JP2790917B2 - Manufacturing method of high molecular weight polyester resin - Google Patents

Manufacturing method of high molecular weight polyester resin

Info

Publication number
JP2790917B2
JP2790917B2 JP5507427A JP50742793A JP2790917B2 JP 2790917 B2 JP2790917 B2 JP 2790917B2 JP 5507427 A JP5507427 A JP 5507427A JP 50742793 A JP50742793 A JP 50742793A JP 2790917 B2 JP2790917 B2 JP 2790917B2
Authority
JP
Japan
Prior art keywords
polyester resin
intrinsic viscosity
resin
mixing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5507427A
Other languages
Japanese (ja)
Other versions
JPH06503606A (en
Inventor
アル・ガッタ、フッサイン・アリ・カシフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO ENG SpA
Original Assignee
SHINKO ENG SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO ENG SpA filed Critical SHINKO ENG SpA
Publication of JPH06503606A publication Critical patent/JPH06503606A/en
Application granted granted Critical
Publication of JP2790917B2 publication Critical patent/JP2790917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PCT No. PCT/EP92/02375 Sec. 371 Date Jun. 11, 1993 Sec. 102(e) Date Jun. 11, 1993 PCT Filed Oct. 15, 1992 PCT Pub. No. WO93/08226 PCT Pub. Date Apr. 29, 1993.A process for the production of polyester resins having an intrinsic viscosity higher than 0.57 dl/g from polyester resins having intrinsic viscosities of lower than 0.57 dl/g in which 1) a melt of the polyester resin having an intrinsic viscosity lower than 0.57 dl/g is mixed with a polyaddition additive containing at least two groups which react with the terminal OH and COOH groups of the resin, 2) the melted mixture is converted into solid particles which are subsequently crystallized at temperatures higher than the Tg of the polyester resin and lower than its melting point, and 3) the particles are heated at temperatures higher than 150 DEG C. but lower than the melting point of the resin to increase the intrinsic viscosity.

Description

【発明の詳細な説明】 この発明は、高分子量ポリエステル樹脂の改良製造法
に関する。
The present invention relates to an improved method for producing a high molecular weight polyester resin.

より詳細には、0.57dl/gよりも低い固有粘度を有する
ポリエステルを固体状改質反応(SSR)に付すことによ
る本発明法によって高分子量ポリエステルを得ることが
できる。
More specifically, high molecular weight polyesters can be obtained by the process of the present invention by subjecting a polyester having an intrinsic viscosity of less than 0.57 dl / g to a solid state reforming reaction (SSR).

ポリアルキレンテレフタレートから製造される成形体
は有用な特性、例えば、高い機械的特性、耐溶剤性およ
び透明性等を有する。
Molded articles made from polyalkylene terephthalates have useful properties, such as high mechanical properties, solvent resistance and transparency.

この種の成形体を製造するためにはいくつかの製造技
術が利用されている。この中でも特に、吹込成形の場合
には、予備成形段階中のプレフォームの気泡破壊または
破断を回避するためには、溶融状態のポリエステル樹脂
が十分に高い粘度(10,000ポイズまたはそれ以上の粘
度)を有していることが必要である。
Several manufacturing techniques have been used to manufacture this type of compact. In particular, in the case of blow molding, the polyester resin in a molten state has a sufficiently high viscosity (10,000 poise or more) in order to avoid bubble breakage or breakage of the preform during the preforming step. It is necessary to have.

このように高い粘度を有するポリエステル樹脂を常套
の溶融重縮合法によって製造することは困難である。
It is difficult to produce a polyester resin having such a high viscosity by a conventional melt polycondensation method.

ポリエチレンテレフタレート(PET)のボトルグレー
ドのものは、次の2段階によって製造される:(1)テ
レフタル酸とエチレングリコールを溶融重縮合(MPC)
させることによって、少なくとも0.57〜0.6dl/gの固有
粘度を有するポリマーを調製し、(2)次いで、予め結
晶化処理に付した該ポリマーを固体状態での重縮合反応
(SSPC)に付すことによって、所望の固有粘度(0.75〜
0.9dl/g)を有するポリマーを得る。
Polyethylene terephthalate (PET) bottle grade is produced by two steps: (1) Melt polycondensation (MPC) of terephthalic acid and ethylene glycol.
To prepare a polymer having an intrinsic viscosity of at least 0.57 to 0.6 dl / g, and (2) subjecting the polymer, which has been previously subjected to crystallization treatment, to a polycondensation reaction (SSPC) in a solid state. , Desired intrinsic viscosity (0.75 ~
A polymer having 0.9 dl / g) is obtained.

SSPC改質法の反応速度は非常に遅い。 The reaction rate of SSPC reforming method is very slow.

最近のヨーロッパ特許出願第0422282号明細書には、
反応速度の非常に速い固体状態での重付加反応による改
質法(SSPA)が開示されている。しかしながら、該特許
明細書には、実施例に使用されている固有粘度が0.57dl
/gよりも低い比較的低粘度の樹脂に対して該改質法が有
効に適用できるということは開示されていない。
In a recent European Patent Application No. 0422282,
A solid state polyaddition reforming process (SSPA) with a very fast reaction rate is disclosed. However, the patent specification states that the intrinsic viscosity used in the examples is 0.57 dl
It is not disclosed that the modification method can be effectively applied to a resin having a relatively low viscosity lower than / g.

現在まで出発樹脂として使用されている樹脂の粘度よ
りも低い比較的低い固有粘度を有する出発原料樹脂から
高分子量ポリエステル樹脂を製造することが可能となれ
ば、顕著な利点が得られる。例えば、製造プラントの生
産能力は著しく増大する。溶融状態での重縮合反応の速
度は揮発性副生成物(エチレングリコール)の除去速度
に依存することが知られている。この除去速度は溶融粘
度によって左右され、該粘度が高くなればなるほど、副
生成物の除去は困難となる。
Significant advantages are gained if it becomes possible to produce high molecular weight polyester resins from starting material resins having a relatively low intrinsic viscosity, which is lower than the viscosity of the resins used to date as starting resins. For example, the production capacity of a manufacturing plant is significantly increased. It is known that the rate of the polycondensation reaction in the molten state depends on the removal rate of volatile by-products (ethylene glycol). The rate of this removal depends on the melt viscosity, and the higher the viscosity, the more difficult it is to remove by-products.

比較的低い固有粘度を有するポリエステル樹脂の使用
が可能となれば、固有粘度が著しく低減した溶融物を用
いる操作が可能となり、重縮合反応時間が短縮される。
しかしながら、MPC段階においてポリマーの固有粘度を
低減させるには制限がある。固有粘度を低減させると、
オリゴマーの含有量が増加する。改質工程においては、
環状化合物が生成し、該化合物はグラニュールの流動性
を低下させ、生産ラインの停止をもたらす。このような
現象は、プラントの規則的な操業に悪影響を及ぼす。非
常に苛酷な条件下では、プラントの停止を余儀なくさせ
られる。これは、プラントの規則的な操業を妨げる焼結
物ブロックの形成に起因する。このため、MPC工程にお
いて生成するポリエステル樹脂の固有粘度は少なくとも
0.57〜0.6dl/gとなる。
If a polyester resin having a relatively low intrinsic viscosity can be used, an operation using a melt whose intrinsic viscosity is significantly reduced becomes possible, and the polycondensation reaction time is shortened.
However, there are limitations in reducing the intrinsic viscosity of the polymer during the MPC stage. When the intrinsic viscosity is reduced,
The oligomer content increases. In the reforming process,
Cyclic compounds are formed, which reduce the flowability of the granules and result in production line downtime. Such a phenomenon adversely affects the regular operation of the plant. Under very severe conditions, the plant must be shut down. This is due to the formation of sinter blocks which impede the regular operation of the plant. For this reason, the intrinsic viscosity of the polyester resin generated in the MPC process is at least
It becomes 0.57-0.6dl / g.

予想外のことには、本発明によれば、上述の諸問題を
解決し、0.57dl/gよりも低い固有粘度を有する樹脂を出
発原料として、0.7dl/gよりも高い固有粘度を有するポ
リエステル樹脂を調製できることが判明した。本発明に
よるポリエステル樹脂の製造法は次の工程(a)〜
(d)を含む: (a)アルカンジオールを芳香族ジカルボン酸、好まし
くはテレフタル酸、またはジアルキルテレフタレートと
溶融重縮合させることによって、0.57dl/gを越えない固
有粘度を有するポリエステル樹脂を調製し、 (b)0.57dl/gよりも低い固有粘度を有するポリエステ
ル樹脂を、ポリエステル樹脂の末端のOH基とCOOH基と付
加反応し得る基を少なくとも2個有する分子量増量剤
(重付加添加剤)と溶融混合し、 (c)溶融混合物を固体状粒子に変換させた後、該粒子
を結晶化処理に付し、次いで、 (d)固体状粒子を150℃以上の温度まで加熱すること
によって、ポリマーの粘度を所望の値まで増加させる。
Unexpectedly, according to the present invention, a polyester having an intrinsic viscosity higher than 0.7 dl / g has been solved by solving the above-mentioned problems and starting from a resin having an intrinsic viscosity lower than 0.57 dl / g. It has been found that the resin can be prepared. The process for producing a polyester resin according to the present invention comprises the following steps (a) to
(D) comprising: (a) preparing a polyester resin having an intrinsic viscosity not exceeding 0.57 dl / g by melt polycondensing an alkanediol with an aromatic dicarboxylic acid, preferably terephthalic acid, or dialkyl terephthalate; (B) Melting a polyester resin having an intrinsic viscosity of less than 0.57 dl / g with a molecular weight extender (polyaddition additive) having at least two groups capable of undergoing an addition reaction with terminal OH groups and COOH groups of the polyester resin. Mixing, (c) converting the molten mixture into solid particles, subjecting the particles to a crystallization treatment, and then (d) heating the solid particles to a temperature of 150 ° C. or higher to obtain a polymer. Increase the viscosity to the desired value.

本発明方法が適用されるポリエステル樹脂は、炭素原
子数2〜10のアルカンジオール、例えば、エチレングリ
コールまたは1,4−ブチレングリコール等を芳香族ジカ
ルボン酸またはそれらの反応性誘導体、好ましくはテレ
フタル酸およびアルキレンテレフタレートから成る群か
ら選択される化合物と重縮合させることによって得られ
る生成物である。
The polyester resin to which the method of the present invention is applied is an alkanediol having 2 to 10 carbon atoms, for example, ethylene glycol or 1,4-butylene glycol or the like, an aromatic dicarboxylic acid or a reactive derivative thereof, preferably terephthalic acid and A product obtained by polycondensation with a compound selected from the group consisting of alkylene terephthalates.

ポリアルキレンテレフタレートの場合、テルフタル酸
から誘導される構成単位のほかに、他のジカルボン酸、
例えば、ナフタレンジカルボン酸、フタル酸またはイソ
フタル酸等から誘導される構成単位が、酸構成単位全体
の20モル%の割合で存在していてもよい。
In the case of polyalkylene terephthalate, in addition to the structural units derived from terephthalic acid, other dicarboxylic acids,
For example, structural units derived from naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, or the like may be present in a proportion of 20 mol% of the entire acid structural units.

ポリエチレンテレフタレート(PET)、およびイソフ
タル酸から誘導される構成単位を20モル%まで含有する
コポリエチレンテレフタレート(COPET)は好ましい樹
脂である。
Polyethylene terephthalate (PET) and copolyethylene terephthalate (COPET) containing up to 20 mol% of structural units derived from isophthalic acid are preferred resins.

ポリエステル樹脂の適当な製造法は文献に記載されて
おり、周知である。このような文献としては、米国特許
第3,047,539号および同第2,465,319号各明細書並びに
「エンサイクロペディア・オブ・ポリマー・サイエンス
・アンド・エンジニアリング(Encyclopedia of Polyme
r Science and Engineering)、第2版、第12巻、第132
頁〜第135頁および第217頁〜第225頁(1988年)」が挙
げられる。これらの文献の記載事項も本明細書の一部を
成すものである。
Suitable methods for preparing polyester resins are described in the literature and are well known. Such documents include U.S. Pat. Nos. 3,047,539 and 2,465,319 and "Encyclopedia of Polymer Science and Engineering".
r Science and Engineering), 2nd edition, Volume 12, Volume 132
Pp. 135-135 and 217-225 (1988). The descriptions in these documents also form part of the present specification.

一般的に採用される製造法は、過剰なアルカンジオー
ルとジカルボン酸またはその反応性誘導体との溶融重縮
合反応から成る。
A commonly employed manufacturing method consists of a melt polycondensation reaction of an excess of an alkanediol with a dicarboxylic acid or a reactive derivative thereof.

ポリアルキレンテレフタレートの場合、一般的な製法
は次の2種類である。第一の方法は、ジオールとジアル
キルテレフタレートとのエステル交換反応によってジオ
ール−ジエステルおよび低分子量オリゴマーを形成さ
せ、次いで、これらを溶融重縮合させる方法であり、第
二の方法は、テレフタル酸と選択されるジオールとの直
接的なエステル化法である。後者の方が現在では最もよ
く利用されているが、その理由は、十分な純度のテレフ
タル酸を製造する方法が最近開発されたからである。テ
レフタル酸とグリコールとの直接的なエステル化は、酢
酸マンガンや第三アミン等の触媒を用いておこなうのが
好ましい。
In the case of polyalkylene terephthalate, general production methods are the following two types. The first is to form a diol-diester and a low molecular weight oligomer by transesterification of the diol with a dialkyl terephthalate and then melt polycondensate them, and the second is to select terephthalic acid. Direct esterification with diols. The latter is now most widely used because recently a process for producing terephthalic acid of sufficient purity has been developed. The direct esterification of terephthalic acid and glycol is preferably performed using a catalyst such as manganese acetate or tertiary amine.

その後の重縮合反応は、三酸化アンチモンや二酸化ゲ
ルマニウムを触媒とし、減圧下において、約270℃〜290
℃の温度でおこなう。工程(a)で調製されるポリエス
テルは0.57dl/gよりも低い固有粘度、好ましくは0.40〜
0.55dl/gの固有粘度を有する。混合工程(b)はいずれ
かの混合装置を用いておこなってもよい。
The subsequent polycondensation reaction uses antimony trioxide or germanium dioxide as a catalyst, and under reduced pressure, about 270 ° C to 290 ° C.
Perform at a temperature of ° C. The polyester prepared in step (a) has an intrinsic viscosity of less than 0.57 dl / g, preferably from 0.40 to
It has an intrinsic viscosity of 0.55 dl / g. The mixing step (b) may be performed using any mixing device.

逆回転式で非かみ合い型の二軸スクリュー押出機を使
用するのが好ましい。何故ならば、該押出機は、ポリマ
ーの崩壊をもたらす過度の剪断応力を発生させないから
である。
It is preferred to use a counter-rotating, non-meshing type twin screw extruder. This is because the extruder does not generate excessive shear stress that results in polymer collapse.

この二軸スクリュー押出機における抵抗時間(resist
ance time)は一般に180秒以内である。均質な混合をお
こなうためには、15〜25秒の抵抗時間で充分である。
The resistance time (resist) in this twin screw extruder
ance time) is generally within 180 seconds. A resistance time of 15 to 25 seconds is sufficient for homogeneous mixing.

静力学型のミキサーもこの場合には使用できるが、混
合を制御するためには、抵抗時間は180秒を越えないよ
うにする。一般に静的ミキサーは、流動物の再分割と最
初の順序とは異なる順序でのその後の再結合をおこなう
のに好適なように配設された固定障害物を具有する管状
体から構成される。
Static mixers can also be used in this case, but to control mixing, the resistance time should not exceed 180 seconds. In general, static mixers consist of a tubular body with fixed obstacles arranged to be suitable for subdividing the fluid and subsequent recombinations in a different order than the initial order.

混合は減圧下でおこなってもよい。最終的な所望の固
有粘度に対して、部分的な固有粘度増加が望ましい場合
には、減圧はポリマーの改質速度の点で有利である。前
述のように、添加剤を均質におこなうだけでなく、ポリ
マーの固有粘度を増加させるような条件下で混合工程を
おこなうことができる。
Mixing may be performed under reduced pressure. If a partial increase in intrinsic viscosity relative to the final desired intrinsic viscosity is desired, reduced pressure is advantageous in terms of the rate of polymer modification. As described above, the mixing step can be performed under conditions that not only make the additives homogeneous, but also increase the intrinsic viscosity of the polymer.

しかしながら、このような処理による粘度増加は、最
終的な粘度の70〜80%は越えない。最終的な粘度までの
粘度増加は、ポリマーが影響を受ける種々の反応をより
良く制御することができる固体状態での改質工程(d)
でおこなう。
However, the viscosity increase due to such treatment does not exceed 70-80% of the final viscosity. The viscosity increase to the final viscosity is achieved by the solid state modification step (d), which allows better control of the various reactions in which the polymer is affected.
Perform in.

固体状態での改質工程における温度は、溶融状態の段
階での温度よりも著しく低いので、溶融状態で発生する
崩壊反応やその他の望ましくない反応は抑制されるか、
または低減する。
Since the temperature in the reforming step in the solid state is significantly lower than the temperature in the molten state, disintegration reactions and other undesired reactions that occur in the molten state are suppressed,
Or reduce.

混合温度は一般に250〜310℃であり、混合は減圧下ま
たは非減圧下でおこなってもよい。
The mixing temperature is generally between 250 and 310 ° C., and the mixing may be carried out under reduced or non-reduced pressure.

工程(b)で使用する添加剤は、前述のように、ポリ
エステル樹脂の末端のOH基/COOH基と付加反応し得る基
を少なくとも2個有する化合物である。
The additive used in the step (b) is a compound having at least two groups capable of undergoing an addition reaction with the terminal OH group / COOH group of the polyester resin as described above.

驚くべきことには、この種の添加剤を使用することに
よって、溶融状態での混合処理が終了した後でもなお反
応性を有するポリマーが得られ、該反応性ポリマーは、
その後の固体状態での処理において改質反応および/ま
たは枝分かれ反応をし得る。
Surprisingly, the use of such additives results in a polymer which is still reactive after the end of the mixing process in the molten state, the reactive polymer comprising:
A reforming reaction and / or a branching reaction may occur in the subsequent treatment in the solid state.

溶融状態での混合工程での条件(オリゴマーを含有す
る低分子量ポリエステルが存在し、混合温度が高い条
件)においてはこの種の添加剤の反応性が高いことを考
慮するならば、このような結果は予想外のことである。
Considering that the reactivity of this type of additive is high under the conditions of the mixing process in the molten state (the condition where the low molecular weight polyester containing the oligomer is present and the mixing temperature is high), such a result is considered. Is unexpected.

例えば、イソフタル酸からの構成単位を15重量%有
し、固有粘度が0.474dl/gのコポリエチレンテレフタレ
ートはOH基を130当量/トン保有する。
For example, copolyethylene terephthalate having 15% by weight of constituent units from isophthalic acid and having an intrinsic viscosity of 0.474 dl / g has 130 equivalents / ton of OH groups.

このポリマーのクロロホルムによる抽出率は高いが、
これは該ポリマーが相当量のオリゴマーを含有するから
である。
Although the extraction rate of this polymer with chloroform is high,
This is because the polymer contains a significant amount of oligomer.

工程(a)で得られる「反応性の」ポリマーはその後
の固体状態での処理工程において、約185℃以下の温度
においておこなわれる改質反応の原因をもたらす(改質
反応および可能な枝分かれ反応はより高い温度でおこな
われる)。
The "reactive" polymer obtained in step (a) causes in a subsequent solid state processing step a cause for a reforming reaction to take place at a temperature of about 185 ° C. or less (the reforming reaction and possible branching reactions are Performed at higher temperatures).

固体状態での処理条件を調整することによって、所望
の最終的な用途に適した「注文通りの」ポリマーを調製
することが可能となる。有用な重付加添加剤はテトラカ
ルボン酸、好ましくは芳香族酸の二無水物、イソシアネ
ートおよびポリイソシアネート等である。
By adjusting the processing conditions in the solid state, it is possible to prepare a "tailor-made" polymer suitable for the desired end use. Useful polyaddition additives are tetracarboxylic acids, preferably dianhydrides of aromatic acids, isocyanates and polyisocyanates.

ピロメリット酸二無水物は好ましい二無水物である。
その他の有用な二無水物としては次の化合物が例示され
る:4,4−オキシジフタル酸無水物、3,4,3′,4′−ジフ
ェニレンテトラカルボン酸二無水物、3,3′,4,4′−ベ
ンゾフェノンテトラカルボン酸二無水物、1,2,3,4−シ
クロブタンテトラカルボン酸二無水物、およびビシクロ
[2,2,2]7−オクタン−2,3,5,6−テトラカルボン酸二
無水物。
Pyromellitic dianhydride is a preferred dianhydride.
Other useful dianhydrides include the following compounds: 4,4-oxydiphthalic anhydride, 3,4,3 ', 4'-diphenylenetetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and bicyclo [2,2,2] 7-octane-2,3,5,6- Tetracarboxylic dianhydride.

ポリイソシアネートとしては高分子量ジフェニルメタ
ン−4,4′−ジイソシアネートが例示される。
Examples of the polyisocyanate include high molecular weight diphenylmethane-4,4'-diisocyanate.

添加剤の使用量は一般に、ポリエステル樹脂に基づき
2重量%以下、好ましくは0.05〜1重量%、より好まし
くは0.1〜0.5重量%である。添加剤は常套法に従って樹
脂に添加される。樹脂は工程(c)において、常套の装
置を用いて粒状化される。
The amount of additive used is generally less than 2% by weight, preferably 0.05-1% by weight, more preferably 0.1-0.5% by weight, based on the polyester resin. Additives are added to the resin according to conventional methods. The resin is granulated in step (c) using conventional equipment.

その後の結晶化処理はポリマーのTgよりも高い温度で
あって、融点よりも低い温度でおこなう。標準的な温度
は130℃〜150℃であり、抵抗時間は20〜60分間である。
The subsequent crystallization treatment is performed at a temperature higher than the Tg of the polymer and lower than the melting point. Typical temperatures are between 130 ° C and 150 ° C, and resistance times are between 20 and 60 minutes.

ポリマー粒子の結晶化は、改質工程における粒状物の
凝集現象と粘着を回避するために必要である。
Crystallization of the polymer particles is necessary to avoid agglomeration and sticking of the particulate matter in the modification step.

改質工程(d)は150℃〜210℃の温度でおこなう。工
程(b)で用いられる添加剤がポリエステル樹脂の末端
基で付加反応するので、反応速度は好適であり、また、
抵抗時間は、重縮合改質過程において必要な時間に関し
て短くなる。
The reforming step (d) is performed at a temperature of 150C to 210C. Since the additive used in step (b) undergoes an addition reaction at the terminal group of the polyester resin, the reaction rate is favorable,
The resistance time is reduced with respect to the time required in the polycondensation reforming process.

150℃〜約185℃で処理をおこなう場合には、添加剤が
ポリエステル樹脂の末端基と付加反応することによっ
て、一次改質反応が優先的におこなわれるので、ガス状
流動化剤として乾燥空気を使用することがてきる。処理
温度を重縮合反応が起こる約185℃以上にする場合に
は、不活性ガス、好ましくは窒素ガスを用いるのが好適
である。
When the treatment is performed at 150 ° C. to about 185 ° C., the primary reforming reaction is preferentially performed by the addition reaction of the additive with the terminal group of the polyester resin, so that dry air is used as a gaseous fluidizing agent. Come to use. When the treatment temperature is about 185 ° C. or higher at which the polycondensation reaction occurs, it is preferable to use an inert gas, preferably nitrogen gas.

改質温度を比較的低くすることができるので、従来の
重縮合改質法においては使用できなかった低融点ポリエ
ステル樹脂、例えばイソフタル酸構成単位を酸構成単位
全体に対して5〜20%含有し、20℃以下の比較的低い融
点を有するコポリエチレンテレフタレート(COPET)等
を使用することも可能である。
Since the reforming temperature can be made relatively low, low-melting polyester resins which cannot be used in the conventional polycondensation reforming method, for example, containing 5 to 20% of isophthalic acid structural units to the entire acid structural units. It is also possible to use copolyethylene terephthalate (COPET) having a relatively low melting point of 20 ° C. or less.

本発明方法は、ポリエステルの製造工程(a)および
ポリエステルと重付加添加剤との混合工程を間断なく連
続的におこなってもよい。
In the method of the present invention, the polyester production step (a) and the mixing step of the polyester and the polyaddition additive may be continuously performed without interruption.

押出機または工程(b)で用いる装置には、別のプラ
ントからの粒状物を供給することもできる。性状や特性
の異なるポリエステル樹脂を工程(b)において使用す
ることによって、供給ポリマーに応じた特性を有する組
成物が得られる。工程(b)で得られ溶融物は既知タイ
プのグラニュレーターを用いる連続的な粒状化処理に付
される。結晶化工程と改質工程は、ポリエステル粒状物
を、加熱ガス、例えば、空気または不活性ガス(N2ガス
およびCO2ガス等)の流れに逆らって、結晶化セクショ
ンと改質セクションに供給することによって連続的にお
こなうのが好ましい。ガスの再循環は、特に、ヨーロッ
パ特許出願第86830340.5号明細書に記載の方法によって
おこなわれる。ポリエステル樹脂には常套の添加剤、例
えば、安定化剤、酸化防止剤、可塑剤、滑剤、色素、顔
料、および難燃剤等を適宜配合してもよい。
The extruder or equipment used in step (b) can also be supplied with granules from another plant. By using a polyester resin having different properties and characteristics in step (b), a composition having characteristics according to the supplied polymer can be obtained. The melt obtained in step (b) is subjected to a continuous granulation treatment using a granulator of known type. The crystallization step and the reforming step supply the polyester granules to the crystallization section and the reforming section against the flow of a heating gas, for example, air or an inert gas (such as N 2 gas and CO 2 gas). It is preferable to carry out continuously. The gas recirculation is effected in particular by the method described in European Patent Application No. 86830340.5. Conventional additives such as stabilizers, antioxidants, plasticizers, lubricants, pigments, pigments, and flame retardants may be appropriately added to the polyester resin.

上記の製法によって得られるポリエステル樹脂はいず
れの加工法にも適したものであるが、特に押出吹込成形
および射出吹込成形に適している。
The polyester resin obtained by the above-mentioned production method is suitable for any processing method, but is particularly suitable for extrusion blow molding and injection blow molding.

本発明方法を利用することにより、ポリエステル樹脂
の最終的な特性は、所望の用途に応じて調製することが
できる。
By utilizing the method of the present invention, the final properties of the polyester resin can be adjusted according to the desired application.

以下の実施例は本発明を例示的に説明するものであっ
て、本発明はこれらの実施例に限定されるものではな
い。
The following examples illustrate the present invention exemplarily, and the present invention is not limited to these examples.

実施例1 末端カルボキシル基の含有量が7.8当量/トンである
溶融PET(固有粘度:0.408dl/g)を、PETの溶融重縮合用
パイロットプラントから、換気能を有する逆回転式で非
かみ合わせ型の二軸押出機へ30kg/hの割合で連続的に供
給した。
Example 1 A molten PET having a terminal carboxyl group content of 7.8 eq / ton (intrinsic viscosity: 0.408 dl / g) was obtained from a pilot plant for melt polycondensation of PET by a reverse rotation type non-meshing type having a ventilating ability. Was continuously fed to a twin screw extruder at a rate of 30 kg / h.

結晶化されたPET(固有粘度:0.4dl/g)の粉末にピロ
メリット酸二無水物を20重量%混合した混合物も該二軸
押出機へ300g/hの割合で連続的に供給した。実験条件は
以下の通りである。
A mixture of crystallized powder of PET (intrinsic viscosity: 0.4 dl / g) and 20% by weight of pyromellitic dianhydride was also continuously supplied to the twin-screw extruder at a rate of 300 g / h. The experimental conditions are as follows.

溶融PET中のピロメリット酸二無水物の濃度:0.6重量
% スクリュー速度:450RPM スクリュー比 長さ/直径(LID):24 バレル温度:282℃ 溶融ポリマーの温度:260℃〜295℃ 平均抵抗時間:18〜25秒間 減圧度:15〜17torr 溶融ポリマーをストランドペレタイザー(strand pel
letizer)を用いてペレット化した。
Concentration of pyromellitic dianhydride in molten PET: 0.6% by weight Screw speed: 450RPM Screw ratio Length / diameter (LID): 24 Barrel temperature: 282 ° C Molten polymer temperature: 260 ° C to 295 ° C Average resistance time: Decompression degree: 15 to 17 torr for 18 to 25 seconds.
pelletized using a letizer.

ペレット化したチップは直径5mmの円筒状形態を有
し、その性状は次の通りである。
The pelletized chip has a cylindrical shape with a diameter of 5 mm, and the properties are as follows.

固有粘度:0.62±0.07dl/g アセトアルデヒド含有量:3〜3.5ppm 融点(DSC):252℃ チップは、ヨーロッパ特許出願第86830340.5号明細者
記載のガス再循環法によって、結晶化と改質のプラント
へ供給した。結晶化温度は130℃〜140℃で、抵抗時間は
0.5時間であった。
Intrinsic viscosity: 0.62 ± 0.07 dl / g Acetaldehyde content: 3 to 3.5 ppm Melting point (DSC): 252 ° C. The chip is crystallized and reformed by the gas recirculation method described in European Patent Application No. 86830340.5. Supplied to The crystallization temperature is 130 ℃ ~ 140 ℃, the resistance time is
0.5 hours.

改質温度は170℃で、抵抗時間は12時間であった。改
質処理は乾燥空気流中でおこなった。
The reforming temperature was 170 ° C. and the resistance time was 12 hours. The reforming treatment was performed in a stream of dry air.

ポリマーの固有粘度は0.78±0.02dl/gであった。この
プラントは、実験を停止するまでの十分に長い期間(5
日間)にわたって、休停止に起因する中断や困難を伴う
ことなく稼動させることができた。
The intrinsic viscosity of the polymer was 0.78 ± 0.02 dl / g. This plant has a long enough time to stop the experiment (5
Days without interruptions and difficulties caused by suspension.

ポリマーはゲルを含有せず、ポリマー中のアセトアル
デヒドの含有量は0.3ppmであり、該ポリマーから延伸吹
込成形によってボトルを調製した。
The polymer did not contain a gel, the content of acetaldehyde in the polymer was 0.3 ppm, and a bottle was prepared from the polymer by stretch blow molding.

実施例2 押出機内に減圧しない以外は、実施例1の場合と同様
の実験をおこなった。
Example 2 The same experiment as in Example 1 was performed except that the pressure was not reduced in the extruder.

チップの固有粘度は0.58±0.018dl/gで、アセトアル
デヒド含有量は18.5ppmであった。また、改質後の固有
粘度は0.79±0.018dl/gで、アセトアルデヒド含有量は
0.5ppmであった。改質プラントは、実験を停止するまで
の4日間にわたって中断することなく、連続的に稼動さ
せることができた。
The intrinsic viscosity of the chip was 0.58 ± 0.018 dl / g, and the acetaldehyde content was 18.5 ppm. In addition, the intrinsic viscosity after modification is 0.79 ± 0.018 dl / g, and the acetaldehyde content is
It was 0.5 ppm. The reforming plant was able to run continuously without interruption for four days before stopping the experiment.

実施例3 下記の性状を有する溶融コポリエチレンテレフタレー
トを二軸押出機へ供給する以外は実施例1の場合と同様
の実験をおこなった: イソフタル酸からの構成単位:15重量% 融点(DSC):215℃ 固有粘度:0.52dl/g 末端カルボキシル基の含有量:7.2当量/トン 以下の表−1には、種々の工程後の固有粘度および最
終生成物中のアセトアルデヒド含有量と溶融物中のピロ
メリット酸二無水物の濃度および改質温度との関連性に
関するデータを示す。いずれの実験の場合も改質処理操
作時間は12時間とし、改質プラントは、5日間にわたっ
て、中断することなく連続的に稼動させることができ
た。
Example 3 The same experiment was carried out as in Example 1, except that molten copolyethylene terephthalate having the following properties was fed to a twin-screw extruder: Structural unit from isophthalic acid: 15% by weight Melting point (DSC): 215 ° C Intrinsic viscosity: 0.52 dl / g Terminal carboxyl group content: 7.2 eq / ton The following Table 1 shows the intrinsic viscosity after various processes, the acetaldehyde content in the final product and the pyrolysis in the melt. Figure 2 shows data on the relationship between the concentration of melitic dianhydride and the reforming temperature. In each case, the reforming operation time was 12 hours, and the reforming plant could be operated continuously without interruption for 5 days.

分析法 固有粘度は、ASTM D 4603−85に従い、フェノール
とテトラクロロエタンを60:40(重量比)の割合で含む
混合溶媒100ml中にポリエステルチップを0.5g溶解させ
た溶液を用いて決定した。
Analytical Method Intrinsic viscosity was determined according to ASTM D 4603-85 using a solution in which 0.5 g of a polyester chip was dissolved in 100 ml of a mixed solvent containing phenol and tetrachloroethane at a ratio of 60:40 (weight ratio).

アセトアルデヒドの含有量は、ASTM D 4526−85に
従い、パーキング・エレマー社(Perking Elmer)の870
0型クロマトグラフを用いて測定した。
The content of acetaldehyde was determined according to ASTM D 4526-85 by 870 from Parking Elmer.
It was measured using a type 0 chromatograph.

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】次の工程(1)、(2)および(3)を含
む、0.57dl/gよりも低い固有粘度を有するポリエステル
樹脂を出発原料とする高分子量ポリエステル樹脂の製造
法: (1)0.57dl/gよりも低い固有粘度を有するポリエステ
ル樹脂および該樹脂の末端のOH基またはCOOH基と付加反
応し得る基を少なくとも2個有する重付加添加剤を溶融
状態で混合し、 (2)溶融混合物を固体状粒子に変換させた後、該固体
状粒子を、ポリエステル樹脂のTgよりも高く、融点より
も低い温度で結晶化させ、 (3)結晶化粒子を150℃よりも高く、樹脂の融点より
も低い温度において加熱することによって、固有粘度を
所望の値まで増大させる。
1. A process for producing a high molecular weight polyester resin starting from a polyester resin having an intrinsic viscosity of less than 0.57 dl / g, comprising the following steps (1), (2) and (3): A) mixing in the molten state a polyester resin having an intrinsic viscosity of less than 0.57 dl / g and a polyaddition additive having at least two groups capable of undergoing an addition reaction with terminal OH or COOH groups of the resin; After converting the molten mixture into solid particles, the solid particles are crystallized at a temperature higher than the Tg of the polyester resin and lower than the melting point. (3) The crystallized particles are heated above 150 ° C. The intrinsic viscosity is increased to a desired value by heating at a temperature below the melting point of
【請求項2】出発ポリエステル樹脂の固有粘度が0.4〜
0.55dl/gである請求項1記載の方法。
2. The starting polyester resin has an intrinsic viscosity of 0.4 to 0.4.
2. The method according to claim 1, wherein the amount is 0.55 dl / g.
【請求項3】溶融状態での混合を、温度250℃〜310℃お
よび抵抗時間180秒以内の条件でおこなう請求項1また
は2記載の方法。
3. The method according to claim 1, wherein the mixing in the molten state is performed at a temperature of 250 ° C. to 310 ° C. and a resistance time of 180 seconds or less.
【請求項4】固体状態での加熱処理を150℃〜210℃でお
こなう請求項1から3いずれかに記載の方法。
4. The method according to claim 1, wherein the heat treatment in the solid state is performed at 150 ° C. to 210 ° C.
【請求項5】固有粘度を、固体状態での加熱工程(3)
で得られる最終的な固有粘度値の70〜80%まで増大させ
る請求項1から4いずれかに記載の方法。
5. A heating step (3) in a solid state, wherein the intrinsic viscosity is determined.
5. The method according to claim 1, wherein the value is increased to 70-80% of the final intrinsic viscosity value obtained in the above.
【請求項6】溶融状態での混合を、逆回転式で非かみ合
い型の二軸押出機を用いておこなう請求項1から5いず
れかに記載の方法。
6. The method according to claim 1, wherein the mixing in the molten state is carried out by using a counter-rotating, non-meshing type twin screw extruder.
【請求項7】重付加添加剤がテトラカルボン酸二無水物
から選択される化合物である請求項1から6いずれかに
記載の方法。
7. The method according to claim 1, wherein the polyaddition additive is a compound selected from tetracarboxylic dianhydrides.
【請求項8】二無水物がピロメリット酸二無水物である
請求項7記載の方法。
8. The method according to claim 7, wherein the dianhydride is pyromellitic dianhydride.
【請求項9】二無水物の使用量が1重量%までである請
求項7または8記載の方法。
9. The process according to claim 7, wherein the amount of dianhydride used is up to 1% by weight.
【請求項10】ポリエステル樹脂がポリエチレンテレフ
タレート、およびイソフタル酸から誘導される構成単位
を20重量%まで含有するコポリエチレンテレフタレート
から成る群から選択される樹脂である請求項1から9い
ずれかに記載の方法。
10. The resin according to claim 1, wherein the polyester resin is a resin selected from the group consisting of polyethylene terephthalate and copolyethylene terephthalate containing up to 20% by weight of a structural unit derived from isophthalic acid. Method.
【請求項11】供給工程(a)を、溶融重縮合プラント
からポリエステル樹脂を用いて連続的におこなう請求項
1から10いずれかに記載の方法。
11. The method according to claim 1, wherein the supplying step (a) is carried out continuously using a polyester resin from a melt polycondensation plant.
【請求項12】0.57dl/gよりも低い固有粘度を有するポ
リエステル樹脂、および該ポリエステル樹脂の末端のOH
/COOH基と付加反応し得る基を少なくとも2個有する重
付加添加剤を溶融状態で混合することによって得られ
る、0.57dl/gまたはそれよりも高い固有粘度を有する反
応性ポリエステル樹脂。
12. A polyester resin having an intrinsic viscosity of less than 0.57 dl / g, and a terminal OH of the polyester resin.
/ A reactive polyester resin having an intrinsic viscosity of 0.57 dl / g or higher, obtained by mixing in a molten state a polyaddition additive having at least two groups capable of undergoing an addition reaction with a COOH group.
【請求項13】0.57dl/gよりも低い固有粘度を有する対
応するポリマーをピロメリット酸二無水物と混合するこ
とによって得られる請求項12記載のポリエチレンテレフ
タレートまたはイソフタル酸から誘導される構成単位を
20モル%まで含有するコポリエチレンテレフタレート。
13. The structural unit derived from polyethylene terephthalate or isophthalic acid according to claim 12, which is obtained by mixing a corresponding polymer having an intrinsic viscosity of less than 0.57 dl / g with pyromellitic dianhydride.
Copolyethylene terephthalate containing up to 20 mol%.
【請求項14】請求項1から11いずれかに記載の方法に
よって得られるポリエステル樹脂の射出吹込成形または
押出吹込成形によって製造される成形品。
14. A molded article produced by injection blow molding or extrusion blow molding of a polyester resin obtained by the method according to claim 1.
JP5507427A 1991-10-18 1992-10-15 Manufacturing method of high molecular weight polyester resin Expired - Lifetime JP2790917B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI912759A IT1251953B (en) 1991-10-18 1991-10-18 PROCEDURE FOR THE PRODUCTION OF HIGH MOLECULAR WEIGHT POLYESTER RESINS.
IT91A002759 1991-10-18
PCT/EP1992/002375 WO1993008226A1 (en) 1991-10-18 1992-10-15 Process for the production of high molecular weight polyester resins

Publications (2)

Publication Number Publication Date
JPH06503606A JPH06503606A (en) 1994-04-21
JP2790917B2 true JP2790917B2 (en) 1998-08-27

Family

ID=11360893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5507427A Expired - Lifetime JP2790917B2 (en) 1991-10-18 1992-10-15 Manufacturing method of high molecular weight polyester resin

Country Status (12)

Country Link
US (1) US5376734A (en)
EP (1) EP0563354B8 (en)
JP (1) JP2790917B2 (en)
KR (1) KR930703375A (en)
AT (1) ATE254640T1 (en)
AU (1) AU664388B2 (en)
CA (1) CA2096640C (en)
DE (1) DE69233252T2 (en)
ES (1) ES2208634T3 (en)
IT (1) IT1251953B (en)
TW (1) TW209230B (en)
WO (1) WO1993008226A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1252223B (en) * 1991-12-16 1995-06-05 M & G Ricerche Spa CELLULAR POLYESTER RESINS AND THEIR PREPARATION PROCEDURE
IT1258965B (en) * 1992-06-10 1996-03-11 PROCEDURE FOR THE PRODUCTION OF POLYESTER RESINS FOR FIBERS
IT1264381B1 (en) * 1993-05-07 1996-09-23 M & G Ricerche Spa ARTICLES FORMED FROM POLYESTER RESINS
US6673874B1 (en) 1994-12-21 2004-01-06 Imperial Chemical Industries Plc Modified polymers
GB9425792D0 (en) * 1994-12-21 1995-02-22 Ici Plc Modified polymers
US6121387A (en) * 1994-12-21 2000-09-19 Imperial Chemical Industries, Plc Process for preparing a coating composition
US5830982A (en) * 1995-01-20 1998-11-03 E. I. Du Pont De Nemours And Company Production of poly (ethylene terephthalate)
IT1275478B (en) * 1995-07-05 1997-08-07 M & G Ricerche Spa POLYESTER RESINS WITH IMPROVED PROPERTIES
IT1283590B1 (en) * 1996-04-12 1998-04-22 Sinco Eng Spa POLYESTER RESINS WITH IMPROVED RHEOLOGICAL PROPERTIES (MG-18)
IT1283160B1 (en) * 1996-07-15 1998-04-07 Sinco Eng Spa BLOWN POLYESTER FILM
IT1283166B1 (en) * 1996-07-18 1998-04-07 Sinco Eng Spa PROCESS PERFECTED FOR THE PRODUCTION OF POLYESTER RESINS
IT1283644B1 (en) * 1996-08-01 1998-04-23 Sinco Eng Spa PROCESS PERFECTED FOR THE PRODUCTION OF POLYESTER RESINS
IT1285525B1 (en) * 1996-10-18 1998-06-08 Sinco Eng Spa PERFECTED PROCESS FOR THE DIMENSIONAL STABILIZATION OF POLYETHYLENTEREPHTHALATE PRODUCTS
US6388025B1 (en) 1997-12-01 2002-05-14 Ministero Dell'universita' E Della Ricerca Scientifica E Tecnologica Method for increasing the molecular weight of polyester resins
IT1298635B1 (en) * 1998-03-17 2000-01-12 Sinco Ricerche Spa POLYESTER RESINS WITH IMPROVED PROPERTIES
IT1307930B1 (en) * 1999-01-26 2001-11-29 Sinco Ricerche Spa TRANSPARENT ARTICLES IN POLYESTER RESIN (MG32).
EP1054031B1 (en) * 1999-05-21 2005-08-24 Ciba SC Holding AG Increasing the molecular weight and modification of condensation polymers
JP4522000B2 (en) * 2001-02-01 2010-08-11 旭化成せんい株式会社 Foam
EP1338616A1 (en) * 2002-02-22 2003-08-27 Dsm N.V. Process for preparing a high-molecular polyamide, polyester, copolyesters or polyester-amide block copolymer
WO2006060930A1 (en) * 2004-12-07 2006-06-15 Uhde Inventa-Fischer Ag Method and device for producing polyester granules and/or shaped parts with a low acetaldehyde content
US20060178497A1 (en) * 2005-02-04 2006-08-10 Clemson University And Thordon Bearings, Inc. Implantable biomedical devices including biocompatible polyurethanes
US8110265B2 (en) * 2008-12-09 2012-02-07 The Coca-Cola Company Pet container and compositions having enhanced mechanical properties and gas barrier properties
EP3495126B1 (en) * 2017-12-05 2021-08-04 Point Plastic S.r.l. Process for extrusion of a film based on thermoplastic material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68922102T2 (en) * 1989-10-13 1995-10-19 Phobos Nv Process for the continuous production of high molecular weight polyester resins.
GB2247687A (en) * 1990-09-05 1992-03-11 Harold Verity Smith Polyethylene terephthalate compositions and methods of using thereof
IT1245598B (en) * 1991-03-29 1994-09-29 M & G Ricerche Spa PROCESS FOR THE PRODUCTION OF HIGH MOLECULAR WEIGHT POLYESTER RESINS
IT1245597B (en) * 1991-03-29 1994-09-29 M & G Ricerche Spa PROCESS FOR THE PRODUCTION OF HIGH MOLECULAR WEIGHT POLYESTER RESINS
IT1245600B (en) * 1991-03-29 1994-09-29 M & G Ricerche Spa BLOCK COPOLYESTER RESINS
IT1245599B (en) * 1991-03-29 1994-09-29 M & G Ricerche Spa COPOLYESTER RESINS WITH HIGH MOLECULAR WEIGHT AND LOW MELTING POINT

Also Published As

Publication number Publication date
US5376734A (en) 1994-12-27
DE69233252T2 (en) 2004-04-22
WO1993008226A1 (en) 1993-04-29
IT1251953B (en) 1995-05-27
EP0563354A1 (en) 1993-10-06
AU664388B2 (en) 1995-11-16
ES2208634T3 (en) 2004-06-16
ITMI912759A1 (en) 1993-04-18
AU2758392A (en) 1993-05-21
EP0563354B1 (en) 2003-11-19
CA2096640A1 (en) 1993-04-19
EP0563354B8 (en) 2004-03-24
KR930703375A (en) 1993-11-29
CA2096640C (en) 2003-03-18
ATE254640T1 (en) 2003-12-15
JPH06503606A (en) 1994-04-21
ITMI912759A0 (en) 1991-10-18
TW209230B (en) 1993-07-11
DE69233252D1 (en) 2003-12-24

Similar Documents

Publication Publication Date Title
JP2790917B2 (en) Manufacturing method of high molecular weight polyester resin
US4132707A (en) Preparation of branched poly(alkylene terephthalates)
US5523382A (en) Branched copolyesters especially suitable for extrusion blow molding
JP2761512B2 (en) Method for producing high molecular weight polyester resin
US5334669A (en) Process for the production of high molecular weight polyester resins
JPH0686518B2 (en) Continuous production method of high molecular weight polyester resin
JPH1081739A (en) Polyester resin and its production
TWI281928B (en) Method for increasing solid state polymerization rate of polyester polymers
WO1992017519A1 (en) High molecular weight copolyester resins having low melting points
WO1995002623A1 (en) Preparation of branched polyethylene terephthalate
US5374690A (en) Block copolyester resins
JPH1053644A (en) Improved production of polyester resin
JP3040168B2 (en) Polymer alloy derived from polyester resin and method for producing the same
JP2002519490A (en) Method for crystallizing polyethylene naphthalate without devolatilization step

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 15