JP2792276B2 - Conductive glass - Google Patents

Conductive glass

Info

Publication number
JP2792276B2
JP2792276B2 JP3192657A JP19265791A JP2792276B2 JP 2792276 B2 JP2792276 B2 JP 2792276B2 JP 3192657 A JP3192657 A JP 3192657A JP 19265791 A JP19265791 A JP 19265791A JP 2792276 B2 JP2792276 B2 JP 2792276B2
Authority
JP
Japan
Prior art keywords
glass
film
tin oxide
potassium
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3192657A
Other languages
Japanese (ja)
Other versions
JPH04310544A (en
Inventor
雅郎 御園生
正清 外池
秀夫 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16294879&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2792276(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP3192657A priority Critical patent/JP2792276B2/en
Priority to US07/856,747 priority patent/US5279851A/en
Priority to DE69215569T priority patent/DE69215569T2/en
Priority to EP92105611A priority patent/EP0507276B1/en
Publication of JPH04310544A publication Critical patent/JPH04310544A/en
Application granted granted Critical
Publication of JP2792276B2 publication Critical patent/JP2792276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は導電ガラスに関し、特に
高強度・高耐摩耗性能を有する導電ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive glass, and more particularly to a conductive glass having high strength and high wear resistance.

【0002】[0002]

【従来の技術】近年、導電ガラスは、各種ディスプレ−
・薄膜太陽電池などの電極、また透明タッチセンサ−、
透明帯電防止体、透明電磁波遮蔽体など様々な分野で応
用が図られている。導電ガラスはもっぱら、ガラス上に
透明導電性の被膜材料をコ−ティングすることで得られ
ている。この種の材料としては、半金属的挙動を示す酸
化物材料が好んで使用され、代表的なものとしては酸化
錫、酸化インジウム錫(以下ITOと記述する)、酸化
亜鉛、酸化カドミウム錫などが挙げられる。
2. Description of the Related Art In recent years, conductive glass has been used in various displays.
・ Electrode such as thin film solar cell, transparent touch sensor,
Applications have been made in various fields such as transparent antistatic bodies and transparent electromagnetic wave shields. Conductive glass is obtained exclusively by coating a transparent conductive coating material on the glass. As this kind of material, an oxide material exhibiting a semimetallic behavior is preferably used, and typical examples thereof include tin oxide, indium tin oxide (hereinafter referred to as ITO), zinc oxide, and cadmium tin oxide. No.

【0003】用途によっては、導電ガラスが通常使用空
間に露出するため、高い耐摩耗性、耐薬品性(耐酸、耐
アルカリ性)を要求されるものもある。また、安全性を
確保するため、ガラス自体も通常板ガラスより著しく高
い強度を要求される場合がある。高い強度のガラスを得
るためには通常、軟化点以上に加熱したガラスを、急速
に表面から冷却して圧縮応力を得る風冷強化と言われる
手段ないしは、ガラスをカリウムイオンを含む溶融塩に
浸漬し、ガラス中のナトリウムイオンと交換させ、イオ
ンの大きさの違いに基づいて表面圧縮応力を得る化学強
化と呼ばれる手段が好まれる。いずれにせよ、ガラスの
強度を増加させる工程では400℃から600℃程度の
高温にさらされることになる。
[0003] In some applications, since the conductive glass is usually exposed to the space used, high abrasion resistance and chemical resistance (acid resistance and alkali resistance) are required. Further, in order to ensure safety, the glass itself may be required to have a significantly higher strength than a normal sheet glass. In order to obtain a glass of high strength, usually, a glass heated above the softening point is rapidly cooled from the surface to obtain a compressive stress by means of air-cooling or immersion of the glass in a molten salt containing potassium ions. Then, a means called chemical strengthening for exchanging with sodium ions in the glass and obtaining a surface compressive stress based on the difference in the size of the ions is preferred. In any case, in the step of increasing the strength of the glass, the glass is exposed to a high temperature of about 400 ° C. to 600 ° C.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、導電ガ
ラスの電気的特性と膜の機械的強度並びにガラス強度を
同時に満足させるのは困難であった。例えば、透明導電
膜として代表的なITO膜では、優れた電気特性を示す
のであるが、膜の耐摩耗性・耐薬品性は弱い上にガラス
の強度を得るために風冷強化または化学強化処理を行な
うと、電気特性が劣化したりあるいは膜が欠損するとい
う問題に直面する。
However, it has been difficult to simultaneously satisfy the electrical characteristics of the conductive glass, the mechanical strength of the film, and the glass strength. For example, an ITO film, which is a typical transparent conductive film, exhibits excellent electrical characteristics. However, the abrasion resistance and chemical resistance of the film are weak, and the film is strengthened by air cooling or chemical strengthening to obtain the strength of the glass. In this case, there is a problem that electric characteristics are deteriorated or a film is lost.

【0005】一方酸化錫膜では、耐摩耗性能がITO膜
に比して優れている。しかし、これを風冷強化してガラ
スの強度を増そうとすると、その工程の急激な温度変化
のために、しばしば膜に亀裂が生じたり、著しくガラス
が変形してしまう。従ってこの風冷強化処理に当たって
は、厳密な温度管理が必要となり、ともすれば生産性を
損なうことになる。
On the other hand, the wear resistance of the tin oxide film is superior to that of the ITO film. However, if the strength of the glass is increased by air-cooling, the film often cracks or the glass is significantly deformed due to a rapid temperature change in the process. Therefore, strict temperature control is required in this air cooling strengthening treatment, which impairs productivity.

【0006】さらに、予め風冷・化学強化処理を施した
ガラスに透明導電膜を施すことも考えられるが、この場
合膜付け処理温度が高温であると、表面圧縮応力層が原
子の移動拡散によって消失してしまう。
[0006] Further, it is conceivable to apply a transparent conductive film to glass that has been previously subjected to air cooling and chemical strengthening treatment. In this case, if the film forming treatment temperature is high, the surface compressive stress layer is formed by the movement and diffusion of atoms. Will disappear.

【0007】したがって、十分なガラス強度を持った導
電ガラスを作製するための手段としては、強化処理を施
した後、低温で膜付け処理が行なえる方法(例えば真空
蒸着、スパッタ法)にならざるをえないが、この種の設
備は真空を必要とし、膜付けコストが高くなるのはやむ
を得ない実状であった。
Therefore, as a means for producing a conductive glass having a sufficient glass strength, a method (for example, vacuum evaporation or sputtering) capable of performing a film forming treatment at a low temperature after a strengthening treatment is applied. However, this type of equipment requires a vacuum and the cost of coating is unavoidably high.

【0008】本発明は上記従来の問題点を解決し、高強
度・高耐摩耗性能を有する導電ガラスおよびその製造方
法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a conductive glass having high strength and high wear resistance and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】請求項1の導電ガラス
は、ガラス板上に、カリウムを含む酸化錫を主成分とす
る被膜が施された導電ガラスであって、該酸化錫を主
成分とする被膜の厚みが、1〜100nmの範囲であ
り、カリウムの濃度が、0.1〜10.0重量%であ
り、ガラス表面応力が、20〜100kg/mm2
あることを特徴とする。
The conductive glass according to claim 1 is a conductive glass in which a coating containing tin oxide containing potassium as a main component is applied on a glass plate. The thickness of the coating to be formed is in the range of 1 to 100 nm, the concentration of potassium is 0.1 to 10.0% by weight, and the glass surface stress is 20 to 100 kg / mm 2 .

【0010】本発明は、ガラス板上に酸化錫被膜を1〜
100nm形成した後、該ガラス板を溶融硝酸カリウム
と接触させて該ガラス板および該被膜中にカリウムを含
ませ、該被膜中のカリウム濃度を0.1〜10重量%、
かつ、ガラス表面圧縮応力を20〜100kg/mm2
とすることにより製造される。
According to the present invention, a tin oxide film is formed on a glass plate by one to one.
After forming 100 nm , the glass plate is brought into contact with molten potassium nitrate to contain potassium in the glass plate and the coating, and the potassium concentration in the coating is 0.1 to 10% by weight.
And a glass surface compressive stress of 20 to 100 kg / mm 2
It is manufactured by:

【0011】本発明の酸化錫を主成分とする被膜は、熱
分解法によって形成することができる。
The coating of the present invention containing tin oxide as a main component can be formed by a thermal decomposition method .

【0012】[0012]

【作用】本発明によれば、適当な厚味の酸化錫膜を成膜
した後、化学強化の手法をとれば、膜の電気的特性を大
きく損なうことなくガラスに強度がもたせられて、かつ
酸化錫膜にカリウムが含まれることによって膜の耐摩耗
性能も向上させることが可能となった。
According to the present invention, if a tin oxide film having an appropriate thickness is formed and then a chemical strengthening method is employed, the glass can be given strength without significantly impairing the electrical characteristics of the film, and By including potassium in the tin oxide film, the wear resistance of the film can be improved.

【0013】酸化錫の成膜手段としては、真空蒸着法、
スパッタ法、スプレ−法、CVD法、ディッピング法な
ど種々の方法があるが、この中でもコスト・生産性の点
からスプレ−・CVDなどのいわゆる熱分解法が有利で
ある。熱分解法では、熱分解性を有する錫化合物が主原
料となり、具体的にはSnCl4、(Cn2n+14Sn
(ただし、n=1〜4)、C49SnCl3、(CH3
2SnCl2、(C492Sn(OCOCH32 等を使
用するのが一般的である。また、電気的特性を向上させ
るために、ふっ素がしばしば膜に添加されるが、この原
料としてはHF、CCl22、CHClF2、CH3CH
2、CF3Br、CF3COOH、NH4F等が知られて
いる。これらの原料の蒸気を酸素等の酸化性ガスと共に
加熱したガラスに接触させて膜を得るか、またはアルコ
−ル、ベンゼン、トルエン等の有機溶媒に溶解して加熱
されたガラスに噴霧して膜を得る。
As a means for forming a tin oxide film, a vacuum evaporation method,
There are various methods such as a sputtering method, a spray method, a CVD method, and a dipping method. Among them, a so-called thermal decomposition method such as a spray-CVD method is advantageous from the viewpoint of cost and productivity. In the thermal decomposition method, a tin compound having thermal decomposability is a main raw material, specifically, SnCl 4 , (C n H 2n + 1 ) 4 Sn
(However, n = 1 to 4), C 4 H 9 SnCl 3 , (CH 3 )
It is general to use 2 SnCl 2 , (C 4 H 9 ) 2 Sn (OCOCH 3 ) 2 and the like. Fluorine is often added to the film in order to improve the electrical characteristics, and the materials include HF, CCl 2 F 2 , CHClF 2 , and CH 3 CH.
F 2 , CF 3 Br, CF 3 COOH, NH 4 F and the like are known. A vapor is obtained by bringing the vapors of these raw materials into contact with heated glass together with an oxidizing gas such as oxygen to obtain a film, or by dissolving in an organic solvent such as alcohol, benzene or toluene and spraying the heated glass to form a film. Get.

【0014】膜厚は電気抵抗を低くするという点からは
厚いほうがよいが、あまり厚いと膜の光吸収により透明
性が損なわれたり、化学強化工程でのイオン交換が困難
となる。実用的な膜厚範囲は1〜100nm、望ましく
は5〜50nmである。
The film thickness is preferably thicker from the viewpoint of lowering the electric resistance. However, if it is too thick, transparency is impaired due to light absorption of the film, and ion exchange in the chemical strengthening step becomes difficult. A practical film thickness range is 1 to 100 nm, preferably 5 to 50 nm.

【0015】化学強化は硝酸カリウムのようなカリウム
を含む塩を溶融させ、所定時間ガラスを浸漬させて行な
う。
The chemical strengthening is performed by melting a salt containing potassium such as potassium nitrate and immersing the glass for a predetermined time.

【0016】こうして得られた導電ガラスでは、その電
気抵抗値は化学強化処理前に比べ若干増加するが実用上
大きな障害ではない。
The electrical resistance of the conductive glass thus obtained is slightly increased as compared with that before the chemical strengthening treatment, but is not a serious obstacle in practical use.

【0017】この膜の耐摩耗性能を調べるために、往復
摺動試験器を用いて電気抵抗値の変化を測定したとこ
ろ、化学強化を施したもののほうが初期抵抗値は高いも
のの変化の程度は小さく、最終的には抵抗値が逆転し化
学強化を施したものが高い耐久性能を持つに至った。こ
の詳細な原因は不明であるが、図2に示す如く酸化錫膜
中にほぼ均一に分布しているカリウムが何らかの関与を
していると考えてよかろう。
In order to examine the abrasion resistance performance of this film, the change in electrical resistance was measured using a reciprocating sliding tester. Eventually, the resistance value was reversed and the one that had been chemically strengthened had high durability. Although the detailed cause is unknown, it can be considered that potassium which is almost uniformly distributed in the tin oxide film plays a role as shown in FIG.

【0018】化学強化工程で侵入する酸化錫膜中のカリ
ウム濃度は 0.1〜10重量%が望ましい。カリウム
濃度が 0.1重量%より低いと耐摩耗性能の向上への
効果が薄れる。また10重量%より高いと膜の電気抵抗
が高くなる等の悪影響が現れる。
The concentration of potassium in the tin oxide film entering in the chemical strengthening step is preferably 0.1 to 10% by weight. If the potassium concentration is lower than 0.1% by weight, the effect of improving the wear resistance performance is diminished. On the other hand, when the content is higher than 10% by weight, adverse effects such as an increase in electric resistance of the film appear.

【0019】またガラスの強度を光弾性法を用いたガラ
ス表面応力測定器で評価したところ、酸化錫の膜のない
試料と遜色のない強度を有する導電膜付きガラスが得ら
れることがわかった。化学強化の妥当性に関してガラス
表面のカリウムの深さ方向濃度プロファイルを見たが、
図1に示すように膜の有無に関わらず同じプロファイル
が得られた。
When the strength of the glass was evaluated by a glass surface stress measuring instrument using a photoelastic method, a glass with a conductive film having a strength comparable to that of a sample without a tin oxide film was obtained.
It is was found. Regarding the validity of chemical strengthening, we looked at the depth concentration profile of potassium on the glass surface,
As shown in FIG. 1, the same profile was obtained regardless of the presence or absence of the film.

【0020】化学強化処理によるガラス表面応力の値は
20〜100kg/mm2の値が望ましい。表面応力値
が100kg/mm2以上では、ガラスの破壊応力値
(約200〜300kg/mm2)に近ずき、応力不安
定となり自己破壊の恐れが生じ好ましくない。また表面
応力値が20kg/mm2以下であるとガラスの強度上
昇には事実上結びつかない上に、非膜面(正常に化学強
化される)の表面応力との差が大きくなり反り等の悪影
響が生じてしまう。
The value of the glass surface stress by the chemical strengthening treatment is desirably 20 to 100 kg / mm 2 . In surface stress value 100 kg / mm 2 or more, fracture stress of the glass Ki close not a (about 200~300kg / mm 2), a possibility occurs unfavorably becomes self-destructive stress unstable. Further, when the surface stress value is 20 kg / mm 2 or less, it does not substantially lead to an increase in the strength of the glass, and the difference from the surface stress on the non-film surface (normally chemically strengthened) increases, thereby causing adverse effects such as warpage. Will occur.

【0021】[0021]

【実施例】実施例1 よく洗浄した100mm角のフロ−ト板ガラス(5mm
厚)を用意し、基板とした。これに以下の方法で酸化錫
膜を施した。
Example 1 A 100 mm square float plate glass (5 mm
Thickness) was prepared and used as a substrate. This was coated with a tin oxide film by the following method.

【0022】モノブチル錫トリクロライドと水蒸気、酸
素ガス、1,1−ジフルオロエタンガスおよび窒素ガス
よりなる混合気体を用い、CVD法により作製した。ガ
ラスの加熱温度は540℃であった。錫原料の流量を適
宜変更させ、膜厚の異なる3種類の膜を得た。この導電
ガラスの電気抵抗値(1cm間隔の2端子間抵抗)およ
びC光線透過率は表1に記載した通りである。(以下余
白)
It was produced by a CVD method using a mixed gas consisting of monobutyltin trichloride and water vapor, oxygen gas, 1,1-difluoroethane gas and nitrogen gas. The heating temperature of the glass was 540 ° C. By appropriately changing the flow rate of the tin raw material, three types of films having different thicknesses were obtained. The electrical resistance value (resistance between two terminals at 1 cm intervals) and the C light transmittance of this conductive glass are as described in Table 1. (Below)

【0023】次にこの3種類の導電ガラスを溶融状態の
硝酸カリウム(温度470℃)に4.5時間浸漬しその
後引き上げてから徐冷した。比較のために酸化錫膜のな
いフロ−ト板ガラス(5mm厚)も同時に浸漬した。そ
の後水洗し、電気抵抗値およびC光線透過率を測定し
た。
Next, these three kinds of conductive glasses were immersed in potassium nitrate (temperature: 470 ° C.) in a molten state for 4.5 hours, pulled up, and then gradually cooled. For comparison, float glass (5 mm thick) without a tin oxide film was immersed at the same time. Thereafter, the film was washed with water, and the electric resistance value and the C light transmittance were measured.

【0024】このサンプルから50×70mmの小片を
切り出し、この膜の耐摩耗性能を調べるために、往復摺
動試験器を用いて電気抵抗値の変化を測定した。この結
果は図3に示す。
A small piece of 50 × 70 mm was cut out from the sample, and a change in electric resistance was measured using a reciprocating sliding tester to examine the wear resistance of the film. The result is shown in FIG.

【0025】次いでガラスサンプルから30mm角の小
片を切り出し東芝硝子製硝子表面応力測定装置により上
記強化処理を行なったガラスの表面応力を測定した。こ
れらの結果を同じく表1に記載した。
Next, a small piece of 30 mm square was cut out from the glass sample, and the surface stress of the glass subjected to the tempering treatment was measured by a glass surface stress measuring device manufactured by Toshiba Glass. These results are also shown in Table 1.

【0026】イオン交換が行なわれているかどうかを確
認するため、EPMA(電子線マイクロアナライザ−)
によりガラス膜面からカリウムイオンの深さ方向濃度プ
ロファイルを観察した。結果を図1に示す。
An EPMA (Electron Beam Microanalyzer) is used to confirm whether or not ion exchange is being performed.
, The concentration profile of potassium ions in the depth direction was observed from the glass film surface. The results are shown in FIG.

【0027】また酸化錫膜への化学強化工程の影響を把
握するためXPS(X線光電子分光)によりSn、K、
Na、Si、原子の深さ方向濃度プロファイルを観察し
た結果を図2に示した。
Further, in order to grasp the influence of the chemical strengthening process on the tin oxide film, Sn, K,
FIG. 2 shows the results of observing the concentration profiles of Na, Si, and atoms in the depth direction.

【0028】実施例2 よく洗浄した100mm角のフロ−ト板ガラス(5mm
厚)を用意し、基板とした。これに以下の方法で酸化錫
膜を施した。
Example 2 A 100 mm square float glass plate (5 mm
Thickness) was prepared and used as a substrate. This was coated with a tin oxide film by the following method.

【0029】ジブチル錫ジアセテ−トとトリフルオロア
セテ−ト、イソプロパノ−ルを以下の割合で混合し、こ
の液を600℃に加熱したガラスに噴霧して酸化錫膜を ジブチル錫ジアセテ−ト 10.0g トリフルオロアセテ−ト 1.6g イソプロパノ−ル 200cc 作製した。噴霧時間を変更させて膜厚の異なる3種類の
膜を得た。この導電ガラスの電気抵抗値(1cm間隔の
2端子間抵抗)およびC光線透過率は表2に記載した通
りである。
9. Dibutyltin diacetate, trifluoroacetate and isopropanol are mixed in the following ratio, and this solution is sprayed on glass heated to 600 ° C. to form a tin oxide film on dibutyltin diacetate. 0 g trifluoroacetate 1.6 g 200 g of isopropanol was prepared. By changing the spray time, three types of films having different film thicknesses were obtained. The electrical resistance (resistance between two terminals at 1 cm intervals) and the C light transmittance of this conductive glass are as shown in Table 2.

【0030】次にこの4種の導電ガラスを溶融状態の硝
酸カリウム(温度470℃)に4.5時間浸漬しその後
引き上げてから徐冷した。比較のために酸化錫膜のない
フロ−ト板ガラス(5mm厚)も同時に浸漬した。その
後水洗し、電気抵抗値およびC光線透過率を測定した。
Next, the four types of conductive glasses were immersed in potassium nitrate (temperature: 470 ° C.) in a molten state for 4.5 hours, then pulled up, and then gradually cooled. For comparison, float glass (5 mm thick) without a tin oxide film was immersed at the same time. Thereafter, the film was washed with water, and the electric resistance value and the C light transmittance were measured.

【0031】次いでガラスサンプルから30mm角の小
片を切り出し東芝硝子製硝子表面応力測定装置により上
記強化処理を行なったガラスの表面応力を測定した。こ
れらの結果を同じく表2に記載した。
Next, a small piece of 30 mm square was cut out from the glass sample, and the surface stress of the glass subjected to the tempering treatment was measured by a glass surface stress measuring device manufactured by Toshiba Glass. These results are also shown in Table 2.

【0032】残ったサンプルから50×70mmの小片
を切り出し、この膜の耐摩耗性能を調べるために、往復
摺動試験器を用いて電気抵抗値の変化を測定した。この
結果は実施例1と同様であった。
A small piece of 50 × 70 mm was cut out from the remaining sample, and the change in electric resistance was measured using a reciprocating sliding tester to examine the wear resistance of the film. The results were the same as in Example 1.

【0033】[0033]

【発明の効果】以上のように本発明によれば、酸化錫膜
を通してガラス中のナトリウムイオンがカリウムイオン
に置換され、ガラス表面に圧縮応力層が形成されると同
時に、酸化錫被膜中にカリウムが含まれるようになるの
で、機械的強度の高いガラス板が得られると同時に、膜
の耐磨耗性能も著しく増加されることがわかった。
As described above, according to the present invention, the tin oxide film
Sodium ions in the glass through the potassium ion
When a compressive stress layer is formed on the glass surface.
Sometimes the tin oxide film contains potassium
It was found that a glass plate having high mechanical strength was obtained, and at the same time, the abrasion resistance of the film was significantly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施例における酸化錫膜付けガ
ラスの化学強化処理後のNa,Kイオンの深さ方向プロ
ファイルである。
FIG. 1 is a depth profile of Na and K ions of a glass provided with a tin oxide film after a chemical strengthening treatment in an example of the present invention.

【図2】図2は本発明の実施例における酸化錫膜付けガ
ラスの化学強化処理後の膜中およびガラス表面のSn,
Si,Na,Kの深さ方向プロファイルである。
FIG. 2 is a graph showing Sn, in a tin oxide film-coated glass according to an embodiment of the present invention, in a film after a chemical strengthening treatment, and on a glass surface.
It is a depth direction profile of Si, Na, and K.

【図3】図3は本発明の実施例における酸化錫膜付けガ
ラスの化学強化処理前および後のガラスの耐摩耗性能試
験結果である。
FIG. 3 shows the results of abrasion resistance test of a tin oxide film-coated glass according to an example of the present invention before and after a chemical strengthening treatment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−227946(JP,A) 特公 昭53−38727(JP,B2) 特公 昭54−8492(JP,B2) 特公 昭63−2906(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C03C 15/00 - 23/00──────────────────────────────────────────────────の Continuation of the front page (56) References JP-A-61-227946 (JP, A) JP-B-53-38727 (JP, B2) JP-B-54-8492 (JP, B2) JP-B-63 2906 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C03C 15/00-23/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス中のナトリウムイオンをカリウムイ
オンに置換する化学強化処理が施されたガラス板上に、
カリウムを含む酸化錫を主成分とする被膜が被覆された
透明帯電防止体であって、該化学強化処理は該被膜の被
覆の後に施され、 該酸化錫を主成分とする被膜の厚みが、1〜100n
mの範囲であり、 該酸化錫を主成分とする被膜中のカリウム濃度が、
0.1〜10.0重量%であり、 該ガラス表面応力が、20〜100kg/cm2であ
り、 該酸化錫を主成分とする被膜の1cm間隔の2端子間
抵抗が5.05×107Ω以下であることを特徴とする
透明帯電防止体
1. A glass plate which has been subjected to a chemical strengthening treatment for replacing sodium ions in a glass with potassium ions,
Coated with tin oxide containing potassium as the main component
A transparent antistatic body , wherein the chemical strengthening treatment is performed after the coating of the coating, and the thickness of the coating containing tin oxide as a main component is 1 to 100 n.
m, and the potassium concentration in the tin oxide-based coating is
0.1 to 10.0% by weight; the surface stress of the glass is 20 to 100 kg / cm 2 ; and the resistance between two terminals of the coating containing tin oxide as a main component at intervals of 1 cm is 5.05 × 10 5. Less than 7 Ω
Transparent antistatic body .
JP3192657A 1991-04-03 1991-04-03 Conductive glass Expired - Fee Related JP2792276B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3192657A JP2792276B2 (en) 1991-04-03 1991-04-03 Conductive glass
US07/856,747 US5279851A (en) 1991-04-03 1992-03-24 Method of manufacturing a conductive glass with high strength and wear resistance
DE69215569T DE69215569T2 (en) 1991-04-03 1992-04-01 Conductive glass and process for its manufacture
EP92105611A EP0507276B1 (en) 1991-04-03 1992-04-01 Conductive glass and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3192657A JP2792276B2 (en) 1991-04-03 1991-04-03 Conductive glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP372798A Division JPH10231147A (en) 1998-01-12 1998-01-12 Transparent and antistatic glass plate

Publications (2)

Publication Number Publication Date
JPH04310544A JPH04310544A (en) 1992-11-02
JP2792276B2 true JP2792276B2 (en) 1998-09-03

Family

ID=16294879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3192657A Expired - Fee Related JP2792276B2 (en) 1991-04-03 1991-04-03 Conductive glass

Country Status (1)

Country Link
JP (1) JP2792276B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3796069B2 (en) * 1999-07-15 2006-07-12 三洋電機株式会社 Solar cell module
CN104039730B (en) * 2011-12-19 2017-02-22 旭硝子株式会社 Glass base plate for chemical reinforcement, and method for producing same
KR20140118998A (en) 2011-12-26 2014-10-08 아사히 가라스 가부시키가이샤 Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate
CN110546118B (en) 2017-04-28 2022-05-13 Agc株式会社 Film-attached glass substrate, article, and method for producing film-attached glass substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338727A (en) * 1976-09-18 1978-04-10 Meikou Densen Kougiyou Kk Method of and apparatus for detecting cut strand for twisted wire
JPS548492A (en) * 1977-06-22 1979-01-22 Toshiba Corp Scanning conversion system
JPS61227946A (en) * 1985-03-30 1986-10-11 Asahi Glass Co Ltd Electroconductive glass
JPS632906A (en) * 1986-06-23 1988-01-07 Sumitomo Chem Co Ltd Seed disinfectant
JPS63139034A (en) * 1986-11-28 1988-06-10 Nec Corp Transparent electrically conductive film on glass substrate

Also Published As

Publication number Publication date
JPH04310544A (en) 1992-11-02

Similar Documents

Publication Publication Date Title
US5279851A (en) Method of manufacturing a conductive glass with high strength and wear resistance
JP3996229B2 (en) Alkali metal diffusion barrier layer
JPS6374935A (en) Glass composition for substrate, having improved chemical resistance
US11242281B2 (en) Glass substrate for chemical strengthening and method for chemically strengthening with controlled curvature
JP2003514758A (en) Glass substrate processing method and glass substrate for display screen production
KR20110137820A (en) Glass having anti-glare surface and method of making
US10618836B2 (en) Glass plate and manufacturing method thereof
JP2001270740A (en) Glass article and glass substrate for display
KR100414000B1 (en) Adhering Metal to Glass
JP2792276B2 (en) Conductive glass
JP2917432B2 (en) Method for producing conductive glass
CA2157948C (en) Alkali metal diffusion barrier layer
EP0283881A1 (en) Sputtered films of bismuth/tin oxide
KR20060024047A (en) Glass substrate of flat display device and method manufacturing the same
JPH10231147A (en) Transparent and antistatic glass plate
JPH0959043A (en) Conductive glass and its production
JPH0193004A (en) Transparent conductive glass substrate and its manufacture
US20010040143A1 (en) Method for extracting sodium elements from glass surface
JPH06191894A (en) Electric conductive glass and its production
JPH07278790A (en) Resin substrate provided with transparent conductive film and its production
JPH0318737B2 (en)
JPS6065746A (en) Manufacture of glass plate for transparent electrode
JPH0132172B2 (en)
JPH06252431A (en) Manufacture of transparent conductive film
JPH0221082B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees