JP2787729B2 - Recombinant mink growth hormone gene, recombinant mink pre growth hormone gene, mink growth hormone or mink pre growth hormone transforming plasmid, and mink growth hormone or mink pre growth hormone transformed Escherichia coli - Google Patents

Recombinant mink growth hormone gene, recombinant mink pre growth hormone gene, mink growth hormone or mink pre growth hormone transforming plasmid, and mink growth hormone or mink pre growth hormone transformed Escherichia coli

Info

Publication number
JP2787729B2
JP2787729B2 JP2203846A JP20384690A JP2787729B2 JP 2787729 B2 JP2787729 B2 JP 2787729B2 JP 2203846 A JP2203846 A JP 2203846A JP 20384690 A JP20384690 A JP 20384690A JP 2787729 B2 JP2787729 B2 JP 2787729B2
Authority
JP
Japan
Prior art keywords
mink
growth hormone
recombinant
gene
escherichia coli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2203846A
Other languages
Japanese (ja)
Other versions
JPH0488984A (en
Inventor
和明 荘司
英治 大原
正則 綿引
祐康 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUHON JIIN KK
Original Assignee
NITSUHON JIIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUHON JIIN KK filed Critical NITSUHON JIIN KK
Priority to JP2203846A priority Critical patent/JP2787729B2/en
Publication of JPH0488984A publication Critical patent/JPH0488984A/en
Application granted granted Critical
Publication of JP2787729B2 publication Critical patent/JP2787729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ミンク成長ホルモンに関するものであり、
特に、組換え型ミンク成長ホルモン、組換え型ミンク成
長ホルモン構造遺伝子、組換え型ミンクプレ成長ホルモ
ン、組換え型ミンクプレ成長ホルモン構造遺伝子、組換
えプラスミド、組換え型ミンク成長ホルモン及び組換え
型ミンクプレ成長ホルモンの製造法に関するものであ
る。
The present invention relates to mink growth hormone,
In particular, recombinant mink growth hormone, recombinant mink growth hormone structural gene, recombinant mink pre growth hormone, recombinant mink pre growth hormone structural gene, recombinant plasmid, recombinant mink growth hormone and recombinant mink pre growth It relates to a method for producing hormones.

[従来の技術] 成長ホルモンは、脳下垂体好酸性細胞で産生されるペ
プチドホルモンである。
[Background Art] Growth hormone is a peptide hormone produced in pituitary eosinophilic cells.

ホ乳類の成長ホルモンは脳下垂体前葉において生産さ
れるが、それらの活性ならびに構造は、例えば、ヒト、
ウシ、ブタ、ヒツジ等で既に知られている。このホルモ
ンの生物学的活性には著明な種差があり、霊長類には霊
長類のもののみが有効であることがわかっている。ま
た、免疫学的にも種差があり、ヒトの成長ホルモンに対
する抗体はウシのものと交差反応を示さない。
Mammalian growth hormone is produced in the anterior pituitary gland, but their activity as well as structure is, for example, in humans,
It is already known for cattle, pigs, sheep and the like. There are significant species differences in the biological activity of this hormone, and it has been found that only primates are effective in primates. Also, there are species differences in immunology, and antibodies against human growth hormone do not show cross-reactivity with those of bovine.

成長ホルモンの主な生理作用はその名前のごとく、身
体の多くの生体組織・器官に作用して、成長を促進する
ことである。また、成長促進の他、タンパク質同化促進
作用、脂質代謝等の同化作用にも影響を与えることが知
られている。
As its name implies, the main physiological function of growth hormone is to act on many living tissues and organs of the body to promote growth. It is known that, in addition to promoting growth, it also affects anabolic actions such as protein anabolic action and lipid metabolism.

成長ホルモンを動物に投与した場合、動物の成長速
度、体重増加及び肉生産を著しく増大させることがかつ
てから知られていた。しかしながら、天然の成長ホルモ
ンは脳下垂体に極く微量にしか含まれておらず、遺伝子
組換え技術の開発によってその構造決定及び微生物にお
ける組換えホルモンの生産がヒト、ウシ等で早くから試
みられていた。
It has previously been known that administration of growth hormone to animals significantly increases the growth rate, weight gain and meat production of the animals. However, natural growth hormone is contained only in a trace amount in the pituitary gland, and the development of genetic recombination technology has attempted to determine its structure and produce recombinant hormones in microorganisms from humans and cows from an early stage. Was.

[発明が解決しようとする課題] しかし、ミンク成長ホルモンについては、ホルモンタ
ンパク質が単離されたという報告はなく、ホルモンタン
パク質及び遺伝子の構造は全く解析されていない現状で
あった。成長ホルモンの生物学的活性には前述のように
著明な種差があることから、ミンクの養殖において、ミ
ンク成長ホルモンの研究開発が望まれていた。
[Problems to be Solved by the Invention] However, regarding mink growth hormone, there has been no report that a hormone protein has been isolated, and at present, the structures of the hormone protein and the gene have not been analyzed at all. As mentioned above, there is a remarkable species difference in the biological activity of growth hormone. Therefore, research and development of mink growth hormone have been desired in mink cultivation.

そこで上記の問題を鑑み、本発明者らは、遺伝子組換
え技術を利用したミンク成長ホルモンの構造解析を行
い、将来の大量供給を目的として本発明の完成に至っ
た。
In view of the above problems, the present inventors have performed a structural analysis of mink growth hormone using genetic recombination technology, and have completed the present invention for the purpose of mass supply in the future.

さらに付言すると、本発明によって、ミンク成長ホル
モン構造遺伝子をクローニングして、塩基配列を決定す
るだけでなく、ミンク成長ホルモンのアミノ酸配列が解
明され、ミンク成長ホルモンの大腸菌等の微生物による
生産が可能になり、多様な生理作用を持つミンク成長ホ
ルモンのさらに詳しい生理作用の研究に役立つととも
に、その応用範囲の広がることも予想される。
Furthermore, according to the present invention, not only is the cloning of the mink growth hormone structural gene and the nucleotide sequence determined, but also the amino acid sequence of mink growth hormone is elucidated, and the production of mink growth hormone by microorganisms such as Escherichia coli becomes possible. In addition, it is useful for studying more detailed physiological effects of mink growth hormone, which has various physiological effects, and it is expected that its application range will be expanded.

即ち、ミンク成長ホルモン遺伝子に関して、本発明者
らがミンクプレ成長ホルモン遺伝子を単離し構造を決定
し、ミンク成長ホルモンの構造についてもこれを解明し
たものである。
That is, regarding the mink growth hormone gene, the present inventors isolated the mink pre-growth hormone gene, determined the structure thereof, and clarified the structure of the mink growth hormone gene.

[課題を解決するための手段] 本発明の第1の発明に係る組換え型ミンク成長ホルモ
ン構造遺伝子は、下記のポリペプチドのアミノ酸配列を
コードするものである。
[Means for Solving the Problems] The recombinant mink growth hormone structural gene according to the first invention of the present invention encodes the amino acid sequence of the following polypeptide.

第2の発明に係る組換え型ミンクプレ成長ホルモン構
造遺伝子は、下記のポリペプチドのアミノ酸配列をコー
ドするものである。
The recombinant mink pre-growth hormone structural gene according to the second invention encodes the amino acid sequence of the following polypeptide.

第3の発明に係る組換えプラスミドpKS−mGH59は、第
1の発明又は第2の発明に記載のポリペプチドのアミノ
酸配列をコードする組換え型ミンク成長ホルモン構造遺
伝子を含有するものである。
The recombinant plasmid pKS-mGH59 according to the third invention contains a recombinant mink growth hormone structural gene encoding the amino acid sequence of the polypeptide according to the first or second invention.

第4の発明に係るミンク成長ホルモン又はミンクプレ
成長ホルモン形質転換大腸菌FERM P−11643は、第3
の発明に記載の組換えプラスミドpKS−mGH59を宿主大腸
菌JM109に導入して形質転換したものである。ミンクか
ら摘出した脳下垂体組織をグアニジウムチオシアネート
溶液中で破砕し、遠心分離によりRNA分画を集め、得ら
れたRNA分画をオリゴテックス・dT30(日本合成ゴム社
製)にてポリ(A)末端を有するポリ(A)+RNA(mRN
A)を濃縮した。このmRNAから、cDNA合成キット(ファ
ルマシア社製)を用いて、cDNAを得た。次に、得られた
cDNAを脱リン酸化されたEcoR I末端を持つプラスミドpU
C19に連結して、ミンク成長ホルモン構造遺伝子(cDN
A)を含むDNA鎖を完全な環状DNA構造のプラスミドとし
て完成した。
The E. coli FERM P-11643 transformed with mink growth hormone or mink pre-growth hormone according to the fourth invention is characterized in that
In this invention, the recombinant plasmid pKS-mGH59 described in the above invention was introduced into host E. coli JM109 and transformed. The pituitary tissue extracted from the mink is crushed in a guanidium thiocyanate solution, the RNA fraction is collected by centrifugation, and the obtained RNA fraction is subjected to poly (DNA synthesis) using Oligotex dT30 (manufactured by Nippon Synthetic Rubber Co., Ltd.). A) Poly (A) + RNA (mRN
A) was concentrated. CDNA was obtained from the mRNA using a cDNA synthesis kit (Pharmacia). Then you got
Plasmid pU with EcoR I end dephosphorylated cDNA
Linked to C19, the mink growth hormone structural gene (cDN
The DNA strand containing A) was completed as a plasmid having a complete circular DNA structure.

本発明者らは、得られたプラスミドpKS−mGH59を大腸
菌JM109株に導入して、37℃で培養し、アンピシリンを
含む寒天培地上に育成したコロニーに対して、ブタ成長
ホルモンのcDNAの制限酵素Rsa I及びPvu II処理によっ
て得られる432塩基対のDNA断片のプローブとしてコロニ
ーハイブリダイゼイションを行うことにより複数個の陽
性コロニーを得た。
The present inventors introduced the obtained plasmid pKS-mGH59 into Escherichia coli JM109 strain, cultured at 37 ° C., and grown pigs on an agar medium containing ampicillin. A plurality of positive colonies were obtained by performing colony hybridization as a probe of a 432 base pair DNA fragment obtained by the Rsa I and Pvu II treatments.

第1図に示されているのは本発明によって初めて明ら
かにされたミンク生長ホルモン構造遺伝子の全塩基配列
であり、請求項2で示した190個のアミノ酸配列からな
るポリペプチド及び請求項3で示した216個のアミノ酸
配列からなるポリペプチドを含んでいる。その構造か
ら、N末端側にシグナルペプチド部分と思われるアミノ
酸26残基が存在し、本発明において初めてミンク成長ホ
ルモンの構造が解明された。
FIG. 1 shows the entire nucleotide sequence of the mink growth hormone structural gene first revealed by the present invention, and the polypeptide consisting of the 190 amino acid sequence shown in claim 2 and claim 3. It contains a polypeptide consisting of the indicated 216 amino acid sequences. From the structure, 26 amino acids, which are considered to be a signal peptide part, were present on the N-terminal side, and the structure of mink growth hormone was elucidated for the first time in the present invention.

なお、形質転換体として本フラスミドpKS−mGH59を導
入した大腸菌(JM109株)は寄託番号 微工研菌寄第116
43号として、工業技術院微生物工業技術研究所に寄託済
みである。
Escherichia coli (JM109 strain) into which the present plasmid pKS-mGH59 was introduced as a transformant was deposited under Accession No.
No. 43 has been deposited with the Institute of Microbial Industry and Technology, National Institute of Advanced Industrial Science and Technology.

さらに付言すると、本発明のミンク成長ホルモン構造
遺伝子及びミンクプレ成長ホルモン構造遺伝子は、これ
を利用することにより、適当な宿主(例えば大腸菌、枯
草菌、酵母等)において、ミンク成長ホルモンあるいは
ミンク成長ホルモン様ポリペプチドが生産可能であるこ
とを意味するものである。すなわち、本発明で得られた
遺伝子を適当な宿主内で調節可能な遺伝子配列(例えば
tac,trp,λPLと呼ばれるプロモーター)を含んだ組換え
プラスミドを導入し形質転換すれば、そのポリペプチド
の生産はプロモーターの支配下におかれ、人為的にその
生産を調節することが可能となるということである。
It is further added that the mink growth hormone structural gene and the mink pre-growth hormone structural gene of the present invention can be used in a suitable host (for example, Escherichia coli, Bacillus subtilis, yeast, etc.) to utilize the mink growth hormone or mink growth hormone-like gene. It means that the polypeptide can be produced. That is, a gene sequence capable of regulating the gene obtained in the present invention in an appropriate host (for example,
When a recombinant plasmid containing a promoter called tac, trp, λPL) is introduced and transformed, the production of the polypeptide is under the control of the promoter, and the production can be artificially regulated. That's what it means.

[作用] 本発明における成長ホルモン及びその誘導体によって
養殖ミンクの成長を促進させることが可能となる。
[Action] The growth hormone and derivatives thereof according to the present invention can promote the growth of cultured mink.

[実施例] 以下に本発明の具体的な実施例を示す。EXAMPLES Specific examples of the present invention will be described below.

実施例1.ミンク脳下垂体からの全ポリ(A)+RNAの単
離: ミンク脳下垂体からポリ(A)+RNAの単離は、グア
ニジウム・チオシアネート法(モレキュラー・クローニ
ング(Molecular Cloning),2nd ed,1989)に従い下記
のごとく調整した。
Example 1. Isolation of total poly (A) + RNA from mink pituitary gland: Isolation of poly (A) + RNA from mink pituitary gland was performed by the guanidium thiocyanate method (Molecular Cloning, 2nd ed). , 1989).

ミンクの凍結脳下垂体870mg(約40個体分)を4Mグア
ニジウム・チオシアネート(和光純薬工業社製(以下
「和光」と略記))、0.1M Tris−HCl(pH7.5)、1%
β−メルカプトエタノール溶液5ml中で、ホモゲナイザ
ーにて破砕、可溶化した。このホモゲネートを18G注射
針に数回通し、染色体由来のDNAを分断した。この溶液
を5.7M セシウムクロライド(和光)、0.01M EDTA(pH
7.5)の溶液上に、この溶液の約2倍量となるよう静か
な重層し、日立工機社製RPS27−3ローターで26,000回
転で12時間遠心することによりRNAの沈殿を得た。この
沈澱を70%エタノールで注意深く洗浄し、10mM Tris−
HCl(pH8.0),1mM EDTA溶液に懸濁した後、エタノール
沈殿を行った。得られた沈殿を蒸留水40μlに懸濁し、
その内の20μlを10mM Tris−HCl,1mM EDTA,0.1% S
DS溶液100μlと混合した後、オリゴテックス・dT30
(日本合成ゴム社製)ゲル溶液100μlと混合した。
870 mg (approximately 40 individuals) of frozen pituitary gland of 4 min guanidinium thiocyanate (manufactured by Wako Pure Chemical Industries, Ltd. (hereinafter abbreviated as “Wako”)), 0.1 M Tris-HCl (pH 7.5), 1%
It was crushed and solubilized in a 5 ml β-mercaptoethanol solution using a homogenizer. This homogenate was passed through an 18G injection needle several times to separate chromosomal DNA. This solution was diluted with 5.7M cesium chloride (Wako) and 0.01M EDTA (pH
The solution was gently overlaid on the solution of 7.5) so as to be about twice the amount of this solution, and centrifuged at 26,000 rpm for 12 hours with an RPS27-3 rotor manufactured by Hitachi Koki Co., Ltd. to obtain an RNA precipitate. The precipitate is carefully washed with 70% ethanol and 10 mM Tris-
After suspending in HCl (pH 8.0) and 1 mM EDTA solution, ethanol precipitation was performed. The obtained precipitate is suspended in 40 μl of distilled water,
20 μl of the solution was added to 10 mM Tris-HCl, 1 mM EDTA, 0.1% S
After mixing with 100 μl of DS solution, Oligotex dT30
The mixture was mixed with 100 μl of a gel solution (manufactured by Nippon Synthetic Rubber Co.).

この溶液を65℃,5分間加熱後、氷中にて急冷し、5M N
aClを22μl加えた。さらに、この溶液を37℃,10分間保
温した後、ポリ(A)+RNAが吸着したゲルを遠心にて
沈殿させ、上清を取り除いた後、10mM Tris−HCl(pH7.
5),1mM EDTA,0.1% SDS溶液100μlに再懸濁し65℃,
5分加熱後、遠心によりmRNAを上清中に解離させた。得
られたmRNAはエタノール沈殿後、20μlの蒸留水に溶解
しcDNAの合成に用いた。
After heating this solution at 65 ° C for 5 minutes, it is quenched in ice and 5M N
22 μl of aCl was added. Furthermore, after keeping this solution at 37 ° C. for 10 minutes, the gel to which poly (A) + RNA was adsorbed was precipitated by centrifugation, the supernatant was removed, and then 10 mM Tris-HCl (pH 7.
5) Resuspend in 100 μl of 1 mM EDTA, 0.1% SDS solution,
After heating for 5 minutes, the mRNA was dissociated into the supernatant by centrifugation. After the obtained mRNA was precipitated with ethanol, it was dissolved in 20 μl of distilled water and used for cDNA synthesis.

実施例2.cDNA合成とベクタープラスミドへの組み込み: cDNAの合成とベクターへの組み込みは、ファルマシア
社製のcDNA合成キットを用い下記のごとく行った。
Example 2. Synthesis of cDNA and integration into vector plasmid: Synthesis of cDNA and integration into a vector were performed using a cDNA synthesis kit manufactured by Pharmacia as follows.

実施例1で調整したmRNA(2μg)溶液20μlを65
℃、10分間加熱した後、氷中にて急冷し、ファーストス
トランド・リアクションミックス溶液に1μlのDDT溶
液とともに加え、37℃、1時間反応させた。この溶液を
セカンドストランド・リアクションミックス溶液に加え
12℃で1時間、続いて22℃で1時間反応させた。次に、
1μlのクレノウ・フラグメントを加え、37℃で30分間
反応させた後、フェノール/クロロフォルム処理を行
い、その上層をスパカラムにて精製した。得られたcDNA
溶液にEcoR I/Not Iアダプター溶液2μl、ATP溶液1
μl,T4 DNAリガーゼ溶液3μlを加え12℃にて一晩反
応させた後、フェノール/クロロホルム処理とスパンカ
ラムにて精製した。
20 μl of the mRNA (2 μg) solution prepared in Example 1 was added to 65
After heating at 10 ° C. for 10 minutes, the mixture was rapidly cooled in ice, added to the first strand reaction mix solution together with 1 μl of the DDT solution, and reacted at 37 ° C. for 1 hour. Add this solution to the second strand reaction mix solution
The reaction was carried out at 12 ° C. for 1 hour and subsequently at 22 ° C. for 1 hour. next,
After adding 1 μl of Klenow fragment and reacting at 37 ° C. for 30 minutes, phenol / chloroform treatment was performed, and the upper layer was purified by a spa column. Obtained cDNA
2 μl of EcoR I / Not I adapter solution and 1 ATP solution
μl and 3 μl of a T4 DNA ligase solution were added and reacted at 12 ° C. overnight, followed by phenol / chloroform treatment and purification with a span column.

上記のごとく調整したcDNAを0.5μgの脱リン酸化さ
れたEcoR I末端を持つプラスミドpUC19に連結し、ミン
ク成長ホルモン遺伝子を含むプラスミド・ライブラリー
を作製した。
The cDNA prepared as described above was ligated to 0.5 μg of a plasmid pUC19 having a dephosphorylated EcoR I end to prepare a plasmid library containing a mink growth hormone gene.

実施例3.ミンク成長ホルモンcDNA組換えプラスミドの選
択とcDNA部分の塩基配列 上記のごとく得られた組換えプラスミド・ライブラリ
ーを大腸菌JM109株に、PEG法(Chungら、プロシーディ
ング・オブ・ナショナル・アカデミー・オブ・サイエン
ス(Proc.Natl.Acad.Sci.),USA,86,2172(1989)に従
い形質転換し、アンピシリン耐性を示す約1,200個のコ
ロニーをニトロセルロース・メンブラン(アマシャム社
製)に固定した。そして、ブタ成長ホルモンcDNAを制限
酵素Rsa I及びPvu II処理によって得られる435塩基対よ
りなるDNA断片をホースラディシュ・ペルオキシダーゼ
(アマシャム社製)で標識し、これをプローブとしてコ
ロニー・ハイブリダイゼイションを行った所、4個の陽
性コロニーが得られた。
Example 3 Selection of Mink Growth Hormone cDNA Recombinant Plasmid and Nucleotide Sequence of cDNA Portion The recombinant plasmid library obtained as described above was transformed into E. coli JM109 strain by the PEG method (Chung et al., Proceeding of National Co., Ltd.). Transformed according to Academy of Science (Proc. Natl. Acad. Sci.), USA, 86, 2172 (1989), and fixed about 1,200 colonies showing ampicillin resistance to nitrocellulose membrane (Amersham). The porcine growth hormone cDNA was labeled with a DNA fragment consisting of 435 base pairs obtained by treatment with the restriction enzymes Rsa I and Pvu II with horseradish peroxidase (Amersham), and this was used as a probe for colony hybridization. As a result, four positive colonies were obtained.

これらのコロニーより組換えプラスミドを抽出し制限
酵素による分析を行った所、その全てについて、同じよ
うなDNA断片の挿入が認められた。その結果を第2図に
示す。そして、ほぼ完全長のcDNA部分の長さと推定され
たクローンであったpKS−mGH59について、ジデオキシ法
(Sangerら、プロシーディング・オブ・ナショナル・ア
カデミー・オブ・サイエンス(Proc.Natl.Acad.Sci.).
USA,74,5463(1977))に従いミンク成長ホルモンの塩
基配列を決定した。第1図にcDNA部分の塩基配列とアミ
ノ酸配列を示す。
When a recombinant plasmid was extracted from these colonies and analyzed by restriction enzymes, insertion of a similar DNA fragment was confirmed in all of them. The result is shown in FIG. Then, pKS-mGH59, which was a clone estimated to be almost the full-length cDNA portion, was subjected to the dideoxy method (Sanger et al., Proceeding of National Academy of Science (Proc. Natl. Acad. Sci. ).
USA, 74,5463 (1977)), and the base sequence of mink growth hormone was determined. FIG. 1 shows the nucleotide sequence and amino acid sequence of the cDNA portion.

[発明の効果] 本発明は以上説明したとおり、本発明によって初めて
解明されたミンク成長ホルモンのアミノ酸配列をもとに
して、その全部または一部のアミノ酸配列をコードする
デオキシリボヌクレオチド連鎖を含む種々の発現ベクタ
ーを構築し、それぞれを適切な形質転換体として大腸
菌、枯草菌、光合成細胞、酵母または動物細胞等に導入
してのち培養することにより各種の形質転換体より組換
え型ミンク成長ホルモンを容易にしかも大量に得ること
が出来るという効果がある。
[Effects of the Invention] As described above, the present invention is based on the amino acid sequence of mink growth hormone firstly elucidated by the present invention, and includes various amino acid sequences including a deoxyribonucleotide chain encoding all or a part of the amino acid sequence. Expression vectors are constructed, and each is introduced into Escherichia coli, Bacillus subtilis, photosynthetic cells, yeast or animal cells, etc. as appropriate transformants, and then cultured to facilitate the production of recombinant mink growth hormone from various transformants. In addition, there is an effect that a large amount can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はミンク成長ホルモンを含む相補鎖DNA部分の全
塩基配列とその配列から明らかとなったアミノ酸配列
図、第2図はミンク成長ホルモン相補鎖DNAを含む部分
の制限酵素切断地図である。
FIG. 1 is a diagram showing the entire nucleotide sequence of the complementary strand DNA portion containing mink growth hormone and the amino acid sequence revealed from the sequence, and FIG. 2 is a restriction enzyme cleavage map of the portion containing mink growth hormone complementary chain DNA.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:19) (C12P 21/02 C12R 1:19) (56)参考文献 特開 昭59−144743(JP,A) 特開 昭57−171999(JP,A) 特開 昭60−11557(JP,A) 特開 平1−174387(JP,A) Biochemica et Bio physica Acta,1048 [2 −3] (1990−4−6) P.290− 293 (58)調査した分野(Int.Cl.6,DB名) WPI(DIALOG) BIOSIS(DIALOG) CA(STN) REGISTRY(STN) GenBank/EMBL/DDBJ(G ENETYX) (54)【発明の名称】 組換え型ミンク成長ホルモン遺伝子、組換え型ミンクプレ成長ホルモン遺伝子、ミンク成長ホル モン又はミンクプレ成長ホルモン形質転換プラスミド、及び、ミンク成長ホルモン又はミンクプ レ成長ホルモン形質転換大腸菌──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification symbol FI C12R 1:19) (C12P 21/02 C12R 1:19) (56) References JP-A-59-144743 (JP, A) JP-A-57-171999 (JP, A) JP-A-60-11557 (JP, A) JP-A-1-173873 (JP, A) Biochemica et Biophysica Acta, 1048 [2-3] (1990-4-6) P.). 290-293 (58) Fields investigated (Int. Cl. 6 , DB name) WPI (DIALOG) BIOSIS (DIALOG) CA (STN) REGISTRY (STN) GenBank / EMBL / DDBJ (GENETYX) (54) Name: Recombinant mink growth hormone gene, recombinant mink pre-growth hormone gene, mink growth hormone or mink pre-growth hormone transforming plasmid, and mink growth hormone or mink pre-growth hormone transformed E. coli

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記のポリペプチドのアミノ酸配列をコー
ドする組換え型ミンク成長ホルモン構造遺伝子。
1. A recombinant mink growth hormone structural gene encoding the amino acid sequence of the following polypeptide.
【請求項2】下記のポリペプチドのアミノ酸配列をコー
ドする組換え型ミンクプレ成長ホルモン構造遺伝子。
2. A recombinant mink pre-growth hormone structural gene encoding the amino acid sequence of the following polypeptide.
【請求項3】請求項1又は請求項2に記載のポリペプチ
ドのアミノ酸配列をコードする組換え型ミンク成長ホル
モン構造遺伝子を含有する組換えプラスミドpKS−mGH5
9。
3. A recombinant plasmid pKS-mGH5 containing a recombinant mink growth hormone structural gene encoding the amino acid sequence of the polypeptide according to claim 1 or 2.
9.
【請求項4】請求項3に記載の組換えプラスミドpKS−m
GH59を宿主大腸菌JM109に導入して形質転換したミンク
成長ホルモン又はミンクプレ成長ホルモン形質転換大腸
菌FERM P−11643。
4. The recombinant plasmid pKS-m according to claim 3.
Mink growth hormone or mink pre-growth hormone-transformed Escherichia coli FERM P-11643 transformed by introducing GH59 into host Escherichia coli JM109.
JP2203846A 1990-08-02 1990-08-02 Recombinant mink growth hormone gene, recombinant mink pre growth hormone gene, mink growth hormone or mink pre growth hormone transforming plasmid, and mink growth hormone or mink pre growth hormone transformed Escherichia coli Expired - Lifetime JP2787729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2203846A JP2787729B2 (en) 1990-08-02 1990-08-02 Recombinant mink growth hormone gene, recombinant mink pre growth hormone gene, mink growth hormone or mink pre growth hormone transforming plasmid, and mink growth hormone or mink pre growth hormone transformed Escherichia coli

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2203846A JP2787729B2 (en) 1990-08-02 1990-08-02 Recombinant mink growth hormone gene, recombinant mink pre growth hormone gene, mink growth hormone or mink pre growth hormone transforming plasmid, and mink growth hormone or mink pre growth hormone transformed Escherichia coli

Publications (2)

Publication Number Publication Date
JPH0488984A JPH0488984A (en) 1992-03-23
JP2787729B2 true JP2787729B2 (en) 1998-08-20

Family

ID=16480668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2203846A Expired - Lifetime JP2787729B2 (en) 1990-08-02 1990-08-02 Recombinant mink growth hormone gene, recombinant mink pre growth hormone gene, mink growth hormone or mink pre growth hormone transforming plasmid, and mink growth hormone or mink pre growth hormone transformed Escherichia coli

Country Status (1)

Country Link
JP (1) JP2787729B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE52755B1 (en) * 1980-08-26 1988-02-17 Univ California Bovine pre-growth and growth hormone
AU2092983A (en) * 1982-11-08 1984-05-17 Genentech Inc. Porcine growth hormone produced by recombinant dna technology
JPS6011557A (en) * 1983-04-19 1985-01-21 ジエネツクス・コ−ポレイシヨン Clone sheep growth hormone gene
JPH01174387A (en) * 1987-12-28 1989-07-10 Onoda Cement Co Ltd Caprine growth hormone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biochemica et Biophysica Acta,1048 [2−3] (1990−4−6) P.290−293

Also Published As

Publication number Publication date
JPH0488984A (en) 1992-03-23

Similar Documents

Publication Publication Date Title
KR960016560B1 (en) Polypeptide derivatives of human granulocyte colony stimulating factor and dna, plasmid , microorganism
RU2072393C1 (en) Method for obtaining recombination polypeptide possessing growth hormone properties
KR100316347B1 (en) Recombinant microorganisms expressing a fusion protein of Escherichia coli enterotoxin II signal peptide and fusion protein of human growth hormone and a method of producing human growth hormone using the same
JPH04505259A (en) Recombinant DNA method for the production of parathyroid hormone
JPH0829097B2 (en) Fibroblast growth factor
JPS60115528A (en) Human interleukin-2 protein, its production and pharmacological composition containing the same
JPH09506506A (en) Laminin B1k chain and method of use
JPH10502360A (en) Novel hIL-4 muteins used as antagonists or partial agonists of human interleukin 4
GB2241703A (en) Preparation of IGF-1 and plasmids for use therein
JP2002504802A (en) Urocortin peptide
KR100270348B1 (en) Transcription factor aprf
JP2787729B2 (en) Recombinant mink growth hormone gene, recombinant mink pre growth hormone gene, mink growth hormone or mink pre growth hormone transforming plasmid, and mink growth hormone or mink pre growth hormone transformed Escherichia coli
JPH08504580A (en) Recombinant dog gastric lipase and pharmaceutical composition
JPH0257192A (en) Production of motilin-like polypeptide, recombinant dna and plasmid for manifestation for producing same polypeptide
US6238916B1 (en) DNA encoding turkey hypothalamic vasoactive intestinal peptide
WO1990007578A1 (en) Recombinant fish hormone proteins
US6664383B1 (en) Polypeptides, cDNA encoding the same and utilization thereof
JP2666069B2 (en) Recombinant avian prolactin or recombinant avian preprolactin, recombinant chicken prolactin, recombinant chicken prolactin structural gene, recombinant chicken preprolactin, recombinant chicken preprolactin structural gene, recombinant plasmid, recombinant plasmid Microorganisms containing
US5045471A (en) Cloned DNA for P450scc and expression thereof
CN1167799C (en) Method for secreting and expressing acid fibroblast growth factor
WO1999055863A1 (en) NOVEL POLYPEPTIDE, cDNA ENCODING THE SAME AND UTILIZATION THEREOF
JPH0570496A (en) Recombinant cherry salmon growth hormone, its structural gene, recombinant plasmid, bacterium containing the same plasmid and production of growth hormone or pregrowth hormone of the same salmon
EP0263206B1 (en) Enhanced bioactivity of mammalian somatotropin through selective deamidation
WO1988007091A1 (en) Porcine growth hormone analogs
JP2650856B2 (en) Method for producing C-terminal amidating enzyme