission signal generation circuit, 29A, 29B ... Reception signal discrimination circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】商用電源等外部により与えられる第1の周
波数基準信号、または内蔵発信器より出力される第2の
周波数基準信号に同期制御する位相同期制御手段と、前
記第1の周波数基準信号と第2の周波数基準信号とを切
換える位相基準切換手段とを具備したインバータ装置に
おいて、前記第1の周波数基準信号の状態に応じて前記
位相基準切換手段への切換指令を与える切換指令発生手
段を外部に設け、前記切換指令発生手段と前記位相同期
制御手段および前記位相基準切換手段とを光伝送ライン
で結び、前記第1の周波数基準信号に前記切換指令発生
手段出力信号を重畳させて伝送するようにしたことを特
徴とするインバータ装置の光伝送装置。
1. A phase synchronization control means for synchronously controlling a first frequency reference signal provided from an external source such as a commercial power supply or a second frequency reference signal output from a built-in oscillator, and said first frequency reference signal. And a phase reference switching means for switching between the first frequency reference signal and the second frequency reference signal, wherein the switching command generation means for giving a switching command to the phase reference switching means in accordance with the state of the first frequency reference signal. Provided externally, the switching command generating means is connected to the phase synchronization control means and the phase reference switching means by an optical transmission line, and the switching command generating means output signal is superimposed on the first frequency reference signal and transmitted. An optical transmission device for an inverter device, characterized in that:
JP2037248A 1990-02-20 1990-02-20 Inverter optical transmission device Expired - Lifetime JP2795950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037248A JP2795950B2 (en) 1990-02-20 1990-02-20 Inverter optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037248A JP2795950B2 (en) 1990-02-20 1990-02-20 Inverter optical transmission device

Publications (2)

Publication Number Publication Date
JPH03243138A JPH03243138A (en) 1991-10-30
JP2795950B2 true JP2795950B2 (en) 1998-09-10

Family

ID=12492332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037248A Expired - Lifetime JP2795950B2 (en) 1990-02-20 1990-02-20 Inverter optical transmission device

Country Status (1)

Country Link
JP (1) JP2795950B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379985B2 (en) * 2008-03-25 2013-12-25 東芝三菱電機産業システム株式会社 Power conversion system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926035U (en) * 1972-06-09 1974-03-06
JPS55133634A (en) * 1979-04-03 1980-10-17 Tokyo Shibaura Electric Co Inverter
JPH01144324A (en) * 1987-11-27 1989-06-06 Toshiba Corp Power distributor

Also Published As

Publication number Publication date
JPH03243138A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
EP0284604B1 (en) Synchronizing circuit for a plurality of power units
US4510401A (en) Processes and devices for providing a load with an electric AC supply without discontinuity of the AC signal
US7242740B2 (en) Digital phase-locked loop with master-slave modes
JP2795950B2 (en) Inverter optical transmission device
KR20040089624A (en) Seamless clock
JP3720219B2 (en) Parallel operation method of reactive power compensator
KR101198638B1 (en) Parallel Operation Apparatus using Magnetic Load Sharing Transformer
JP2008160960A (en) Parallel operation controller for ac power output converter
US11539215B2 (en) Voltage control inverter, power source apparatus, and control method
JPH06104882A (en) Network synchronizing clock supply device
JP3115115B2 (en) Self-excited inverter
KR102603067B1 (en) Method for controlling sync UPS parallel system
JPS6334659B2 (en)
JPS61109429A (en) Inverter control circuit
JP4142977B2 (en) Uninterruptible power supply system
KR100257344B1 (en) Digital pll circuit
KR102303516B1 (en) Method and apparatus for synchronizing phase of uninterruptible power supply with parallel structure
JPH01161162A (en) Detecting device for voltage variation of alternating-current power source
KR100343929B1 (en) Apparatus for monitoring reference clock
JP5379985B2 (en) Power conversion system
JPS635995B2 (en)
JP2596318B2 (en) Transmission equipment
JPH0746764A (en) Parallel operation apparatus of inverter
KR100426101B1 (en) Gate trigger signal generator for semiconductor switch having self-diagnosis function
JPH0652975B2 (en) Uninterruptible power system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12