JP2787624B2 - Fault detection method for power cable - Google Patents

Fault detection method for power cable

Info

Publication number
JP2787624B2
JP2787624B2 JP20254991A JP20254991A JP2787624B2 JP 2787624 B2 JP2787624 B2 JP 2787624B2 JP 20254991 A JP20254991 A JP 20254991A JP 20254991 A JP20254991 A JP 20254991A JP 2787624 B2 JP2787624 B2 JP 2787624B2
Authority
JP
Japan
Prior art keywords
current
ground line
combined
phase
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20254991A
Other languages
Japanese (ja)
Other versions
JPH0526948A (en
Inventor
一夫 天野
昭太郎 吉田
和夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP20254991A priority Critical patent/JP2787624B2/en
Publication of JPH0526948A publication Critical patent/JPH0526948A/en
Application granted granted Critical
Publication of JP2787624B2 publication Critical patent/JP2787624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電力ケーブル線路の地
絡事故点の位置を検出する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the position of a ground fault on a power cable line.

【0002】[0002]

【従来の技術】電力ケーブル線路の絶縁接続箱のクロス
ボンド線や普通接続箱の接地線に流れる電流を常時測定
し、地絡事故が発生したとき、前記電流の大きさの違い
から、事故区間を検出する方法は、従来多く提案されて
いる。しかしこれらの方法は、接続箱を境界とする事故
区間を検出するもので、事故点を検出するものでない。
事故点の検出方法として、パルスレーダ法やマーレール
ープ法等が提案されている。
2. Description of the Related Art A current flowing in a cross-bond line of an insulated junction box of a power cable line or a ground wire of a normal junction box is constantly measured. When a ground fault occurs, the difference in the magnitude of the current causes an accident section. Many methods have been conventionally proposed for detecting. However, these methods detect an accident section having a junction box as a boundary and do not detect an accident point.
As a method for detecting an accident point, a pulse radar method, a Murray loop method, and the like have been proposed.

【0003】[0003]

【発明が解決しようとする課題】上記のパルスレーダ法
やマーレーループ法等は、線路の切り離し等の作業が必
要である。探査までにかなりの時間を必要とし、リアル
タイムの検出はできない。
The above-described pulse radar method, Murray loop method, and the like require operations such as line separation. It takes a considerable amount of time before exploration, and no real-time detection is possible.

【0004】[0004]

【課題を解決するための手段】図1のように、 (1)普通接続箱で接続された片側電源式3相電力ケー
ブル線路の各普通接続箱NJ1,NJ2,−−−−の
置個所毎の接地線16に流れる電流の3相合成電流、な
らびにケーブル導体13の電流を、センサ18ならびに
センサ20により常時測定しておき、 (2)前記接地線合成電流のうちの少なくとも1つが所
定のしきい値を越えたとき、設置点毎の前記各接地線合
成電流の大きさを比較し、その最大のものを求め、 (3)その最大の接地線合成電流と前記導体電流の内の
最大のものとの位相差を求め、 (4)前記位相差に基づいて最大の接地線合成電流の流
れた普通接続箱の設置個所から事故点までの距離を判定
する、ことにより、地絡事故点を検出する。
Means for Solving the Problems As shown in FIG. 1, (1) the setting of each of the normal connection boxes NJ1, NJ2, --- of the one-sided power supply type three-phase power cable line connected by the normal connection box;
The three-phase combined current of the current flowing through the ground wire 16 at each location and the current of the cable conductor 13 are measured by the sensor 18 and the
Leave constantly measured by the sensor 20, (2) at least one Tsugasho of the ground wire composite current
When the threshold value is exceeded, the magnitude of each ground line combined current at each installation point is compared, and the maximum value is determined. (3) The maximum ground line combined current and the conductor current are calculated. obtains a phase difference between the largest of the, (4) the flow of the maximum of the ground wire combined current based on the phase difference
The distance from the installed location of the normal connection box to the accident point
By doing so, the ground fault point is detected.

【0005】[0005]

【作 用】(1)地絡事故が発生したとき、接地線合成
電流がしきい値を超えるように設定しておく。 (2)事故電流は、電源側に多く流れるが、負荷側にも
流れる。各NJ(普通接続箱、以下単にNJという)に
おいて大地に分流するため、事故点から離れるにつれ
て、事故電流は減少する。しきい値を超えたとき、接地
線合成電流を比較すると、事故点を挟んで、最も近い電
源側のNJの接地線合成電流が最大(第1位)で、負荷
側のNJがその次(第2位)になる。反対に、接地線合
成電流が第1位のNJが分かれば、事故点Aは、そのN
Jと次の(負荷側に寄った)NJとの間に在ることが分
かる。 (3)ケーブル導体電流の最大の相が、事故を起こした
相である。
[Operation] (1) When a ground fault occurs, set so that the combined current of the ground line exceeds the threshold. (2) Although a large amount of fault current flows to the power supply side, it also flows to the load side. Since the current is shunted to the ground at each NJ (normal junction box, hereinafter simply referred to as NJ), the fault current decreases as the distance from the fault point increases. When the threshold line is exceeded, when comparing the ground line combined currents, the ground line combined current of the NJ on the power supply side closest to the fault point is the largest (first place), and the NJ on the load side is next ( Second place). Conversely, if the NJ with the first largest ground line combined current is known, the fault point A
It can be seen that it is between J and the next (closer to the load) NJ. (3) The largest phase of the cable conductor current is the phase in which the accident occurred.

【0006】(4)図2(a)に例示するように、ケー
ブルシース等の接地側導体15を流れる地絡電流は、事
故相(たとえばR相)のケーブル導体電流Iからの誘導
を受ける。事故点Aの位置により、電源側のNJまでの
距離が変わる。それに伴って誘導を受ける距離が変わる
(誘導リアクタンスの値が変わる)。その結果、接地線
合成電流の位相が変わる。図2(b)にその状態を示
す。事故点Aの位置により変化するのは、事故相Rの接
地線電流Irの位相φr(導体電流Iに対する)であ
る。しかし接地線合成電流Iaは、その他の接地線電流
Is,Itとを合成したものであるから、接地線合成電
流のIに対する位相はφaになる。実際のケーブル線路
について、例えば、公知の計算方式プログラムのEMT
P(米国Bonneville Power Admi
nistration発売のElectoro Mag
netic Transient Program)を
使って、予め、接地線合成電流の位相φaとから事故点
Aまでの距離との関係を計算により求めておく。そうす
れば、最大の接地線合成電流と前記導体電流の内の最大
のもの(事故相の導体電流)との位相を比較することに
より、事故点Aの位置が分かる。
(4) As illustrated in FIG. 2 (a), a ground fault current flowing through a ground side conductor 15 such as a cable sheath receives induction from a cable conductor current I in an accident phase (for example, R phase). The distance to the power supply side NJ changes depending on the position of the accident point A. Accordingly, the distance to receive the guidance changes (the value of the induction reactance changes). As a result, the phase of the ground line combined current changes. FIG. 2B shows the state. What changes depending on the position of the fault point A is the phase φr (with respect to the conductor current I) of the ground line current Ir in the fault phase R. However, since the combined ground line current Ia is a combination of the other ground line currents Is and It, the phase of the combined ground line current with respect to I is φa. For an actual cable line, for example, a known calculation method program EMT
P (US Bonneville Power Admi
Electro Mag released by Nistration
netic Transient Program)
The relationship between the phase φa of the combined ground line current and the distance from the fault point A is calculated in advance . Then, the position of the fault point A can be determined by comparing the phases of the maximum combined ground line current and the largest one of the conductor currents (conductor current in the fault phase).

【0007】[0007]

【実施例1】 [構成]図1において、12は電源側の終端部、13は
ケーブル導体、14は負荷側の終端部、NJ1,NJ2
は普通接続部で、以下、単にNJ1,NJ2等と表現す
る。1,2を区別する必要のないとときは、NJとして
示す。16はNJの接地線である。全ての接地線16に
それぞれ電流センサ18を設ける。また終端部12の各
接地線17にも電流センサ18を設ける。終端部12ま
たは絶縁接続箱IJに、ケーブル導体電流検出用の電流
センサ20を設ける。
First Embodiment [Configuration] In FIG. 1, reference numeral 12 denotes a terminal end on the power supply side, 13 denotes a cable conductor, 14 denotes a terminal end on the load side, and NJ1 and NJ2.
Is a normal connection portion, and is simply expressed as NJ1, NJ2, and the like. When there is no need to distinguish between 1 and 2, this is indicated as NJ. Reference numeral 16 is a ground line of the NJ. A current sensor 18 is provided on each of the ground lines 16. Also, a current sensor 18 is provided on each ground line 17 of the terminal section 12. A current sensor 20 for detecting a cable conductor current is provided in the terminal portion 12 or the insulated connection box IJ.

【0008】22は合成電流測定器で、R,S,T各相
の電流センサ18の検出する電流を合成する。また合成
した電流の波形を常時、連続して、一定時間(数サイク
ル分)だけ常にメモリに格納し、事故時、後記のように
トリガがかかったとき、その時点のメモリを固定し伝送
する。24は比較回路24で、予め設定したしきい値
と、合成電流測定器22の検出する接地線合成電流とを
比較する。しきい値は、通常状態の接地線合成電流より
少し高いレベルに設定する。26は導体電流測定器で、
R,S,T各相の電流センサ20の検出する電流の波形
を常時、連続して一定時間(数サイクル分)だけ常にメ
モリに格納し、事故時、後記のようにトリガがかかった
とき、その時点のメモリを固定し伝送する。
Reference numeral 22 denotes a combined current measuring device, which combines the currents detected by the current sensors 18 of the R, S, and T phases. Further, the synthesized current waveform is always and continuously stored in the memory for a fixed time (for several cycles), and when a trigger is activated as described later in the event of an accident, the memory at that time is fixed and transmitted. Reference numeral 24 denotes a comparison circuit 24 which compares a preset threshold value with a ground line composite current detected by the composite current measuring device 22. The threshold value is set to a level slightly higher than the ground line combined current in the normal state. 26 is a conductor current measuring device,
The waveforms of the currents detected by the current sensors 20 of the R, S, and T phases are always and continuously stored in the memory for a certain period of time (several cycles). In the event of an accident or a trigger as described later, The memory at that time is fixed and transmitted.

【0009】[動作] 1)たとえばR相のA点で地絡事故が発生したとする。 2)NJ1、NJ2の合成電流測定器22の検出する接
地線合成電流が大きくなり、しきい値をこえ、比較回路
24が信号をトリガ回路28に送る。 3)トリガ回路28が働き、各合成電流測定器22に記
録している電流波形から、トリガ前後の数サイクル分
を、各メモリ装置30に読み出し、記憶させる。図3
に、読み出した波形を、模型的に示した。第2波以降が
事故電流の波形である。図1の場合、事故点AがNJ1
とNJ2との間にあるので、NJ1(事故点Aから見て
最も電源側に近い)の接地線合成電流が最大になる。ま
た、NJ2(事故点Aから見て最も負荷側に近い)の接
地線合成電流がそれに次いで第2位となる。 4)各メモリ装置30における電流波形の第2波以降の
電流レベルを区間判定回路32により比較し、これによ
り、上記の理由に基づいて事故区間を判定する。
[Operation] 1) For example, it is assumed that a ground fault has occurred at point A of the R phase. 2) The combined current of the ground line detected by the combined current measuring device 22 of NJ1 and NJ2 increases and exceeds the threshold, and the comparison circuit 24 sends a signal to the trigger circuit 28. 3) The trigger circuit 28 operates to read from the current waveform recorded in each synthesized current measuring device 22 several cycles before and after the trigger in each memory device 30 and store them. FIG.
The model of the read waveform is shown in FIG. The second and subsequent waves are the waveforms of the fault current. In the case of FIG. 1, the accident point A is NJ1.
And NJ2, the combined ground line current of NJ1 (closest to the power supply side when viewed from the fault point A) is maximized. In addition, the ground line combined current of NJ2 (closest to the load side when viewed from the fault point A) is the second highest. 4) The current level after the second wave of the current waveform in each memory device 30 is compared by the section determination circuit 32, thereby determining an accident section based on the above reason.

【0010】5)上記の判定に基づいて、最大(第1
位)の電流波形を検出したメモリ装置30(この場合は
NJ1)の電流波形を事故点判定回路34に送る。 6)また、トリガ回路28のトリガ信号は導体電流測定
器26にも送られ、記録している電流波形の中から最大
レベルのもの(事故相、この例ではR相)の、トリガ前
後の数サイクル分を、メモリ装置36に読みだし、記憶
させ、事故点判定回路34に送る。 7)事故点判定回路34で、ケーブル導体電流波形と、
接地線合成電流波形の位相を比較する。その状況を図4
に模型的に示した。両波形の位相差φaを求めることに
より、上記のように、NJ1から事故点Aまでの距離が
分かる。
5) Based on the above determination, the maximum (first
Then, the current waveform of the memory device 30 (in this case, NJ1) which has detected the current waveform of the current position is sent to the fault point determination circuit 34. 6) The trigger signal of the trigger circuit 28 is also sent to the conductor current measuring device 26, and the number of the maximum level (accident phase, in this example, R phase) of the recorded current waveform before and after the trigger is detected. The number of cycles is read out and stored in the memory device 36 and sent to the fault point determination circuit 34. 7) In the fault point determination circuit 34, the cable conductor current waveform and
The phases of the combined current waveforms of the ground lines are compared. Figure 4 shows the situation.
Is shown in model form. By calculating the phase difference φa between the two waveforms, the distance from NJ1 to accident point A can be determined as described above.

【0011】[0011]

【実施例2】図5のように、各NJおよび終端部12の
各共通接地線19,21に、それぞれ1個の電流センサ
18を設けるだけとする。これらの電流センサ18によ
り、各接地線16,17を流れる電流の合成電流を検出
することができる。この点以外は、上記実施例1の場合
と同じである。この場合は、実施例1に比べて、電流セ
ンサ18の数が少なくてすむ。しかし感度が少し低下
し、事故点評定の精度が少し落ちる。
[Embodiment 2] As shown in FIG. 5, only one current sensor 18 is provided for each of the common ground lines 19 and 21 of each of the NJs and the termination portion 12. These current sensors 18 can detect a combined current of the currents flowing through the ground lines 16 and 17. Except for this point, the configuration is the same as that of the first embodiment. In this case, the number of current sensors 18 may be smaller than in the first embodiment. However, the sensitivity is slightly reduced, and the accuracy of the accident point rating is slightly reduced.

【0012】[0012]

【発明の効果】電力ケーブル線路の各普通接続箱の接地
線に流れる電流の合成電流、ならびにケーブル導体電流
を常時測定する手順と;前記接地線合成電流がしきい値
を超えたとき、前記接地線合成電流の大きさを比較し、
その最大のものを求める手順と;その最大の接地線合成
電流と前記導体電流の内の最大のものとの位相を比較す
る手順;とを備えるので、次の効果をあげることができ
る。 (1)上記のように、地絡事故点が検出できる。 (2)NJの接地線合成電流により区間判別を行うの
で、NJでの境界判別が可能である。 (3)リアルタイムで検出できる。
A procedure for constantly measuring the combined current of the current flowing through the grounding wire of each ordinary junction box of the power cable line and the cable conductor current; and Compare the magnitude of the combined wire current,
A procedure for obtaining the maximum current and a procedure for comparing the phase of the maximum combined ground line current with the maximum of the conductor currents are provided, so that the following effects can be obtained. (1) As described above, the ground fault point can be detected. (2) Since the section discrimination is performed based on the combined current of the NJ ground lines, the boundary discrimination in the NJ is possible. (3) It can be detected in real time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の説明図。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】事故点の位置により接地線合成電流の位相が変
わることの説明図。
FIG. 2 is an explanatory diagram showing that the phase of a ground line combined current changes depending on the position of an accident point.

【図3】メモリ装置に読み込む接地線合成電流の波形の
説明図。
FIG. 3 is an explanatory diagram of a waveform of a ground line combined current read into a memory device.

【図4】ケーブル導体電流と接地線合成電流との位相の
ずれを示す説明図。
FIG. 4 is an explanatory diagram showing a phase shift between a cable conductor current and a ground line combined current.

【図5】本発明の実施例2の説明図。FIG. 5 is an explanatory diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

12 電源側終端部 13 ケーブル導体 14 負荷側終端部 16,17 接地線 19,21 共通接地線 18,20 電流センサ 22 合成電流測定器 24 比較回路 26 導体電流測定器 28 トリガ回路 30,36 メモリ装置 32 区間判定回路 34 事故点判定回路 DESCRIPTION OF SYMBOLS 12 Power supply side terminal part 13 Cable conductor 14 Load side terminal part 16,17 Grounding wire 19,21 Common grounding wire 18,20 Current sensor 22 Synthetic current measuring device 24 Comparison circuit 26 Conductor current measuring device 28 Trigger circuit 30,36 Memory device 32 Section judgment circuit 34 Accident point judgment circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 普通接続箱で接続された片側電源式3相
電力ケーブル線路の、 普通接続箱の設置個所毎の接地線に流れる電流の3相
成電流、ならびにケーブル導体電流を常時測定する手順
と、 前記接地線合成電流のうちの少なくとも1つが所定の
きい値を越えたときに、設置点毎の 前記接地線合成電流の大きさを比較し、その
最大のものを求める手順と、 その最大の接地線合成電流と前記導体電流の内の最大の
ものとの位相差を求める手順と、 前記位相差に基づいて最大の接地線合成電流の流れた普
通接続箱の設置個所から事故点までの距離を判定する手
順と、 からなる 、電力ケーブルの事故点検出方法。
1. A common connected by a junction box the side-powered 3-phase <br/> power cable line, three-phase case <br/> forming current of the current flowing through the ground line of each installation location of ordinary connection box, And a procedure for constantly measuring the cable conductor current, and when at least one of the ground line combined currents exceeds a predetermined threshold, compares the magnitude of the ground line combined current for each installation point , A step of obtaining a maximum one; a step of obtaining a phase difference between the maximum combined ground line current and the largest one of the conductor currents; and a step of determining a maximum ground line combined current based on the phase difference.
To determine the distance from the connection box installation point to the accident point
And order, consisting of, fault point detection method of the power cable.
JP20254991A 1991-07-17 1991-07-17 Fault detection method for power cable Expired - Lifetime JP2787624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20254991A JP2787624B2 (en) 1991-07-17 1991-07-17 Fault detection method for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20254991A JP2787624B2 (en) 1991-07-17 1991-07-17 Fault detection method for power cable

Publications (2)

Publication Number Publication Date
JPH0526948A JPH0526948A (en) 1993-02-05
JP2787624B2 true JP2787624B2 (en) 1998-08-20

Family

ID=16459346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20254991A Expired - Lifetime JP2787624B2 (en) 1991-07-17 1991-07-17 Fault detection method for power cable

Country Status (1)

Country Link
JP (1) JP2787624B2 (en)

Also Published As

Publication number Publication date
JPH0526948A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
CN103930789B (en) Apparatus and method for remote monitoring of partial discharge in electrical apparatus
CA2579700A1 (en) Systems and methods for protection of electrical networks
EP0062446B1 (en) Locating faults in power transmission systems
WO2009005223A1 (en) System and method for detecting partial discharge position
JP2787624B2 (en) Fault detection method for power cable
US5586043A (en) Method and apparatus for monitoring differentials between signals
US9018960B2 (en) Method and device for enhancing the reliability of generator ground fault detection on a rotating electrical machine
EP4246154B1 (en) System and method for detecting faults in medium voltage circuits
JP2580738B2 (en) Fault location device
JP2899806B2 (en) Fault detection method for power cable
JPH1048286A (en) Method and apparatus for locating ground fault section of isolated overhead transmission line
US4216514A (en) Protective device for brushless exciting device
JP2794237B2 (en) Fault detection method for power cable lines
JPS62261078A (en) Detection of fault point for cable
JP2702961B2 (en) Ground fault line selection device
JPH06273470A (en) Accident section plotting device of overhead transmission line
JPH0650784Y2 (en) Transmission line fault phase detector
JP3038977B2 (en) Fault section determination method for overhead transmission line
JPH09211057A (en) Cable identification device
JP3240185B2 (en) Method and apparatus for determining insulation deterioration
JP2001116714A (en) Apparatus and method for judging damage of coated embedded metal conductor
JPH10206486A (en) Method for judging fault point of underground transmission line
JPH11218555A (en) Fault section locating method for power cable
JPH02262072A (en) Fault section locating system of underground transmission line
JPH08146074A (en) Detection of power cable trouble section

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080605

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100605

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120605

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 14