JP3240185B2 - Method and apparatus for determining insulation deterioration - Google Patents

Method and apparatus for determining insulation deterioration

Info

Publication number
JP3240185B2
JP3240185B2 JP17929092A JP17929092A JP3240185B2 JP 3240185 B2 JP3240185 B2 JP 3240185B2 JP 17929092 A JP17929092 A JP 17929092A JP 17929092 A JP17929092 A JP 17929092A JP 3240185 B2 JP3240185 B2 JP 3240185B2
Authority
JP
Japan
Prior art keywords
insulation
component
deterioration
increase
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17929092A
Other languages
Japanese (ja)
Other versions
JPH05346448A (en
Inventor
辰治 松野
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP17929092A priority Critical patent/JP3240185B2/en
Publication of JPH05346448A publication Critical patent/JPH05346448A/en
Application granted granted Critical
Publication of JP3240185B2 publication Critical patent/JP3240185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は絶縁劣化判定方法及びそ
のための装置に関し、特に低圧電路の絶縁劣化状況を正
しく判定する手段に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for judging insulation deterioration and an apparatus therefor, and more particularly to a means for correctly judging the state of insulation deterioration of a low-voltage path.

【0002】[0002]

【従来技術】従来低圧電路の絶縁監視装置として図3に
示すものが知られている。この装置は、高圧電源を低圧
に変換する変圧器Tの低圧電路と接地間に接続される接
地線2を介して電路3、4、5に商用周波数とは異なる
低周波の測定用信号電圧を注入トランス6を介して印加
し、上記接地線に還流する漏洩電流を変流器7にて検出
すると共に、該測定用信号電圧と同相の電流成分、即ち
有効分電流を検出し、この電流値をもって低圧電路の対
地絶縁抵抗{1/R=(1/R1 )+(1/R2 )+
(1/R3 )}の監視を行うものである。
2. Description of the Related Art A conventional insulation monitoring device for a low-voltage circuit is shown in FIG. This device applies a low-frequency measurement signal voltage different from the commercial frequency to electric lines 3, 4, and 5 via a ground wire 2 connected between a low-voltage path of a transformer T for converting a high-voltage power supply to a low voltage and a ground. The leakage current flowing through the injection transformer 6 and flowing back to the ground line is detected by the current transformer 7, and a current component in phase with the signal voltage for measurement, that is, an effective component current is detected. And the insulation resistance to the ground of the low-voltage path {1 / R = (1 / R 1 ) + (1 / R 2 ) +
(1 / R 3 )} is monitored.

【0003】尚、図3のR1 、R2 、R3 は各電路と大
地間の絶縁抵抗であり、又、C1 、C2 、C3 は同様に
電路と大地間の対地静電容量であり、これらは電路に接
続された各負荷機器の絶縁抵抗並びに対地静電容量を含
んだ総和を意味している。即ち、従来の絶縁監視装置1
では、電路の絶縁抵抗Rは1/R=(1/R1 )+(1
/R2 )+(1/R3 )として、一括して前記有効成分
電流を用いて算出されるものである。また、一方上記測
定の結果有効分電流が所定値以上となった時警報を発す
るのが一般的であるが、この検出閾値は固定値であり、
負荷機器数の多寡に拘らず決定されている。しかしなが
ら、負荷機器数が多くなれば絶縁特性が夫々健全であっ
ても、当然一括して測定した絶縁抵抗に逆比例する上記
有効分電流は大きくなる為、このような事実に無関係に
絶縁監視が行われていた従来の監視方法では負荷機器の
運用状況にかかわらず発せられる警報から絶縁劣化の正
しい状況判断を行うことは困難であった。
In FIG. 3, R 1 , R 2 , and R 3 are insulation resistances between each electric circuit and the ground, and C 1 , C 2 , and C 3 are capacitances between the electric circuit and the earth. These mean the sum including the insulation resistance and the earth capacitance of each load device connected to the electric circuit. That is, the conventional insulation monitoring device 1
Then, the insulation resistance R of the electric circuit is 1 / R = (1 / R 1 ) + (1
/ R 2 ) + (1 / R 3 ) are collectively calculated using the effective component current. On the other hand, it is general to issue an alarm when the effective component current becomes equal to or more than a predetermined value as a result of the above measurement, but this detection threshold is a fixed value,
It is determined regardless of the number of load devices. However, as the number of load devices increases, the effective component current, which is naturally inversely proportional to the insulation resistance measured collectively, increases even if the insulation characteristics are sound, so insulation monitoring can be performed regardless of this fact. With the conventional monitoring method that has been performed, it has been difficult to make a correct determination of insulation deterioration from an alarm that is issued regardless of the operation state of the load device.

【0004】また、絶縁劣化判定手段は上記電力送電線
に限らず避雷用接地線の接地抵抗劣化や、電子機器の回
路と筐体間等の絶縁劣化等々広い範囲に渡って有効な手
段である。
[0004] The insulation deterioration judging means is effective not only for the above-mentioned power transmission line but also for a wide range of earth resistance of a lightning arrester, and insulation deterioration between a circuit of an electronic device and a housing. .

【0005】[0005]

【発明の目的】本発明は上記従来の電路等の絶縁劣化状
況判定方法の不具合を除去する為になされたものであ
り、測定対象電路や電子装置等、インピーダンス回路の
動作状態や負荷状態等の変化によらず正確に絶縁劣化を
判定することができる方法及び装置を提供することを目
的としている。
SUMMARY OF THE INVENTION The object of the present invention is to eliminate the disadvantages of the conventional method for judging the state of insulation deterioration of an electric circuit or the like. It is an object of the present invention to provide a method and apparatus capable of accurately determining insulation deterioration regardless of a change.

【0006】[0006]

【問題点を解決する手段】上記目的を達成するため本発
明は、少なくとも一端が接続線を介して大地又は他の導
体に接続された電路又はインピーダンス回路に、前記接
続線を介して測定用低周波信号を印加すると共に、前記
接続線に還流する前記測定用低周波信号の有効分と無
を検出し、該有効分に基づいて当該電路又はインピー
ダンス回路と大地間又は他の導体間の絶縁抵抗値を算出
するか、又は該抵抗値に応じた信号を導出すると共に、
前記無効分の増減変化を検出し、前記有効分に基づく絶
縁抵抗値又は該抵抗値に応じた信号が所定の基準値を越
えたときに前記無効分の増減変化を参照し、前記無効分
が増大している場合には、真の絶縁劣化によるものでは
ないと判定し、前記無効分が増大していない場合には、
真の絶縁劣化によるものであると判定することによっ
て、正確に絶縁劣化を判定し得るようにしたことを特徴
とする。
SUMMARY OF THE INVENTION To achieve the above object, the present invention provides a method for measuring an electric circuit or an impedance circuit having at least one end connected to the ground or another conductor through a connection line. It applies a frequency signal, effective component and disable the low-frequency signal the measurement refluxing the connecting line
Min detects or calculates the insulation resistance value between the electric path or the impedance circuit and earth or between other conductor on the basis of the active component, with or deriving a signal corresponding to the resistance value,
Detecting a change in increase and decrease of the reactive component, absolute based on the active component
The edge resistance value or a signal corresponding to the resistance value exceeds a predetermined reference value.
When the value of the invalid component is
If the increase is due to true insulation degradation
When it is determined that there is no increase and the invalid component does not increase,
By determining that this is due to true insulation degradation,
Thus , insulation deterioration can be accurately determined.

【0007】また、少なくとも一端が絶縁線を介して大
地又は他の導体に接続された電路又はインピーダンス回
路の大地間又は他の導体間の絶縁劣化を判定する装置に
おいて、測定用低周波信号発生源と、前記電路又はイン
ピーダンス回路に該測定用低周波信号を印加する手段
と、該印加した低周波信号の漏洩信号の有効分と無効分
とを検出する手段と、該有効分から電路又はインピーダ
ンス回路と大地又は他の導体間の絶縁抵抗値を求める手
段と、前記無効分の増減を検出する手段と、前記有効分
に基づく絶縁抵抗値が所定の基準値を越えたときに前記
無効分の増減変化を参照し、該無効分が増大している場
合には、真の絶縁劣化によるものではないと判定し、該
無効分が増大していない場合には、真の絶縁劣化による
ものであると判定する手段と、を備えたことを特徴とす
るものである。
Further, in an apparatus for judging insulation deterioration between the earth or another conductor of an electric circuit or an impedance circuit having at least one end connected to the earth or another conductor via an insulating wire, a low-frequency signal source for measurement is provided. Means for applying the low-frequency signal for measurement to the electric circuit or impedance circuit, means for detecting an effective component and an invalid component of a leak signal of the applied low-frequency signal, and a circuit or impedance circuit from the effective component. means for determining the insulation resistance between earth or another conductor, and means for detecting an increase or decrease of the reactive component, wherein the active component
When the insulation resistance value based on exceeds a predetermined reference value,
Refer to the increase / decrease change of the invalid component, and if the invalid component is increasing,
In this case, it is determined that it is not due to true insulation deterioration,
If the reactive component does not increase, it is due to true insulation deterioration.
Means for judging that they are the ones.

【0008】また、この方法を電路の絶縁劣化判定に適
用する場合は、絶縁抵抗に逆比例した有効分電流だけで
なく、対地静電容量に比例した無効分電流、即ち電路に
印加した測定用信号電圧より90度位相が進んだ漏洩電
流を検出し、上記両者の値に基づいて絶縁劣化を判定す
る。即ち、この方法によれば、無効分電流は対地静電容
量に比例するから無効分電流の変化は負荷機器の稼動数
に関係して増減する。従って、負荷機器の稼動状態を加
味することによって正確な判定が可能となる。
When this method is applied to the judgment of insulation deterioration of an electric circuit, not only an effective component current inversely proportional to the insulation resistance but also a reactive component current proportional to the ground capacitance, that is, a measuring current applied to the electric circuit, A leakage current that is 90 degrees ahead of the signal voltage is detected, and insulation deterioration is determined based on the values of the two. That is, according to this method, since the reactive component current is proportional to the ground capacitance, the change in the reactive component current increases and decreases in relation to the number of operating load devices. Therefore, an accurate determination can be made by taking into account the operating state of the load device.

【0009】このことを簡単に説明すれば、図4は有効
分電流(a)、無効分電流(b)の実測例である。これ
はある工場の低圧電路(単相三線)について測定したも
のであるが、負荷機器の稼動開始と共に有効分、無効分
電流は共に増加し、稼動停止に伴ってこれらは減少して
いる。負荷機器は、夫々個々の対地静電容量をもつた
め、無効分電流の大小から負荷機器の稼動状況が推定で
きる。負荷機器夫々の対地静電容量は負荷機器の絶縁抵
抗とはほとんど無関係で、その構造並びに負荷機器に用
いられているAC雑音除去フィルタのコンデンサ容量等
に関係しているといえる。
To explain this briefly, FIG. 4 is an actual measurement example of the active component current (a) and the reactive component current (b). This is a measurement of a low-voltage path (single-phase three-wire) at a certain factory. The effective component and the reactive component current both increase with the start of operation of the load device, and decrease with the stop of the operation. Since each load device has its own ground capacitance, the operating status of the load device can be estimated from the magnitude of the reactive current. It can be said that the capacitance to ground of each load device is almost independent of the insulation resistance of the load device, and is related to the structure thereof, the capacitance of the AC noise removing filter used in the load device, and the like.

【0010】従って、有効分電流が所定値(警報値)を
越えた時、その時点での無効分電流の増減変化を知れ
ば、絶縁劣化の状況を更に詳細に判定することが可能に
なる。例えば、有効分電流が所定値以上となった時、無
効分電流に変化がないか、もしくは減少傾向を示せば、
これは負荷機器稼動数の増大によるものでなく、稼動中
の機器に絶縁劣化が発生していることになる。特に、無
効分電流が減少傾向の場合は負荷機器の稼動数が減少し
ていることになるから、有効分電流が大きくなった時は
絶縁劣化の度合いが大きく、より一層の注意が必要で場
合によっては保守が必要と判断される。当然無効分電流
が増加傾向の時は負荷機器の稼動数の増加による有効分
電流の増加と絶縁劣化の併合した状況といえるが、上記
負荷機器減少時と較べ絶縁劣化の度合いがいくぶん軽い
と判定できよう。
Therefore, when the effective component current exceeds a predetermined value (alarm value), if the increase or decrease of the reactive component current at that time is known, the state of insulation deterioration can be determined in more detail. For example, when the active component current becomes a predetermined value or more, if the reactive component current does not change or shows a decreasing tendency,
This is not due to an increase in the number of operating load devices, but to the fact that insulation degradation has occurred in the operating devices. In particular, when the reactive component current tends to decrease, the number of operating load devices decreases, so when the active component current increases, the degree of insulation deterioration is large, and further attention is required. In some cases, maintenance is determined to be necessary. Naturally, when the reactive component current is on the increase, it can be said that the effective component current is increased due to the increase in the number of operating load devices and the insulation deterioration is combined.However, the degree of insulation deterioration is judged to be somewhat lighter than when the load device is reduced. I can do it.

【0011】このように無効分電流の時間的変化情報を
有効分電流と併せて利用することにより絶縁劣化探査の
必要性、若しくは保守、修理の必要性を判断することが
できる。また、警報を発生する前述の警報値を無効成分
値の増減との組み合わせから2段階として夫々の警報値
に対し、有効分電流が越えた時に上記内容の処理を行え
ば、更に詳細な監視とそれに必要な対策が可能となる。
特に、遠隔地に設置した監視装置からの警報信号を受信
処理する場合、検出した有効、無効分電流を常時遠隔地
まで情報伝送することは不経済であるが、上述の方法は
警報値を有効分電流が越えたときのみ、警報の種類と、
無効分電流の状況とを伝送するようにできるから、多数
の絶縁監視装置を一か所で遠隔監視する場合、更に効果
的である。
As described above, it is possible to determine the necessity of the insulation deterioration investigation or the maintenance or repair by using the temporal change information of the reactive current together with the active current. Further, if the above-mentioned alarm value for generating an alarm is combined with the increase / decrease of the invalid component value in two steps and the above-described processing is performed when the effective component current exceeds each alarm value, more detailed monitoring and Necessary measures can be taken.
In particular, when receiving and processing an alarm signal from a monitoring device installed in a remote place, it is uneconomical to constantly transmit the detected valid and reactive currents to a remote place, but the above-mentioned method makes the alarm value effective. Only when the minute current exceeds,
Since the status of the reactive current can be transmitted, it is more effective to remotely monitor a large number of insulation monitoring devices at one place.

【0012】[0012]

【発明の実施例】以下、添付図面に示した実施例により
本発明を詳細に説明する。図1は本発明の方法を単相3
線式電路に実施する為の絶縁劣化測定装置の実施例を
示すブロック構成図である。同図においてTは高圧電気
を低圧電気に変換する為のトランスであって、その2次
側には電路3、4、5が接続され、更にそのうちの中線
4と大地には接続線(以下接地線という)2が設けられ
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the accompanying drawings. FIG. 1 illustrates the method of the invention in single phase 3
FIG. 2 is a block diagram showing an embodiment of an insulation deterioration measuring device to be applied to a wire type electric circuit. In the figure, T is a transformer for converting high-voltage electricity to low-voltage electricity, and the electric lines 3, 4, and 5 are connected to its secondary side, and furthermore, a connection line (hereinafter referred to as a middle line 4) is connected to the ground. 2 is provided.

【0013】また、該接地線2には零相変流器6と注入
トランス7とが結合され、注入トランス7には増幅器8
を介して低周波発振器9の出力を印加し、これによって
前記電路3、4、5と大地間に周波数f1 (=ω1 /2
π)の測定用低周波信号を印加する。
Further, a zero-phase current transformer 6 and an injection transformer 7 are coupled to the ground line 2, and an amplifier 8 is connected to the injection transformer 7.
Applying the output of the low frequency oscillator 9 via which the frequency f 1 between the path 3, 4, 5 and the ground by (= ω 1/2
π) is applied.

【0014】一方、接地線2に結合した零相変流器6の
出力は増幅器10で増幅し、その出力は商用周波成分と
測定信号の周波数成分を分離するフィルタ11に印加
し、電路に印加した測定用信号電圧による漏洩電流成分
を検出する。フィルタ11の出力は2つの同期検波器1
2、13の夫々の一方の入力端に印加される。前記発振
器9の出力は更に可変移相器14を経て前記同期検波器
12の他の入力端に印加し、また更に可変移相器14の
出力は90度。移相器15を経てもう一つの同期検波器
13の他の入力端に印加される。また、同期検波器12
の出力はローパスフィルタ16を経て2つのレベル比較
器17、18の夫々の一方の入力端に印加される。又一
方、同期検波器13の出力はローパスフィルタ19を経
て微分回路20に入力される。微分回路20の出力は更
に他の2つのレベル比較器21、22の夫々の一方の入
力端に入力される。上記レベル比較器17、18、2
1、22の夫々の他の入力端には夫々の基準電圧V1
2 、V3 、V4 が設定されている。
On the other hand, the output of the zero-phase current transformer 6 coupled to the ground line 2 is amplified by an amplifier 10, and the output is applied to a filter 11 for separating a commercial frequency component and a frequency component of a measurement signal, and is applied to an electric circuit. A leakage current component due to the measured signal voltage is detected. The output of the filter 11 is two synchronous detectors 1
2 and 13 are applied to one of the input terminals. The output of the oscillator 9 is further applied to another input terminal of the synchronous detector 12 through a variable phase shifter 14, and the output of the variable phase shifter 14 is 90 degrees. The signal is applied to another input terminal of another synchronous detector 13 via the phase shifter 15. In addition, the synchronous detector 12
Is applied to one input terminal of each of two level comparators 17 and 18 via a low-pass filter 16. On the other hand, the output of the synchronous detector 13 is input to a differentiating circuit 20 via a low-pass filter 19. The output of the differentiating circuit 20 is input to one input terminal of each of the other two level comparators 21 and 22. The level comparators 17, 18, 2
Each of the other inputs of 1 , 2 has its own reference voltage V 1 ,
V 2 , V 3 and V 4 are set.

【0015】以上の構成に於いて、動作及び制御方法を
説明する。まず、接地線2には絶縁抵抗や静電容量を介
して電路3、5の商用周波電圧による漏洩電流と測定用
信号電圧による漏洩電流の双方が還流する。従って、こ
の電流を零相変流器6で検出し、増幅器10で増幅し、
フィルタ11で測定信号の周波数成分のみを分離すれ
ば、フィルタ11の出力Igは次式に比例した信号とし
て得られる。
The operation and control method of the above configuration will be described. First, both the leakage current due to the commercial frequency voltage of the electric circuits 3 and 5 and the leakage current due to the signal voltage for measurement return to the ground line 2 via insulation resistance and capacitance. Therefore, this current is detected by the zero-phase current transformer 6, amplified by the amplifier 10, and
If only the frequency component of the measurement signal is separated by the filter 11, the output Ig of the filter 11 can be obtained as a signal proportional to the following equation.

【0016】 Ig={(e/R)・sinω1t}+ωce・cosω1t・・・(1) ここで1/R=(1/R1)+(1/R2)+(1/R3)、C=C1+C2+C3 である。周知のごとく(1)式の辺第1項は有効分電
流、第2項は無効分電流である。このとき、可変移相器
14の出力電圧がe1sinω1tとなるように位相を調
整すれば、ローパスフィルタ16の出力Igrは、 Igr=ee1/R ・・・(2) となり、他方のローパスフィルタ19の出力Igcは、 Igc=ωce1e・・・(3) なる。ここでe,e1は一定であるから、Igrは絶
縁抵抗Rに逆比例し、Igcは対地静電容量に比例する
ことになる。
Ig = {(e / R) · sin ω 1 t} + ωce · cos ω 1 t (1) where 1 / R = (1 / R 1 ) + (1 / R 2 ) + (1 / R 3 ), C = C 1 + C 2 + C 3 . Known as the (1) right side first term active current of the second term is a reactive current. At this time, if the phase is adjusted so that the output voltage of the variable phase shifter 14 becomes e 1 sinω 1 t, the output Igr of the low-pass filter 16 becomes Igr = ee 1 / R (2) output Igc of the low-pass filter 19 becomes Igc = ωce 1 e ··· (3 ). Here, since e and e 1 are constant, Igr is inversely proportional to the insulation resistance R, and Igc is proportional to the ground capacitance.

【0017】図2は、各部の出力波形の一例を示したも
のであり、実際は図1の各回路はデジタル演算回路で実
現できるが、処理内容を分かりやすくする為に各部の波
形をアナログ信号として示した。
FIG. 2 shows an example of an output waveform of each unit. In practice, each circuit of FIG. 1 can be realized by a digital operation circuit. However, in order to make the contents of the processing easy to understand, the waveform of each unit is converted into an analog signal. Indicated.

【0018】同図(イ)は前記フィルタ16の出力、即
ち接地線2に還流する測定用低周波信号の有効成分電流
Igrの波形であり、この例に示すIgrは時間t1
2及びt3 〜t6 において第1の基準電位V1を越
え、更にt4 〜t5 に於いては第2の基準電圧V2を越
えたものとなっている。
[0018] FIG. (B) The output of the filter 16, that is, the waveform of the effective component current Igr of measuring low-frequency signals flowing back to the ground line 2, Igr shown in this example time t 1 ~
t exceed the 2 and t 3 ~t 6 the first reference potential V1, it is further at the t 4 ~t 5 has become that exceeds the second reference voltage V2.

【0019】この場合、V1を基準電位とする第1の比
較器17の出力は同図(ニ)に示すごとくt1 〜t2
びt3 〜t6 において高電位を発生し、又V2を基準電
位とする第2の比較器18の出力は(ホ)に示すように
4 〜t5 において高電位となる。
In this case, the output of the first comparator 17 having V1 as a reference potential generates a high potential at t 1 to t 2 and t 3 to t 6 as shown in FIG. the output of the second comparator 18, the reference potential is a high potential in t 4 ~t 5 as shown in (e).

【0020】一方、同図の(ロ)は第2の同期検波器1
3及びローパスフィルタ19を介して得た波形、即ち大
地を介して接地線2に帰還する測定用低周波信号の無効
成分電流Igcの波形であり、同図(ハ)は更にその信
号を微分回路20に通した波形I’gcである。(ロ)
の信号を微分すると、その傾斜方向に応じて正、負とな
って現れ、第3、第4の比較器21、22の基準電圧V
3 、V4 を同図(ハ)に示す如く設定しておけば、比較
器21の出力はI’gc>V3 では(ヘ)のように”
1”となり、また比較器22の出力はI’gc<V4
時に(ト)の如く”1”となり、それ以外では”0”と
なる。
On the other hand, FIG. 2B shows a second synchronous detector 1.
3 shows a waveform obtained through the low-pass filter 19, that is, a waveform of the reactive component current Igc of the low-frequency signal for measurement which returns to the ground line 2 via the ground. FIG. 20 is a waveform I′gc passed through 20. (B)
Is differentiated as positive or negative depending on the inclination direction, and the reference voltages V of the third and fourth comparators 21 and 22 are differentiated.
If 3 and V 4 are set as shown in FIG. 3C, the output of the comparator 21 is I′gc> V 3 as shown in FIG.
1 ", and (g) as when the output of the comparator 22 I'gc <V 4" "next, in other cases," 1 0 ".

【0021】そこで、上述した各比較器出力を用い次の
ように警報信号を発生するか、絶縁劣化を判定する。即
ち、t=t1 において(イ)に示す如く基準値V1 を越
えて測定用低周波信号の有効分が接地線に帰還するか
ら、このV1 値を第1の絶縁劣化警報としておく。この
とき、第3の比較器21の出力25を見ると”1”であ
るから、測定対象電路の無効成分が増加したことがわか
る。上述したように電路に接続された負荷機器の内、稼
動状態にある数が増加すると、それに伴って有効成分と
無効成分が共に増加するから、有効成分のみを見ると、
あたかも絶縁抵抗が低下したように見え、従来の絶縁劣
化判定方法によれば、この状態で直ちに警報を発生して
いた。
Therefore, an alarm signal is generated or insulation deterioration is determined as follows using the outputs of the above-described comparators. That is, at t = t 1 , the effective component of the low-frequency signal for measurement returns to the ground line beyond the reference value V 1 as shown in (a), so this V 1 value is set as the first insulation deterioration alarm. At this time, since the output 25 of the third comparator 21 is "1", it is understood that the invalid component of the electric circuit to be measured has increased. As described above, among the load devices connected to the electric circuit, when the number in the operating state increases, the effective component and the ineffective component both increase with the increase.
It looks as if the insulation resistance had dropped, and according to the conventional insulation deterioration determination method, an alarm was immediately generated in this state.

【0022】従来はこの警報を受けると、真の絶縁劣化
であるか、稼動状態にある負荷機器の増加に伴うもので
あるかを調査するか、又はとりあえず真の絶縁劣化であ
るものと想定した上で不良箇所の探索に当たると云う非
効率的な作業を行っていた。そこで本発明では、上述し
た手法を用い、第1の警報発生に当たって、無効成分の
増減を検出参照し、有効成分の増加、即ち絶縁抵抗劣化
の程度と、無効成分増加の程度との兼ね合いによって真
の絶縁抵抗劣化であるか否かを判定する。
Conventionally, upon receiving this warning, it is necessary to investigate whether the insulation is genuinely deteriorated or to increase the number of load devices in operation, or assume that the insulation is genuinely deteriorated for the time being. The inefficient work of searching for a defective part was performed. Therefore, in the present invention, when the first alarm is generated, the increase or decrease of the ineffective component is detected and referred to at the time of the first alarm generation, and the increase in the effective component, that is, the degree of the insulation resistance deterioration and the increase in the ineffective component are considered. It is determined whether or not the insulation resistance has deteriorated.

【0023】例えば図2に示した場合について説明すれ
ば、t1 〜t2 に於いては、第1の警報レベルV1 を越
えてはいるが、第3の比較器21の出力が”1”である
ことから、負荷機器稼動数の増加に伴うものであること
が分かる。
For example, the case shown in FIG. 2 will be described. In the period from t 1 to t 2 , the output of the third comparator 21 is “1” although it exceeds the first alarm level V 1. , It can be understood that this is due to an increase in the number of operating load devices.

【0024】一方、t3 〜t6 に於いては、第1及び第
2の比較器17、18の出力23、24が共に”1”に
なるが、この時の第4の比較器22の出力26が”1”
となっていることから、負荷機器の稼動数が減少したこ
とを示している。故にこの場合は負荷機器稼動数の減少
にもかかわらず、有効成分が増加したことつまり絶縁抵
抗が低下したことを意味するから、真の絶縁劣化である
ことが判明する。
On the other hand, from t 3 to t 6 , the outputs 23 and 24 of the first and second comparators 17 and 18 both become “1”, but the output of the fourth comparator 22 at this time is “1”. Output 26 is "1"
Indicates that the number of operating load devices has decreased. Therefore, in this case, despite the decrease in the number of operation of the load devices, it means that the effective component has increased, that is, the insulation resistance has decreased, and thus it is found that the insulation is truly deteriorated.

【0025】以上説明したように本発明は従来の絶縁劣
化検出手段に、無効成分の増減を検知する手段を付加す
ることによって真の絶縁劣化を判定するものであるが、
その実施に当たっては種々変形が可能であることは言を
待たない。例えば、判定に当たっては上記各比較器の出
力値を見て作業員が判断することもできるが、各出力を
論理回路によって状態判断し、警報発生の有無を制御す
ることも可能である。また、出力23、24、25、2
6を遠隔地にモデム等を介して伝送するか、出力23、
もしくは24が”1”となったときに出力25、26の
状態を伝送する如く構成すれば、常に伝送しなくても遠
隔地で従来よりも豊富な情報が受信でき、応動範囲を限
定することができる。また上記実施例では電路に周波数
1 の低周波電圧を印加して、有効分、無効分電流を検
出しているが、この方法に限らず2周波の電圧を印加し
てこれらを検出する等の他の方法を用いてもよいことは
明らかである。また、このような手段は送電用電路に限
らず、避雷用接地線の接地抵抗劣化やアンテナ等の空中
線の絶縁測定、或は電子装置の内部回路と筐体間の絶縁
測定等広い範囲に適用可能である。
As described above, the present invention judges true insulation deterioration by adding means for detecting an increase or decrease of an invalid component to the conventional insulation deterioration detection means.
It goes without saying that various modifications are possible in the implementation. For example, in making the determination, the worker can make a determination by looking at the output value of each of the comparators, but it is also possible to determine the state of each output by a logic circuit and control whether or not an alarm is generated. Outputs 23, 24, 25, 2
6 to a remote location via a modem or the like, or output 23,
Alternatively, if the state of the outputs 25 and 26 is transmitted when 24 becomes "1", abundant information can be received at a remote place without transmitting constantly, and the response range is limited. Can be. Also by applying a low-frequency voltage having a frequency f 1 to the path in the above embodiment, the effective amount, but detects the reactive current, etc. to detect these by applying a voltage of two-frequency it is not limited to this method Obviously, other methods may be used. In addition, such a means is not limited to the power transmission line, and is applicable to a wide range such as deterioration of the grounding resistance of a lightning arrester, insulation measurement of an antenna such as an antenna, or insulation measurement between an internal circuit of an electronic device and a housing. It is possible.

【0026】[0026]

【発明の効果】本発明は以上説明した如く、有効分電流
による絶縁劣化情報のみでなく、無効分電流による対地
静電容量の変化により負荷機器の稼動数の変化等による
絶縁劣化を判定できるため、警報発生時に効果的な応動
体制を採ることを可能とする上で著効を奏する。
As described above, according to the present invention, not only the insulation deterioration information due to the active component current but also the insulation deterioration due to the change in the number of operating load devices can be determined based on the change in the ground capacitance due to the reactive component current. This is extremely effective in enabling an effective response system when an alarm occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】(イ)乃至(ト)は図1の各部の動作状況を理
解するための波形を示す図である。
FIGS. 2A to 2G are diagrams showing waveforms for understanding the operation status of each unit in FIG. 1;

【図3】従来の絶縁監視装置の説明図である。FIG. 3 is an explanatory diagram of a conventional insulation monitoring device.

【図4】(a)及び(b)は有効分電流と無効分電流の
関係を示す図である。
FIGS. 4A and 4B are diagrams showing a relationship between an active component current and a reactive component current.

【符号の説明】[Explanation of symbols]

2 接地線、3、4、5 電路、6 変流器、7 注入
トランス、8、10 増幅器、9 発振器、11 フィ
ルタ、12、13 同期検波器、14 可変移相器、1
5 90°移相器、16、19 ローパスフィルタ、2
0 微分回路、17、18、21、22 レベル比較
器、T 変圧器。
2 Ground wire, 3, 4, 5 circuit, 6 current transformer, 7 injection transformer, 8, 10 amplifier, 9 oscillator, 11 filter, 12, 13 synchronous detector, 14 variable phase shifter, 1
5 90 ° phase shifter, 16, 19 Low-pass filter, 2
0 Differentiator circuit, 17, 18, 21, 22 Level comparator, T transformer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一端が接続線を介して大地又
は他の導体に接続された電路又はインピーダンス回路
に、 記接続線を介して測定用低周波信号を印加すると共
に、 記接続線に還流する前記測定用低周波信号の有効分
効分を検出し、 有効分に基づいて当該電路又はインピーダンス回路と
大地間又は他の導体間の絶縁抵抗値を算出するか、又は
該抵抗値に応じた信号を導出すると共に、 記無効分の増減変化を検出し、 前記有効分に基づく絶縁抵抗値又は該抵抗値に応じた信
号が所定の基準値を越えたときに前記無効分の増減変化
を参照し、 前記無効分が増大している場合には、真の絶縁劣化によ
るものではないと判定し、 前記無効分が増大していない場合には、真の絶縁劣化に
よるものであると判定することによって、 正確に絶縁劣化を判定し得るようにしたことを特徴とす
る絶縁劣化判定方法。
To claim 1 wherein at least one end connected path or impedance circuit to ground or other conductive via the connection line, and applies a low-frequency signal measured via the front Symbol connecting line, before Symbol connecting line <br/> the effective amount of the low-frequency signal the measurement refluxing detects invalid content, to calculate the insulation resistance value between the electric path or the impedance circuit and earth or between other conductor on the basis of the active component or together to derive a signal corresponding to the resistance value to detect a change in increase and decrease of the previous SL reactive component, Shin corresponding to insulation resistance value or the resistance value based on the active component
When the signal exceeds a predetermined reference value
If the ineffective component is increasing, the true insulation deterioration
If the ineffective component does not increase , it is determined that the insulation is not deteriorated.
A method for judging insulation deterioration, characterized in that insulation deterioration can be accurately judged by judging that the insulation deterioration has occurred.
【請求項2】 少なくとも一端が接続線を介して大地又
は他の導体に接続された電路又はインピーダンス回路の
大地間又は他の導体間の絶縁劣化を判定する装置におい
て、 測定用低周波信号発生源と、 記電路又はインピーダンス回路に該測定用低周波信号
を印加する手段と、 印加した低周波信号の漏洩信号の有効分と無効分とを
検出する手段と、 有効分から電路又はインピーダンス回路と大地又は他
の導体間の絶縁抵抗値を求める手段と、 記無効分の増減を検出する手段と、前記有効分に基づく絶縁抵抗値が所定の基準値を越えた
ときに前記無効分の増減変化を参照し、該無効分が増大
している場合には、真の絶縁劣化によるものではないと
判定し、該無効分が増大していない場合には、真の絶縁
劣化によるものであると判定する手段と、 を備えたことを特徴とする絶縁劣化判定装置。
2. An apparatus for judging insulation deterioration between an earth or another conductor of an electric circuit or an impedance circuit connected at least one end to the earth or another conductor via a connection line, wherein a low-frequency signal source for measurement is provided. If, before Symbol path or means for applying a low-frequency signal the measured impedance circuit, means for detecting the active component and reactive component of the leakage signal of the low frequency signal said applied electric path or the impedance circuit from the active component means for determining the insulation resistance between earth or another conductor, and means for detecting the increase or decrease in pre-Symbol reactive component, insulation resistance value based on the active component exceeds a predetermined reference value and
Sometimes, the invalid component increases by referring to the increase / decrease change of the invalid component.
If so, it is not due to true insulation degradation
Judgment, if the ineffective component does not increase, true insulation
Means for determining that the deterioration is due to deterioration.
JP17929092A 1992-06-12 1992-06-12 Method and apparatus for determining insulation deterioration Expired - Lifetime JP3240185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17929092A JP3240185B2 (en) 1992-06-12 1992-06-12 Method and apparatus for determining insulation deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17929092A JP3240185B2 (en) 1992-06-12 1992-06-12 Method and apparatus for determining insulation deterioration

Publications (2)

Publication Number Publication Date
JPH05346448A JPH05346448A (en) 1993-12-27
JP3240185B2 true JP3240185B2 (en) 2001-12-17

Family

ID=16063245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17929092A Expired - Lifetime JP3240185B2 (en) 1992-06-12 1992-06-12 Method and apparatus for determining insulation deterioration

Country Status (1)

Country Link
JP (1) JP3240185B2 (en)

Also Published As

Publication number Publication date
JPH05346448A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
CN109683063B (en) Small current ground fault direction detection method using current and voltage derivative
AU2005288465B2 (en) Leak current breaker and method
RU2633433C2 (en) Directional detection of fault in network, in particular, in system with grounded compensated or insulated neutral
CA1187553A (en) Remote current detector
US20090287430A1 (en) System and Method for Detecting Leak Current
EP1499903A2 (en) Method and system for monitoring winding insulation resistance
CN103439625A (en) Cable system fault positioning and load monitoring method
CN114156831A (en) Photoelectric combined instantaneous fault discrimination method
CN105359365A (en) Method and means for complex, universal earth fault protection in power high and medium voltage system
JP2004012147A (en) Insulation monitoring device and insulation monitoring method
JP3240185B2 (en) Method and apparatus for determining insulation deterioration
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
Bingyin et al. Single phase fault detection technique based on transient current and its application in non-solid grounded network
CN106602516A (en) PT secondary harmonic eliminating device and harmonic eliminating method
JPH01170865A (en) Detecting device for grounding failure point of electric distribution line
JP2003232826A (en) Leak detection device
JP4074805B2 (en) Partial discharge detector
CN114062964B (en) Method for reducing positioning range of one-point grounding protection fault of double-end injection type rotor
JPH0262831B2 (en)
JPS596137Y2 (en) Insulation monitoring device for rotating machine windings
JPH0933581A (en) Method of detecting deterioration in insulation of high voltage equipment, method of degree of the deterioration in insulation and monitoring apparatus for the deterioration in insulation
JP2960782B2 (en) Partial discharge measurement method
JP3240479B2 (en) Micro ground fault section location device
JPH0311922A (en) Power transmission direction discriminator
JPH07119785B2 (en) Insulation monitoring device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11